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SOME INVARIANCE PRINCIPLES RELATING TO
JACKKNIFING AND THEIR ROLE IN
SEQUENTIAL ANALYSIS!

By PraNnaB KUMAR SEN

University of North Carolina at Chapel Hill

For a broad class of jackknife statistics, it is shown that the Tukey
estimator of the variance converges almost surely to its population coun-
terpart. Moreover, the usual invariance principles (relating to the Wiener
process approximations) usually filter through jackknifing under no extra
regularity conditions. These results are then incorporated in providing a
bounded-length (sequential) confidence interval and a preassigned-strength
sequential test for a suitable parameter based on jackknife estimators.

1. Introduction. The jackknife estimator, originally introduced for bias re-
duction by Quenouille and extended by Tukey for robust interval estimation,
has been studied thoroughly by a host of workers during the past twenty years;
along with some extensive bibliography, detailed studies are made in the recent
papers of Arvesen (1969), Schucany, Gray and Owen (1971), Gray, Watkins
and Adams (1972) and Miller (1974). One of the major concerns is the asymp-
totic normality of the studentized form of the jackknife statistics. The purpose
of the present investigation is to focus on some deeper asymptotic properties of
jackknife estimators and to stress their role in the asymptotic theory of sequential
procedures based on jackknifing. Specifically, the almost sure convergence of
the Tukey estimator of the variance is established here for a broad class of
jackknife statistics and their asymptotic normality results are strengthened to
appropriate (weak as well as strong) invariance principles yielding Wiener process
approximations for the tail-sequence of jackknife estimators. These results are
then incorporated in providing (i) a bounded-length (sequential) confidence in-
terval and (ii) a prescribed-strength sequential test for a suitable parameter based
on jackknife estimators.

Section 2 deals with the preliminary notions along with some new interpre-
tations of the jackknife estimator and the Tukey estimator of the variance. For
convenience of presentation, in Section 3 we adopt the framework of Arvesen
(1969) and present the invariance principles for jackknifing U-statistics. Section
4 displays parallel results for general estimators. The two sequential problems
of estimation and testing are treated in the last two sections of the paper.
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2. Preliminary notions. Let {X;,i > 1} be a sequence of independent and
identically distributed random variables (i.i.d. rv) with a distribution function
(df) F, and let

P

(2.1) 0, =TyX;, -, X,), n=>1
be a sequence of estimators of a parameter ¢, such that

(2.2) E, =0+ n7'f, + n7B, + - (= E@, — 6) = O(n~1))

where the §; are unknown constants. Let us denote by

(2.3) 0oy = Tod(Xes -y Xieps Xiyry -5 X,), - 1<i<n,
(2.4) 6,,=nb, —(n— 1)f_,, 1<i<n,
(2.5) 0, =n'3.0,,=n, — (n— =t Nr_, 6_}.

Then, 0,* is termed the jackknife estimator of . Clearly, by (2.2), (2.3) and (2.5),
(2.6) E0* =0 — Byjn(n — 1) + ... (= E(0,* — 0) = O(n~?)).

Further, let

1 4 A 1 g \2
(2'7) Vn* = n——_l Z?:l [01»’7: - 0n*]2 = (” - 1) Z?:l <0;1—1 - -’; Z?:l 01-1)

Tukey has suggested that 7, * may be used as an estimator of the variance of
n(@,* — 0), and further,

(2.8) n(0,% — 0)[V.*]t >, A#(0,1) as n—oco.

Various authors have established (2.8) under suitable regularity conditions. Our
intention is to obtain stronger results concerning (i) the almost sure (a.s.)
convergence of V,* and (ii) Wiener process approximations for the tail-sequence
{6, — 05k = n}.

For simplicity, we assume that p = 1, i.e., the X, are real valued and R =
(— o0, ). For every n(= 1), the order statistics corresponding to X, ---, X,
are denoted by X, , < --- < X, ,. Let €, =€ (X,p, +++s Xpp» Xpyp, -+ +) be
the o-field generated by (X,, ---, X, ,) and by X,.;, j=1. Then &, is
nonincreasing in n (= 1). Note that given &,, X, ,,, j = 1 are all held fixed
while (X}, - - -, X,) are interchangeable and assume all possible permutations of
(X, -+ -5 X,,,) With equal conditional probability (n!)-*. Hence,

(2.9) E@,.| &) =n" D16, ae.,
and,'therefore, by (2.5) and (2.9),
(2.10) 0, = nf, — (n — HE@,_,| Z,)

=0, + (n— VE{@, —0,_,|Z,} ae.

Clearly, if {9n, &,} is a reverse-martingale, 6,* = f,; otherwise, the jackknifing
consists in adding on the correction factor

(2.11) 0, —0,=(n— 1)E@,—0,.,)| <.
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It follows by similar arguments that
(2.12)  V,* =n(n — 1) Var {0, — 0,_))| €.}
= n(n - 1){E[(én - én—1)2l %”] - (E[(én - én—l)l g’n]y} .
These interpretations and representations for jackknifing are quite useful for our
subsequent results.
For further reduction of bias, higher order jackknife estimators have been

proposed by various workers (see [6, 12]). The second order jackknife estimator
(see (4.20) of [12]) can be written in our notations as

(2.13) 0, = {n*d, — 2(n — 1E@,_,| Z,) + (n — 2YE@,_,| Z.)}

and a similar expression holds for the higher order jackknifing. In fact, we have
also a second interpretation for 4,*, 6,** etc. from the classical least squares
point of view. We denote by 6,*" the kth order jackknife estimator of 6 based
onX,, .-, X, fork=0,1,...,n — 1. Then, we have the following.

THEOREM 2.1. Consider the following k + 1 simultaneous equations in the k + 1
unknown parameters 0 and B,, - - -, B;:

214) 0, =04+ (n—i)B+ - +(n—0i)Fp, for i=0,1,..-,k
where the 0,_, are defined by (2.1), and let 0,* be the solution for 6. Then
(2.15) 0, = E@,k|Z,)  forevery 0<k<n.

Proor. Note that by (2.2), neglecting terms of the order n=*-1,
(2.16) E@,.) =0+ n—i)"Bi+ -+ +(m—1i*, for i=0,1,.--,k
where
(2.17) A, =((n—10)"")c,.., Iisnonsingular.

Let ai’’, be the element in the i, i/ position of the matrix A% for i,/ =0, .- -,
k. Then, under (2.16), the classical least squares estimator of # based on the
k + 1 estimators 9,1_“ i=0,---,k(n>k)is given by

(2.18) 0. = Xk od 0,

On the other hand, by the same conditional arguments as leading to (2.9), for
every i: 0 < i < k, we have

(219) E(én—ll (gn) = (n’ii)—l Zn,i Tn—i(le’A R | X ) = T::,z s Say,

Jn—i
where the summation };,,; extends over all 1 <, < -+ < j,_;, < n fori=
0, ---, k. Thus, by (2.18) and (2.19),
(2.20) E(én—zl ) = Xieay, Tk, .

For the model (2.16), the kth order jackknife estimator defined by Schucany,
Gray and Owen (1971) (cf. their Definition 4.1) agrees with our (2.20), and
hence the proof of the theorem is complete. In fact, for the comparatively more
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general model (4.16) of Schucany et al. (1971), the same equivalence follows on
parallel lines. []

Since in Section 3 we shall be concerned with jackknifing functions of U-
statistics, we find it convenient to introduce the following notations at this stage.
Let ¢(X,, - - -, X,,), symmetric in its m arguments, be a Borel measurable kernel
of degree m (= 1) and consider the regular functional (estimable parameter)

@21)  E=E(F) = Samp - § (-0 X dF(x) - dF(x,),  Fe.F

where & = {F: |§(F)| < o). Then, for n > m, the U-statistic corresponding
to £ is defined by

(222) U, =QG)"Ze, Xy X ) Co=(12i< - <i, <n}.

Note that EU, = &(F) and U, is a symmetric function of X;, --., X,. Further,
let

(2.23) & = Var {¢,(X;, -+, X))}

(2.24) Gu(x1s o s Xp) = EG(Xyy + ooy Xy Xy =05 X))
for h =0, ..., m, where {, = 0 and ¢, = &. We assume that
(2.25) 0<¢,, Cn < o0 (where {, < m™(,).

3. Invariance principles relating to jackknifing U-statistics. We shall be
concerned here mainly with the following two types of estimators:

(i) Let g, defined on R, have a bounded second derivative in some neighbor-
hood of &, and
(3.1) 6,=9U,), Yaz=m.

(if) For some positive integer g, we have

(3‘2) é = Zgzo an,s Un(” ’ n Z m,

n

where U, = U, is an unbiased estimator of 6 = &(F),

3.3) A, o=1+4n7¢,, + n7%,, + O(n?%),

U, ..., U,'” are appropriate U-statistics with expectations 6, ---, 0,
(unknown but finite) and

(3.4) a,, =ntc, -+ O(n=*1), h>1;

the c, ; are real constants; possibly, some being equal to 0. The classical von
Mises’ (1947) differentiable statistical function (corresponding to &(F)) is a
special case of (3.2) with ¢ = m and ¢,, = — (7).

First, we consider the following.

THEOREM 3.1. For {0,} defined by (3.1) or (3.2)—(3.4),

(3.5) V,* > as., as n—o oo,
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where
(3.6) 7 =[9'(&)m*,, for (3.1)
=m*,, for (3.2).

Proor. In the context of weak convergence of Rao-Blackwell estimator of dis-
tribution functions, Bhattacharyya and Sen (1977) have shown that under (2.25),
3.7 n(n — HE[(U,_, — U,)| &€, ] > m*{, as., as n—oo.

On the other hand, as in Section 2,

(38) n(n - I)E[(U -1 = n)ﬁl gfn] = (n - 1) Z?:l[Ui—l - Un]z

where the Ui _, are defined as in (2.3) with T, _, being replaced by U,_,. Hence,
from (3.7) and (3.8), we obtain that

(3.9) max,,., (Ui_, — U, =0(@r") as., as n—oo.

Further, {U,, €,, n = m} is a reverse martingale, so that U, — §(F) a.s., as
n — oo, and hence, by (3.9),

(3.10) max,g;<, |Ui_; — §(F)|—0 a.s.,, as n—oo.
First, consider the case of (3.1). Then, we have
b — 0, = 9(U,) — 9(U,)
(3.11) = ¢ UV, — U]+ 40" (hU, + (1 — U, )[ U, — U, ],
o<,

Note that E[U,_,| €,] = U, a.e. and further by (3.7), (3.8), (3.10) and the
boundedness of ¢’ (in a neighborhood of &), we have

|E(g"(hU, + (1 — BU, )V, — U,FIZ,)|
(3.12) < max,gg, [97(h U, + (1 — h)U,_l{n™" Xie (U — U)Y}
=0(n? as., as n—oo, where 0< A <1
forevery i=1,..-,n.
Hence, we obtain from (3.11) and (3.12) that
(3.13) E@,,—6,%,)=0(n" as., as n—oo.
Similarly,
(3.14)  Var{@,_, — 0,)| =)
= E{(f,_, — 0| €.} + O(n~%) a.s.
=nt3r [9(U) — 9g(U) + O(n*) aws.,, as n—co.
Further, as in (3.12),
Int Do, [9(UL) — 9(U] — [0/ (U S, (Usy — U,
(3.15) < {max,.ig, (9 (R U, + (1 — h)U, )" — (9'(U,))’l}
XA Bt (U = U} O <h <D

={o(1) a.s.{O(n™?) a.s.} =o(n® as., as n-— oo,
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where by (3.9), (3.8) and the a.s. convergence of U, to §(F),
(3.16)  [g'(U)P(n — 1) Zia [Uny — U,T - m G ()] as., as n—oo.
Hence, from (3.14)—(3.16), we obtain that
Vot = (n = 1) i [9(Un) — 9(UL)F
(3.17) =nn— 1)Var{@,_, —0,)| .}
—->m[gE)) =7 as., as n—oo.
For the case of (3.2), we note that
(3.18) a1 UY — a, (UP
=U,., —U,) + cif(n — D) U,_, — n7'U,} + O(n?) a.s.,
3.19) a, ,, UM, —a,, Ul =a,,,(UP — UMY+ O@*+HU™, hz=1,
and hence, the proof of (3.5) follows on parallel lines. []
ReMARK 1. From (2.11) and (3.13), we obtain that for every ¢ > 0,
(3.20) n=e6,* — 8, >0 as., as n— .
The last result is of fundamental importance to the main results of this section.
REMARK 2. By virtue of (3.14)-(3.16), V,* is asymptotically equivalent to
(3.21) [¢'(UnTs.®  where s,'=(n— 1) ¥i, [U — U]
in case (3.2), (3.21) holds with ¢’(U,) = 1. Let us also denote by

(3.22) Vi = (n2)7! 2ini D(Xis Xiza cee Xim) s 1<ign,
where the summation )], ; extends overall 1 < i, < -+ < i, <n with i; #i
for2 <j< m. Then, U, =n* >, V,,. Further, let

(3.23) V,=@n—1)"3r V. — UJ.

Sen (1960) has shown that V, is a distribution-free estimator of {,. It is interest-
ing to note that by definition

(3.24) Vi, + G DV = (DU, YI<i<n,
and, as a result, it follows by routine steps that
(3.25) st =m(n — 1Y(n — m)~*V,,, Vn>m.

Hence, the a.s. convergence of s’ (to m’(,) insures the same for V, (to ().
However, from the computational point of view, the labor involved in the com-
putation of V, is O(n™) whereas for s, it is O(n™*'). Hence, V, should be
preferable to s,% (3.25) will be of use in Section 5.

By virtue of (3.5) and (3.20) and the invariance principles for U-statistics,
studied by Loynes (1970), Miller and Sen (1972) and Sen (1974b), we are in a

position to present the following results (without derivation):
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(i) Consider a sequence {W,*} of stochastic processes, where
(3.26) Wy = (W (1) =m0, — 011, 0 =1 < 1}, n>m,

and k,(r) = min {k: n/k < ¢}, 0 <t < 1. Note that W,*(0) is equal to 0 with
probability 1 and for every n (= m), W,* belongs to the D[0, 1] space with
which we associate the Ji-topology. Further, let W* = [W*(f), 0 < ¢t < 1} be
a standard Brownian motion on [0, 1]. Then, as n — o,

(3.27) W —_ W*, in the J;-topology on  D[0, 1].
(if) Let S = {S(¢), t € [0, o0)} be a random process defined by
(3.28) S() =0, 0st<m+1,
= k(0,* — 0)/r, k<t<k+1, kzm41,
and, we assume that for some r > 2,
(3.29) E[(Xps -+ -5 Xp)[" < oo

Then, there exists a standard Wiener process W = {W(r), t € [0, c0)} on [0, co0),
such that

(3.30) S(1) = W(1) + o(tt) as., as t—oo.

(iiiy In (3.1), we have considered 6, = g(U,). It is possible to take 4, =
g(U,", -, U,™®), for some k > 1, where g has bounded second order partial
derivatives in a neighborhood of the point (EU,Y, ..., EU,*)(e R¥). The
proof follows as a straightforward extension of what has been done before, and
hence, for intended brevity, the details are omitted.

(iv) Jackknifing functions of generalized U-statistics have been considered by
Arvesen (1969). Here also, as in Sen (1974c), we may consider the product
sigma-field formed by the individual sample sequence { =} and express the usual
jackknife estimator as the conditional expectation of a linear combination of
original estimators for adjacent sample sizes. Further, a result parallel to (3.20)
holds in this case. Hence, by virtue of Theorem 2.2 of Sen (1974a), we are in
a position to derive a similar invariance principle for the jackknife estimators.
Further, by virtue of (3.19)—(3.23) of Sen (1974a), it can be shown that (3.30)
extends to a multiparameter Gaussian process. For intended brevity, the details
are omitted again.

4. Invariance principles for general {¢,*}. Structural properties of U-statistics
have enabled us to study the invariance principles in Section 3 without having
any extra regularity conditions. If 9n is not a function of U-statistics, we need,
however, a few extra regularity conditions to derive similar results. These will
be studied here.

Concerning the original sequence of estimators {9n}, we assume that

Py

(4.1) 0,,—)0 a.s., as n-—o oo,

(42) 62=Var(@,)]|0 as n—oo; lim, 102 =0, 0<3< co.

7 -+00
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Let us also define

(4.3) Y, =n(n — 1)@,., — 6,7, nx=2,
and assume that
4.4 ElY,|€,] >0 as.,, as n—oo,
4.5) Y, is uniformly (in n) integrable,
(4.6) |E@, — 0,,,| Ens)| =o0(n"Y) as., as n—oo.
Consider now a sequence of stochastic processes {W,}, where
(4.7) Wy = (Wot) = 0, (B — 0),0 S 1 < 15
(4.8) k(1) = min {k:d,%/0,’ < 1}, (VR - I

Then we have the following.

THEOREM 4.1. Under the assumptions made above, as n — oo
4.9) W, —, W*, in the J-topology on D[0, 1],
where W* is a standard Brownian motion on [0, 1].

OUTLINE OF THE PROOF. Let us write Q, = 6, — 5,,“, k = m. Then, by
4.1),

Py

(4.10) Oy —0 = >svQ:, as., YN=m.
Also, let 0, = Q, — E(Q,| €is1)> Z, = Xuzi Ou k = m, and
(4.11) W, = (W) = 6,72, 1y 0 < 1 < 1},

where {k,(t), 0 < t < 1} is defined by (4.8). Then, by (4.2) and (4.6),
(4.12)  supye,i [Wo(0) — W, (0)]
= 0,7 {SUPyzn | Ziar E(Qul €iid)l} —, 0, as n—oo.

On the other hand, {Z,, &,; n = m} is a reverse martingale, so that the back-
ward invariance principle of Loynes (1970) holds provided the following con-
ditions hold: as n — oo,

(4.13) Ay =0, Dizn E(kal Ce)t 5 1,
(4.14) B, = 6, Tsen E(QSNQY > €0,7) | Fri1)} =, 0, Ye>0.
(Though Loynes (1970) has assumed a.s. convergence in this respect, his result
holds even under the convergence in probability.) Note that by (4.2), (4.3)
and (4.6),

Ay = 0,7 (Drza {E(Q| 1) — [E(Qr| )]}
(4.15) = 0,7 (Lizn {E(Yinr | Grn)[k(k + 1) — 0 (k7))

—1 a.s., as n-—ooo.
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Again, by (4.2) through (4.6), for every ¢ > 0, as n — oo,
51&'_2 Zkzn E{kal(ka > 6(3”2)}

-2 1 2
(4'16) =0, Dlkza mE{YkI(Yk > ek(k + 1)o, )}
- 1 _
= (0,7%)(o(1)) <Zk;n m) =o(1),
and hence,

4.17) - 0,7 Xisn E{QL(Q) > €0,7) | €y} —, 0 as n-—oo.

Since, by (4.2) and (4.3), 0,7 245, {E(Qi| €ri1)f — 0 ass., as n— oo, (4.14)
follows from (4.17), the definition of the 0, and the inequality that for every
¢ >0, (Xl u) (Xl u® > 2) < 430, ull(u? > ¢')}. Hence, the proof of
the theorem is complete.

REMARK. For dependent random variables, McLeish (1974) has considered
some (forward) invariance principles. In the spirit of Loynes (1970), our Theo-
rem 4.1 provides an analogous backward invariance principle.

Since (4.4) corresponds to (3.7), virtually repeating the proof of Theorem
3.1, it follows that under the same conditions on g, as in Section 3,

(4.18) 10,% — 0] = (1 — DIE{@pey — 0,)]| Fo}] = 0(n7})  ass.,
by (4.6), and
(4.19) V,* —>0* as., as n— oo.

Hence, if in (4.7), we replace {,} by {6,*} and denote the corresponding
process by W,*, then (4.9) holds for {W,*} as well. Further, §,~! may also be
replaced by ni(V,*)%.

The conditions (4.1), (4.2), (4.4), (4.5) and (4.6) are most conveniently verifi-
able if #, can be expressed as

(4'20) én = mn + r,,,,,

n

where {m,, <} is a reverse martingale and |r,_, — r,| = o(n"?) a.s., as n — .

5. Asymptotic sequential confidence interval based on jackknifing. Tukey
proposed the use of (2.8) for a robust.confidence interval for §. By virtue of
our invariance principles, we are in a position to consider the following robust
sequential interval estimation problem.

Suppose 6, 2, é,,0,* and v,* are defined as before. The underlying df F,
and hence, ¢ and y* being unknown, it is desired to determine (sequentially) a
confidence interval for ¢ having a maximum-width 2d,d > 0 being prede-
termined, and a preassigned confidence coefficient 1 — a, 0 < « < 1. For
everyn = 1andd > 0, let

(5.1) I(d)={0:0,* —d <0 <06 +d),
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and let 7, be the upper 100a9;, point of the standard normal df. Finally, let
n, (= ny(d)) be the initial sample size. Then, we consider a stopping variable
N (= N(d)), defined by

(5.2) N = smallest integer n (= n,) such that V, * < nd®/7%,;

if no such n exist, we let N = co. Whenever N < oo, the proposed confidence
interval for @ is I(d), defined by (5.1) for n = N = N(d). The above procedure
is a direct adaptation of the Chow-Robbins (1965) procedure under our jack-
knifing setup.

THEOREM 5.1. Under the hypothesis of Theorem 3.1 (or 4.1),

(5.3) lim,_, P{0 € Iy (d)} =1 — a,
(5-4) lim,_, {(M@)d)/(2,7)) = 1 as.
If, in addition E{sup, V,*} < oo, then

(3:3) lim, o {(4*EN(d)/(zep7")} = 1 .

OUTLINE OF THE PROOF. We follow the line of attack of Chow and Robbins
(1965). We need to show that (a) V,* — y* a.s., as n — oo, (b) (2.8) holds and
(c) for every ¢ > 0 and » > 0, there exist a 6(0 < 6 < 1) and an n*, such that
for n = n*,

(5.6) P{Max, ., ,_izom 1}[0% — 0,5 > €} < 7.

Now (a) has already been proved, (b) is a direct consequence of (3.27) and
finally (c) follows from the tightness property of {W,*} which, in turn, is insured
by (3.27). [

The condition that E(sup, V,*) < oo, needed for (5.5), however, does not
follow from the hypothesis of Theorem 3.1 (or 4.1); nor is it a very readily
verifiable one. It is possible to obtain (5.5) under a somewhat different condition
which is more easily verifiable.

THEOREM 5.2. If {8,} is defined by (3.1) or (3.2)—(3.4) and the hypothesis of
Theorem 3.1 holds, then E{|¢(X,, - - -, X,)|") < oo for some r > 4 insures (5.5).

Proor. Consider the estimator V,, defined by (3.23). It follows from Sproule
(1969) that ¥, can be expressed as a linear combination of several U-statistics
whose moments of the order g (> 0) exist whenever E|¢|* < oo. As such,
using Theorem 1 of Sen (1974c), it follows that for every ¢ > 0, there exist a
positive K, (< oo) and an ny(e) such for n = ny(e),

(5.7) PV, —C|l>¢2} <Kn*, s=r/4>1.

Further, ¢'(f) has a bounded derivative in a neighborhood of r = &, and hence,
by Theorem 1 of Sen (1974c¢), again, for 0}, defined as in (3.1),

(5.8) Plg'(U) — 0'€) > <2} < Ko ¥, ¥z nge).
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From (3.15), (3.21), (3.25), (5,7) and (5.8), it follows by some standard steps
that for every 5 > 0, there exist a constant K, (< co) and an ny(y), such that
for n = ny(y),

(5.9) PIlV,* =7 > < Kn; s=r/4>1.

Having established this, we may proceed as in the proof of Theorem 3.1 of Sen
and Ghosh (1971) [namely, as in their (5.16)—(5.19)], and complete the proof
of (5.5) by using (5.3) and (5.9). For brevity, the details are omitted. []

6. Sequential tests based on jackknife estimators. The embedding of Wiener
processes in (3.30) and the strong convergence of V¥, * (to y*) in (3.5) enable us
to construct the following type of asymptotic sequential tests; for further moti-
vation of this type of procedure, we may refer to Sen (1973) and Sen and Ghosh
(1974).

Consider a suitable parameter 6 (for which the sequences {4,} and {6,*} of
estimators are available sequentially), and suppose that we desire to test

(6.1) Hy:0=0, vs. Hy:0=0=0,+A4, A>0,

where 6, and A are specified and we like the test to have the prescribed strength
(a, B). Since the df F is not known, no fixed sample size test sounds feasible
and we take recourse to the following sequential procedure:

Suppose that 0 < a, 8 < 4 and consider two positive numbers (4, B): 0 <
B <1< A< oo, where /(1 — a) < B and (1 — B)/a = A. Starting with an
initial sample of size n, (= n,(4)), continue drawing observations one by one as
long as

(6.2) bV, * < mA[8,* — (0, + 6,)/2] < aV,*, m = ny(4),

where a =log 4, b =log B(= —o0o < b <0< a< ), 0,* is the jackknife
estimator of # based on X, ..., X,, [viz., (2.5)] and V,* is defined as in (2.7).
If, for the first time, (6.2) is vitiated for m = N and A[0,* — (0, + 0,)/2] is
< bVy* (or = aV,*), accept H, (or H)); the stopping variable N is denoted by
N(4).

Since m~tV,* — 0 a.s., as m — oo (by (3.5)) and m*(0,,* — 0) is asymptotically
normal with mean 0 and variance 7°, it is easy to see that for every fixed ¢
and A,

(6.3) Py){N(Q) > n} < P{n=tbV,* < And[0,* — 4(0, + 0,)] < n~taV,*}

—0 as n— oo,
and hence, the proposed test terminates with probability one. For the OC and
ASN function, as in Sen (1973) and Sen and Ghosh (1974), we consider the

asymptotic situation where we let A — 0 (comparable to d — 0 in Section 5)
and set

(6.4) 0 =0,+ A where ¢e® = {¢:|¢| < K < o},
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(6.5) lim,_, ny(A) = oo but lim,_,A’m(A) =0,

(6.6) e=A=(1—pla, S=B=p(l-a, O0<ap<i}.
Finally, let us denote by L,(¢, A) the OC (i.e., probability of accepting H, when
actually 6 = 0, + ¢A) of the test based on (6.2). Then, we have the following:

THEOREM 6.1. Under (6.4)—(6.6) and the hypothesis of Theorem 3.1 (or 4.1)
(6.7)  limy, Lp(¢, B) = P(§) = (47 — /(A" — B™), ¢ =+},

= ala—b), $=1,
and hence, asymptotically the OC does not depend on F. Further
(6.8) PO)=1—« and  P(1) =g,

s0 that the test has asymptotic strength (a, B).
Proor. Let us choose a sequence {n* = n*(A)} such that
(6.9) n*(A) ~ KA—* as A—0, where K(< oo) is arbitrarily large.

Then, by (3.27), (6.4), (6.5) and (6.9), for § = 6, + ¢A, defining U,* = {U,(¢) =
An[6,* — L0, + 0,)]]r> A’n < t < A%(n + 1), ny(A) < n < n*()}, it follows that
as A > 0,

(6.10) U = W) + (¢ — Difr, 0 <1 = K}
where {W(r), t > 0} is a standard Wiener process on [0, o). Also, by (3.5),
sup {|V,*/r* — 1|:n(d) £ n < n*(A)} —>,0 as A— 0. Finally, by (6.3), for
every 7 > 0, there exists a K = K, (< o0), such that defining n*(A) by (6.9)
with K = K,, we have P{N(A) > n*(A)} < 5. Hence, using (6.2) and (6.10), it
follows that
(6.11) lim,_, Ly(¢, A) = P{W(t) + (p — )ty is < by for a smaller
t (= 0) than any other ¢ (> 0) for which
W) + (6 — bufy sz ar).
By the classical result of Dvoretzky, Kiefer and Wolfowitz (1953), the right-hand

side of (6.11) is equal to P(¢), defined by (6.7), and hence, the proof of (6.7) is
complete. (6.8) follows from (6.7) by sustituting ¢ = 0 and 1, respectively. []

As in Theorem 5.2, for the study of the ASN (i.e., E{N(A)|0 = 6, + ¢A} for
A — 0) function, the weak (or a.s.) convergence results of Section 3 (or 4) are
not enough and we need some analogous moment convergence results which,
in turn, may demand more restrictive conditions on the df F. Suppose that as
in Theorem 5.2, we assume 8, = g(U,) and that

(6.12) El¢(Xy, -+, X,)|" < o0 for some r > 4.

Then, we not only have (5.9), but also, it can be shown by steps similar to those
in Section 3 that

(6.13) P(0,* — 6] > e} < C,n*, s>1,
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for n sufficiently large. Further, for n(A) < n < n*(A), we may write

(6.14) nAL,* — 40+ 0)] = AZ, + nb¥(p — }) + R,*,

where for every ¢ > 0,

(6.15) P{max, ) <ugwa R4 > ¢} < Con, for VA:0< A<LA,,
and where {Z,, &,; n = 1} is a martingale; <%, being the o-field generated by

Xy ooy X, n =1 (:?@n is /' in n). As such the method of attack of Sen
(1973) and Ghosh and Sen (1976) can directly be adapted to arrive at the

following.

THEOREM 6.2. Under the assumptions made earlier, for every ¢ € @,

(6.16) lim,_, {A’E[N(Q)| 6 = 0, + ¢A]} = (9, 1)

where

(6.17) (B, 7) = {bP($) + o[l — PN /(¢ — B}, ¢+ %
= —7%ab, ¢ =1

and 7* is defined by (3.6).
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