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SOME INCOMPLETE AND BOUNDEDLY COMPLETE
FAMILIES OF DISTRIBUTIONS'

By WassiLy HOEFFDING
University of North Carolina at Chapel Hill

Let &7 be a family of distributions on a measurable space such that
Mt SuwidP=ci,i=1,--,k, for all Pe 22 and which is sufficiently rich;
for example, & consists of all distributions dominated by a g-finite measure
and satisfying (t). It is known that when conditions (t) are not present,
no nontrivial symmetric unbiased estimator of zero (s.u.e.z.) based on a
random sample of any size n exists. Here it is shown that (1) if g(x1, - - -, Xn)
is a s.u.e.z. then there exist symmetric functions Ai(x, -« -, Xn-1), i =
1, -+, k, such that

glx1, + o, Xn) = TF_qy Doy (wi(xg) — eadhilx, -+, Xj-1, Xjgr, =+ v5 Xn) 3

and (II) if every nontrivial linear combination of s, - -+, # is unbounded
then no bounded nontrivial s.u.e.z. exists. Applications to unbiased esti-
mation and similar tests are discussed.

1. Introduction and statement of results. Let %7 be a o-field of subsets of a
set 27, and let & be a family of distributions (probability measures) P on
(&, ") which satisfy the conditions

(1.1) Su,dP =c,;, i=1,..--,k,

where k is a positive integer, u,, - - -, u, are given -measurable functions, and
¢, -+, ¢, are given real numbers. Let 7™ be the o-field of subsets of 27"
generated by the (cylinder) sets in %", and let &°™ = {P": P € &} denote the
family of the n-fold product measures P* on (27", ™).

A family & of distributions on (27", &™) will be said to be complete
relative to the permutation group if the condition that the .%/-measurable
symmetric real-valued function g satisfies { gdQ = 0 for all Q e & implies
g(xXp -+, x,) = 0 a.e. (&). Here g is called symmetric if it is invariant under
all permutations of its arguments. The family < will be said to be boundedly
complete relative to the permutation group if the same conclusion holds under
the additional condition that g is bounded. Informally, & is [boundedly]
complete relative to the permutation group if there is no nontrivial [bounded]
symmetric unbiased estimator of zero. (This definition relates to the well-known
notion of a [boundedly] complete family [8] as follows. Let T be a maximal
invariant under the permutation group and let &7 = {Q7: Q € €’} be the family
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INCOMPLETE AND BOUNDEDLY COMPLETE FAMILIES 279

of distributions of 7" induced by the distributions in 7. Then & is [boundedly]
complete relative to the permutation group iff the family &7 is [boundedly]
complete.)

It is well known (Halmos (1946), Fraser (1954 a), Bell, Blackwell and Breiman
(1960)) that if the conditions (1.1) are absent and .&” is sufficiently rich then &#™
is complete relative to the permutation group. This is not true in the presence
of conditions (1.1) (unless the #; and ¢, are such that the conditions impose no
restriction). Indeed, if 4, ---, &, are any %7 *~Y-measurable symmetric func-
tions such that § |#,| dP"' < oo, i =1, -+, k, for all P € & then the function
g defined by

(1.2) (X« v 05 X,) = 200, 2ihe {u(x;) — CH(Xys v vy Xjogs Xjpqs + 005 Xp)

is a symmetric unbiased estimator of zero.

In this paper two theorems (each in two versions) are proved. The first theo-
rem shows that if .Z7 is sufficiently rich then a symmetric unbiased estimator of
zero is necessarily of the form (1.2). The second theorem shows that although
Z™ is not complete relative to the permutation group it is boundedly complete
if all nontrivial linear combinations of u,, - - -, u, are unbounded.

To state the theorems, we introduce the following notation. If . contains
the one-point sets, let & be the family of all distributions P concentrated on
finite subsets of 2~ which satisfy conditions (1.1). If x is a o-finite measure on
(75, ), let F(1) be the family of all distributions absolutely continuous with
respect to ¢ whose densities dP/dp are simple functions (finite linear combinations
of indicator functions of sets in .%") and which satisfy conditions (1.1).

THEOREM 1A. Let .87 contain the one-point sets and let <F be a convex family of
distributions on (=27, S7°) which satisfy conditions (1.1), and such that 4 c . If
g is a symmetric 57 "™ -measurable function such that § g dP™ = 0 for all P ¢ & then
there exist k symmetric 7 "~V-measurable functions h,, - - -, h, which are P"~'-
integrable for all P € &, such that (1.2) is satisfied for all (x,, - - -, x,) € Z".

THEOREM 2A. If the conditions of Theorem 1A are satisfied and if g is bounded
while every nontrivial linear combination of u,, - - -, u, is unbounded then g(x,, - - -,
x,) = 0 forall (x,, ---, x,) e ™.

The following analogs of the two tl"leorems hold for dominated families of
distributions.

We shall say that an .%“measurable function # is Z-unbounded if for every
real number c¢ there is a P in Z# such that P(Ju(x)| > ¢) = 0.

THEOREM 1B. Let &7 be a convex family of distributions absolutely continuous
with respect to a o-finite measure p on (27, '), which satisfy conditions (1.1), and
such that F(p) ¢ . If g is a symmetric .57 ‘™-measurable function such that
§ gdP" = 0 for all P ¢ S then there exist k symmetric .57 "~V-measurable functions
hy, -« -, b, which are P~'-integrable for all P ¢ &, such that (1.2) holds a.e. (F).
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THEOREM 2B. If the conditions of Theorem 1B are satisfied and if g is bounded
while every nontrivial linear combination of u,, - - -, u, is FP-unbounded then g(x,, - - -,
x,) = 0 a.e. (F™).

REMARK 1. The assumption that the family .Z° is convex is used only to prove
that there are versions of the functions £, that are integrable. Note that the
families 5, Z(y), and the family of all P whicha re absolutely continuous with
respect to ¢ and satisfy conditions (1.1), are convex.

ReMARK 2. Theorems 1B and 2B remain true if () is defined as the family
of all distributions absolutely continuous with respect to p which satisfy con-
ditions (1.1) and whose densities are finite linear combinations of indicator func-
tions of sets in a ring which generates the o-field %7"; compare Fraser (1954 a).

REMARK 3. The analogs of Theorems 1 and 2 with &7 the class of all non-
atomic probability measures on (27 %) satisfying (1.1) are also true; compare
Bell et al. (1960).

REeMARK 4. If the assumptions of Theorems 1A or 1B are satisfied but con-
ditions (1.1) are absent then the family ”™ is complete relative to the permu-
tation group. Here the assumption that &7 is convex is not needed. This is
essentially known (as noted above) and is easily seen from the proofs.

REMARK 5. A special case of Theorem 1B (with 27 = R', 1 Lebesgue measure,
k =1, u(x) = 1if x < 0, = 0 otherwise) is due to Fraser (1954b). I am grateful
to a referee for drawing my attention to this fact.

The theorems are proved in Sections 3-6. Section 2 contains lemmas that are
used in the proofs.

This section is concluded with three examples of applications of Theorems 1
and 2.

ExampLE 1. Let X, ..., X, be independent real-valued random variables
with common probability density p(x) and suppose that the first k moments,
{ xp(x)dx = ¢, i =1, ..., k, are known (k = 1). Nothing else is assumed.
Consider estimating ¢(P) = P(A), the probability of a given set 4 — R'. Theo-
rem 2B implies that ¢ = n~! 32, I,(X;), where I, is the indicator function of
A, is the unique symmetric unbiased estimator of ¢(P). (It is reasonable to
require that the range of an estimator of ¢(P) be contained in the range of ¢(P).
In the present example, due to Chebyshev-type inequalities, g!? may not satisfy
this requirement. In such a case the use of an unbiased estimator cannot be
recommended.)

ExampPLE 2. Let X, ..., X, be independent real-valued random variables with
common distribution P whose variance is known. Consider testing the hypothesis
{ xdP = 0 against the alternatives { xdP > 0. Foreveryn = 1, everya € (0, 1),
and every ¢ > O there exists a strictly unbiased test of size a against the alter-
natives { xdP = e. (In Hoeffding (1956), page 112, a test is exhibited which,
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after a suitable change in notation, is strictly unbiased against { xdP = ¢. This
test can be shown to be strictly unbiased against §{ xdP > ¢.) Theorem 2 implies
that against the alternatives | x 4P > 0 no nontrivial unbiased test exists. (One
first shows that every unbiased test is similar; see [8]. We may assume that the
test is symmetric. By Theorem 2 the only symmetric similar test of size « is
trivial.)

ExaMPLE 3. Let the assumptions of Theorem 1 (A or B) be satisfied. If ¢(P)
admits an unbiased estimator, then the difference of any two symmetric unbiased
estimators -is given by (1.2). We discuss only the simplest case, n = 1. Let
¢(P) = { wdP. Then any unbiased estimator 7(x) is given by

Hx) = w(x) + 25 hfu(x) — ¢}

where £,, - - -, h, are arbitrary constants. Suppose that w, u,, - - -, 4, have finite
second moments. Then

Var, (t) = Varp (w) + 2 235, 8, C(P) 4+ Xk 23k b h; D (P)

where C,(P) = Cov, (w, u;) and D,;(P) = Cov, (u,, u;). It is straightforward to
minimize Var, (¢) with respect to 4;, ---, #,. Let Q be a distribution in & such
that the matrix (D,;(Q)) is nonsingular, and let (D%(Q)) be its inverse. Then
the unbiased estimator which has minimum variance when the distribution is Q
is #(x) with h; = 3;; D¥(Q)C,(Q), and its variance at P = Q is Var, (w) —
22 DHO)C(Q)C4(Q).-

2. Lemmas. The following lemmas will be used in the proofs of the theorems.
We write u(x) for the column vector with components u,(x), - - -, u,(x).

LemMma 1A, If, for (x;, -« -, x,) e 2",
(2.1) G(xps = o5 X)) = 2y i WX (Xps s Xy Xjpgs s Xp)

where each h; is symmetric in its n — 1 arguments, and if z,, - - -, z, are k points in
& such that the k X k matrix

(2.2) U = (u(z), - - -, u(z,))

is nonsingular, then, for (x,, -- -, x,) € 27",

(2.3) g(xps + 05 X,) = La (=1)ym1T, (X, <o, X,)

where

(24) Tn,m(xl’ ] xn) = Zm,n—m Z:i’cl=1 tee Ziﬂn_,n:l g(xj]’ ctty xjm’ zil’ c oty
Zin—m) ,vil(xjm+1) T /vi'n—m(xjn) ’

(2.5) v(x) = U lu(x),

and ), . . denotes summation over those permutations j,, - -, j, of the integers

L, «vyn for which j, < -+« < jpand jo. < - o < joe
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RemMARK. Note that representation (2.3) of g(x,, - - -, x,) does not involve the
functions 4, - - -, k, which appear in (2.1).
Proor. From (2.1) and (2.5) we have
(2.6) G(xps - v X)) = 20y D Far V(X )fi(Xps -y Xiip Xpny vy Xu) s
where each f; is symmetric in its n — 1 arguments. By (2.5)
(2.7) v(z) =1, wv(z;)=0, i j.

Hence, for 1 <i. <k, r=1,...,n—myn—m=1, ...,n,

g(xl’ MY X,m, Zi]7 AT ) Zin—m)
(28) = Z?:l ;'n=1 vz(xj)fi(xu R xj—v xj+1’ D) .Xm, Zi1’ M) Zin—m)
_|_fi1(x1, ...,xm’ziz, ”.’Zin—m) + ..
-+ fin—m(xl’ Sy Xy Zys t v zin—m—l) .

From (2.6) and (2.8), by induction on m (beginning with m = n — 1),

(2'9) g(xl’ DR ] x'n) = T'n,n—l - La,n—2 + cee + (_l)m—lTn,fn—-m + (_l)mRm ’
m=0,1,...,n—1,

where T, , =T, (X, - -, X,), and R, differs from T, ,_,_, only in that g(---,
Zil’ e, Zlm+1) is replaced byﬁl( ey Ziz’ cee, Zim+1) + ... +fim+1(' ey Zil’ .. Z’m)
In particular, by (2.8) with m = 0, we have R,_, = T, ,, and (2.3) follows from

(2.9).

LEMMA 1B. Let v be a finite measure on the measurable space (27, 57"), let g be
an 57 ™-measurable function such that § |g| dv® < oo, and let u,, - ., u, be S7-
measurable functions such that §|u|dv < oo, i =1, ..., k. If there exist sym-
metric S ‘"~V-measurable functions hy, - .-, h, such that g(x,, ---, x,) can be re-
presented in the form (2.1) for all (x,, «--, x,)€ 2", and if By, ---, B, are k sets
in &7 such that the k X k matrix

(2.10) U, = ({gudy, -, { ud)

is nonsingular, then, for all (x, ---, x,) e 2",

(2.11) g(xi5 + o5 %) = 2o (— 1) T (X -, Xy)

where T\ (x5 - -+, Xx,) is defined like T, ,(x,, -+, x,) in (2.4) but with g9(x;,5 -+
Xi 9 Ziy o, Zin—m) replaced by

im? ‘i

b

(212) SBil d”()ﬁ) c SBin—m dp(yn—m)g(ley AR ) xjm’ )’1, AT ) yn—m)
and v(x) = (Vy(x), - - -, V(x))" replaced by
(2.13) v(x) = U, Mu(x) .

The same is true with the phrase “for all (x,, - --, x,) € 2" replaced by “a.e.
V™ in the two places where it occurs.

The proof of Lemma 1B closely parallels that of Lemma 1A. The only
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difference is that any substitution, in a function f{(-- -, x;, -- ), of z; for x, in
the proof of Lemma 1A is replaced by integration over B; with respect to dv(x;).
Incidentally, Lemma 1B contains Lemma 1A.
The functions 4,, - .-, &, in representation (2.1) of g are not, in general, uni-
quely determined by the functions g, u;, - - -, #,. For example, if &,(x, ), hy(x, y)
satisfy (2.1) with k =2, n = 3, so do

Hi(x, y) = hy(x, y) + w(y)us(x) + w(x)uy(y) >
Hy(x, y) = hy(x, y) — w(p)u(x) — w(x)u(y)
where w(x) is arbitrary. The following lemma records, for future reference, a

certain version of the functions 4, - .-, &,.

LEMMA 2. Suppose there exist symmetric functions hy, - - -, b, such that g has the
representation (2.1). Under the conditions of Lemma 1A, hy, - - -, h, can be so chosen
that each h(x,, - - -, x,_,) is a finite linear combination of terms of the form

(2.14) G(Xjps v vs X500 Zypy vt "z ) U (X5 . u, (x5 )
where (j,, « -+, j,_1) is a permutation of (1, ..., n — 1). Under the conditions of
Lemma 1B, each h(x,, ---, x,_,) can be chosen as a finite linear combination of

terms of the form

(2.15) SBil dv(y,) - -+ SBM_M d”(yn—m)g(xi17 cres Xg e Vo s Vaem)
url(xjm+l) e u"'n—m—l(xjn—l) ’

where (jy, - -+, ju_1) is @ permutation of (1, - -+, n — 1).

Proor. Under the conditions of Lemma 1A, g(x;, - --, x,) has the represen-
tation (2.3), where T, ,.(x;, - - -, X,) is defined in (2.4) and each v,(x) is a linear
combination of uy(x), - - -, u,(x). Hence g(x,, - - -, x,) can be written as a linear
combination of terms, each of which, for some i and some j, is of the form
u,(x,;) multiplied with a product of the form (2.14) which does not involve x;.
This fact and the symmetry of g(x,, - - -, x,) imply the assertion of the lemma.
Under the conditions of Lemma 1B the proof is analogous.

3. Proof of Theorem 1A. We may and shall assume that conditions (1.1) are

satisfied with ¢, = ... = ¢, = 0. Thus & is the family of all distributions P
concentrated on finite subsets of 22”7 which satisfy the conditions
3.1 {u,dP =0, i=1,..,k,

and & is a convex family of distributions P on (227, %) which satisfy (3.1),
and such that & > 7. Let g be a symmetric . ™-measurable function such
that §{ gdP~ = 0 for all Pe.2” We must show that there exist symmetric
&7 »-b.measurable functions #,, - - -, &, such that

(3.2) §|h] dP"! < o0, i=1,..-,k, if Pe&”
and, for all (x,, --., x,) e 2",

(3.3) 9(Xp -5 X,) = 2y T=1 U (x;)h( Xy oy Xi_1s Xjpps * 0o Xp) o
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Since & C .F; we have that if N is a positive integer, x,, ---, xy are points
in 2 and p,, -.-, p, are nonnegative numbers such that
(3-4) pitostpy=1,
(3.5) B(X)py + o+ u(xy)py =0, P=1, -k,
then
(3.6) N ¥ (X s X ) piy e pi, =0

It will be convenient to identify points in R* with the corresponding column
vectors. Conditions (3.4) and (3.5) show that the origin 0 of R* is in the convex
hull of the set ZZ = {u(x): x e Z°}.

First assume that 0 is in the interior of the convex hull of Z. Then there
exist k 4+ 1 points y,, - - -, y,,, in 27 such that 0 is in the interior of the polytype
whose vertices are u(y,), - - -, u(y,,;). Thus there are strictly positive numbers
41> -+ *» Gy SUch that

(3'7) q1+"‘+qk+1:1,
u(y)g + -+ (P9 = 0.
Now let x,, - - -, x, be points in 2. Let x,,, =y, i=1,..., k4 1. There
exists a positive number ¢ such that if
(3.8) 0<p, Ze, j=1,--,n,

the equations (3.4), (3.5) with N=n 4+ k + 1, regarded as equations for
Pusvs ***s Putisr> DAVe @ positive solution. This follows, by continuity, from the
factthatif py = ... = p, = 0, the solutionisp,,;, = ¢, >0,i=1, ..., k + 1.
The solution in the general case is of the form

(3‘9) Pn+z:‘]z(l* ?=1Pi)—‘ Irc=1 Z?=1azr r(x )P], i = 1’ ""k+1,

where the coefficients a;, (and ¢,) do not depend on x; and p; (j = 1, - - -, n).
If we now insert the expressions (3.9) for p,,,, - - -, p,., in the left side of (3.6)

with N =n 4+ k + 1, we obtain a polynomial in p,, - -, p, which is zero in the

range (3.8), and hence identically zero. The resulting equation may be written

(3.10) m=0 ()0, m
where ‘
(3'11) Sn,m = Z?l=1 A m=1 Zfltl . Zf:_lmﬂ g\/le’ crs X

Yip ""yin_m)P:, P Prviy * Prig_

and the p, ., are given by (3.9).

The identity (3.10) will be used to show that g(x,, - - -, x,) can be represented
in the form (3.3). If 4, denotes the sum of the coefficients of p, - .. p, in (3.10),
and A, denotes the constant term, then

(3.12) A, =0, M=0,1,
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It is easy to see that 4, = A,(x,, - - -, x,) depends on x,, - - -, x, only through
Xy, -+ -5 Xy, and that the sum of the coefficients of p; ---p; , 1 <ji < -+ <
Ju S 10 Ay(xg, o xp).

It is readily seen from (3.9)—(3.11) that the condition 4, = 0 is equivalent to

(3.13) P P9y )y 45, =0

It will now be shown by induction on m that

k k
(3.14) i1+=11 i:_l,,n:lg(xl’ Cns X Vi ...,yi”_m) 9yt Qi
—_— k
= 2 DT (X)) (X s Xjogs Xjgrs t s Xi)
form =1, ..., n, where each 4, ,(+) is symmetric in its m — 1 arguments; and

that (3.14) also holds with x,, - - -, x,, replaced by Xis tvts X, 1< <
Jm < n. In particular, (3.14) with m = n implies the representation (3.3) of
9x -5 ).

That (3.14) holds for m = 1 (where the %, , are constants) can be seen from
A, = 0 and (3.13). Suppose (3.14) is true form < M — 1 (2 < M < n). The
products p, - - - p, occur in the sums S, , withm = 0, ..., M. The coefficient
of py.-. p,in S, , is, apart from a nonzero numerical factor, equal to the
left-hand side of (3.14) with m = M. Hence, to prove that (3.14) holds for
m = M, it is enough to show that for m =0, 1, ..., M — 1, the sum of the co-
efficients, call it 4, ,,, of p, - .. p,, in S, ,, is of the form

(3'15) Zf=1 {ui(xl)fi(xm R} xM) + -+ ”i(xM)fi(xl’ Tt xM—l)}

for some symmetric functions f;.

It is seen from (3.11) and (3.9) that 4, ,, may be written as 4 + B, where 4
is the sum of those coefficients of p, - . - p, in S, , that contain at least one factor
u(x;) (for some r, j), and B is the sum of the remaining coefficients. Each term
containing the factor u,(x;) is the product of #,(x;) and a factor not depending
on x;. Also, 4, , is symmetric in x,, ---, x,. These facts imply that 4 is of
the form (3.15).

The term B is the sum of the coefficients of p, - - - p, in the sum

Z;‘Ll:l .o Z;‘Lm=l ifl+=11 . Z’l‘:_lm=l g(le, Ceey X Vi v ,yin_m)
(9sy * Ga)(Piy - P )L — X5 ps)™™™

It follows from the induction hypothesis that B is also of the form (3.15). This
completes the proof that g(x,, - - -, x,) is of the form (3.3) with symmetric func-
tions A, - - -, A,

We now show that the functions #4,, - - -, &, can be so chosen that they satisfy
the integrability condition (3.2). Let P, be the distribution which assigns prob-
abilities ¢, - - -, ¢,,, to the respective points y,, -+, y,,,, as defined in (3.7).
Let B, denote the set which consists of the single point y'i, fori=1,...,k.
Since the g, are strictly positive, the matrix (\p,udPy, - -+, {5 udPy) is non-
singular. The conditions of Lemma 1B with v = P, are satisfied. By Lemma 2,
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the functions #,, - - -, A, in (3.3) can be so chosen that each Ay (x,, ---, x,_,) is a
linear combination of terms of the form

SB“ dPyt,) - - - SBin_m dPo(tn—m)g(le, Cres Xs ey by
url(xjm+l) T urn—m—l(xjn—l) *

Let P be a distribution in & The u, are P-integrable by assumption. Hence
to show that the 4, are P*~'-integrable it is sufficient to show that

(3.16) { o |g] d(P»™P™) < oo

form=20,1,...,n—1andall Pe &~

By (3.7) the distribution P, is in % and hence in & If Pis in & s0is Q =
1(P, + P), due to the convexity of & Hence { |g| d0" < co. But {|g| dO" can
be written as a linear combination with positive coefficients of the integrals in
(3.16). Thus (3.16) is true. This completes the proof under the assumption that
the origin 0 is in the interior of the convex hull of 7.

Now suppose that the origin is a boundary point of the convex hull of 7.
Then there are real numbers by, - - -, b,, not all zero, such that b, u,(x) + - +
b,u,(x) = 0 for all x e 22, Therefore one of the conditions (3.1) is implied by
the others. In this way the problem can be reduced to one of these two: (I) a
problem of the same structure, with k replaced by k', 1 < k' < k, such that the
origin of k’-space is in the interior of the convex hull of the set corresponding
to Z7; (II) the same kind of problem but with no restrictions (3.1) present. In
case (I), the conclusion of the theorem follows from the first part of the proof.
In case II, equality (3.6) with N = n and arbitrary (x,, - .-, x,) € 22 holds for
all positive p,, ---, p,, so that g(x;, ---, x,) = 0. (This is, essentially, Halmos’
Lemma 2 in [4].) Theorem 1A is proved.

4. Proof of Theorem 2A. Let the conditions of Theorem 1A be satisfied, and
suppose that g is bounded while every nontrivial linear combination of u,, - - -, u,
is unbounded. We must show that g(x;, ---, x,) = 0 for all (x;, - - x,) e 2.

Weagain assume thatc¢, = - .. = ¢, = 0. Since every nontrivial linear combi-
nation of u,, - - -, u, is unbounded, there exist k points z;, - - -, z, in &2 such that
the k X k matrix (u(z,), - - -, u(z,)) is nonsingular. Hence, by Theorem 1A and
Lemma 1A, we have for all (x;, ---, x,) € 27"

(41) g(xl, ey, x,,) = z_:lo —-1)""_'"_1Tn,m(xl, e, X g) s

where (we now exhibit the dependence of T, ,, on g)

(4.2) Tym(X1s -+ 05 X3 9) = )2 — Ziﬂ:l T Zi’cn_,,"':l g(le’ s Xy Zyn oty
Ziy ) V(X5 ,) Vi n(X5,) -
Here each of v, - - -, v, is a nontrivial linear combination of ,, - - -, 4, and hence
is unbounded.
The theorem will be proved by induction on & and, for each k, by induction
on n.
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For n = 1 and k arbitrary we have, by Theorem 1A, g(x) = Au,(x) + - - +
h,u,(x), where h, ..., h, are constants. The right side is bounded only if
hy, = ... = h, = 0, so that the theorem is true in this case.

Now let k = 1. By (4.2),

(4.3) T, (x5 5 X5 9)
= Dm0 0 Xy 2 DU ) e W)
where z = z;, and v = v, is unbounded. There is a sequence {y,} in 22”such that
[0(ya)| = +00  as Nooo.

Divide both sides of (4.3) by v(x,), set x, = y, and let N— co. The terms
on the right of (4.3) with j, = n, divided by v(x,) = v(yy), converge to zero,
and we obtain

limy o, T\ (X1, -+ o5 Xuots Y5 9)/V(Y)
= Dimnetom 9(Xgp0 o X5 0 2o s )V(XG, ) e U(XG, )
= n—l,m(xl’ ceey X,y V),

where g®(x;, -, x,_) = 9(x;, -+, Xy, 2), for m =0, ...,n — 2. Form=
n — 1, the limit is g*(x,, - - -, x,_,). Thus if we set x, = y, in (4.1), divide by
v(yy) and let N — oo, we obtain

‘g(l)(xl’ DR} xn—l) = Z—:zo - 1)”_m_2T —l,m(xh ey Xpgs g(l)) .

It follows by induction on n that the theorem is true for k = 1.

Now let k = 2, and suppose that the theorem is true with & replaced by k — 1.

Since v, is unbounded, there is a sequence {y,} in 27 such that |v,(y,)| — oo
as N — oo. There is a subsequence {y,.} of {y,} such that v,(y,.)/v,(yy) tends
to a limit 4, —oco < 4, < oo. Repeating this argument, we see that there is a
sequence {y,} in 227 such that |v,(y,)| — o0 and v,(yy)/V(yy) = A i =1, -+ -,
k,as N — co, where —co < 4; < cofori=1,...,k — 1. Suppose that 1, - - -,
A,_, are not all finite, say [4,| = cofori =1,...,r;|4| < cofori =r 4+ 1. Then
V(yw)/V(yy) — 0, hence |v,(yy)| — co and v,(yy)/v.(yy) — 4’ With 2/ = O or I,
fori = r. Also, there is a subsequence {y,.} of {y,} such that v,(y,")/v,(yy") — 4/,
with —co < 4 < o0, fori < r — 1. It now follows by induction that there is
an index j, 1 < j < k, and a sequenge {y,} in 27 such that |v,(y,)] — co and
V(yn)/Vi(yy) = 4»i =1, .-+, k, where 4,, - - -, 2, are all finite. We may assume
that j = k, so that

(4.4) limy ., [v,(yy)| = o0, limy . v(yy)[ve(yy) = 4>
|’21| < OO,i: 1, "',k.

After dividing both sides of (4.2) by wv,(x,), setting. x, = y,, and letting
N — oo, we obtain

limy_, T (X155 Xpos Vi g)/vk()’zv) =T (X -+ o5 X3 9V
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where
(4.5) g(l)(xl’ Cey X)) = ¥ xig(xl’ cey Xpl1s Zg) -

Combined with (4.1) this yields
(4'6) g(l)(xv R xn—l) = :L_=20 - l)n—m—z n—l,m(xv M} Xn—l; g(l)) .

It follows in the same way that if we define g, g, ..., g~ by (4.5) and
(4.7) GOtV(xyy v v vy Xyigy) = b RGP (Xs ooy Xp_g1s Z5) s

’ s=1,...,n =2,

then
(4.8) g(”"”(xn ] xs) = Z:;:lo - 1)3_1_st,m(X1’ sy Xgy g(n—s))

fors=n—1,n—2,...,1. In particular,

9P I(x) = Tyl 070 = Tk, g7 H(2)0(x) -
Hence
(4.9) g (x) =0, all xe 2.

We now show that g»~—**V(x,, ..., x,_,) = 0 for all (x, ..., x,_,)e 2!
implies g~*(x,, - -+, x,) = 0 for all (x, ---, x,) € 2", s =2, ---,n. Suppose
that

(4.10) g (X, ey Xly) =0 for (x, -+, x,_) €2,

From (4.10) and (4.7)

(4.11) g (Xyy ey Xepy Zy) = — DT 2,9 TO(Xy, -y Xl Z4)

By (4.8), g""~(x,, - - -, X,) is a sum involving the terms .

(4'12) Ts,m(xl’ sy Xy g(n—s)) = Zm,s—m Zi‘::l ctt Zi‘;_m:l g(n—s)(le’ ct xjm’
Zip trs Zis—m) vil(xfmﬂ) e vis—m(xfs)

withm =0,1, ..., s — 1.
Let

(4.13) Wi(xX) = vy(x) — 2,0,(x) , i=1,.--,k—1,

and let TF (x;, - -+, x,; g) be defined as T, ,.(x,, - - -, x,,; g), but with k,v,(+), - - -,
v,(+) replaced by k — 1, wy(+), - - -, w,_,(+). If we eliminate z, from the right side
of (4.12) by using (4.11), we obtain

(4.14) Toon( 2 25 077) = Tl o %5 97

form =0,1,...,5s — 1. Note that any nontrivial linear combination of w,, - - -,
W, is unbounded. It now follows from (4.8), (4.14) and the induction hypothesis
that g»=*(x,, - .-, x,) = 0 for all (x;, ..+, x,) in 227°. Thus g(x;, ---, x,) =0
for all (x, -+ -, x,) 2"

5. Proof of Theorem 1B. We again assume that ¢, = --- =¢, =0. Let g
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be a o-finite measure on the measurable space (27, ), let & be a convex
family of distributions which are absolutely continuous with respect to x and
satisfy conditions (3.1), and let F(¢) C . Let g be a symmetric % "-measur-
able real-valued function such that { g dP* = 0 for all Pe &% We must show
that there exist k symmetric %" *~"-measurable real-valued functions 4,, - - -, &,
such that the integrability conditions (3.2) are satisfied and the representation
(3.3) of g(x;, - - -, x,) holds a.e. (™).
Let A4, be the class of all sets 4 in % such that

(5.1) (A + Tk §4 il dp < o0

Let N be a positive integer, 4,, - - -, A, be sets in %, and a,, - - -, a, be non-
negative numbers such that

(5.2) Ziaaimd) =1,
(5.3) Z?]:lajSAjuid/‘l:O’ i=1,..-, k.

Then p(x) = 3}, a,1,,(x), where I, denotes the indicator function of set A, is
the probability density with respect to ¢ of a distribution in &5(¢) and therefore
in & Hence conditions (5.2) and (5.3) imply

(5.4) f=1 Uiy e a; G(Ay, -, 4;) =0,
where
(55) G(An "'7An) = SAlxmxAngd#n‘

(The existence of the integrals in (5.5) is guaranteed by the assumption that
{ g dP exists for P e &%)

Conditions (5.2) and (5.3) also imply that the origin 0 of R* is in the convex
hull of the set

2(p) = {§audp/w(d): Ae 7, p(A) > 0} .

We first assume that 0 is in the interior of the convex hull of Z/(y). Then

there exist k + 1 sets B,, - - -, By, in .7 of positive y-measure such that 0 is an
inner point of the polytype whose vertices are {, udp/i(B;), j =1, -+, k + 1.
Let 4,, --., 4, be any n setsin %andletA4,,, =B,,i=1, .-,k +1. We

now use the argument in the proof of Theorem 1A, with 27 u(x), g(x,, - - -, x,)
and p; replaced by %7, {,udy, G(4,,"---, 4,) and a, p(A;), respectively, to

infer that there exist symmetric real-valued functions H,, - - -, H, on %! such
that, for every (4,, - - -, 4,) € 7",
(5‘6) G(Al’ ""An) = Iic=l Z?:l SAJ- u; d‘Ll Hi(Al’ "',Af-l’ Aj+1, "'9An)-

By the first part of Lemma 2, with 227 u,(x), z, replaced by o7, {, u, dy, B,,
respectively, the functions H, can be so chosen that each H(4,, ---, 4,_,) is a
finite linear combination of terms of the form

G(Aj1$ ) Aims Bil’ R Bin_m) SAJ'mH ”rl d/" e SAfn—l u"n—m—l d/J ’
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where (jy, -+, j,_;) is @ permutation of (1, - .-, n — 1). Define A(x,, - -, X,_1)
as the same linear combination of the terms

g(le’ Tt ij, Bil’ T B’n—m) u"l(xjm"—l) T u"n—m—l(xjn—l) ’

where g(---, B, ---) = {5 9(--+, X, -+ -)dp. Then

Hy( Ay, - Aut) = S,y Bodpt™
and, by (5.6),
(5:7) So{g(Xe -+ os x0) — b g U (X)X s X Xy x,)}dpr =0
for all sets C = 4, X --- X A4, in V"

Let w(x,, - - -, x,) denote the integrand in (5.7). The integral J(C) = {, w dp"
is zero for C ¢ %7,". Let B be a set in .%7. Bya standard argument, J(EN B") =0
for all E in the o-field %™ and hence w(x;, -- -, x,) = 0 a.e. (¢#*) on B",

For every P ¢ .2 the set B, = {x: (dP/dy)(x) > ¢} isin 7 for all e > 0. This
implies w(x,, - - -, x,) = 0 a.e. (&), proving that g has the representation (3.3)
a.e. (&°™). The proof that the %, as here defined, satisfy the integrability con-
ditions (3.2) is similar to the corresponding proof in Section 4. So is the proof
in the case where the origin is not an inner point of the convex hull of Z/(y).
This proves Theorem 1B.

6. Proof of Theorem 2B. Let the conditions of Theorem 1B be satisfied, and
suppose that g is bounded while every nontrivial linear combination of ,, - - -, 1,
is F-unbounded. We must show that g(x,, -- -, x,) = 0 a.e. (™).

We again assume that ¢, = --. = ¢, = 0.

First it will be shown that there exists a measure » on (25 &) which is (i)
equivalent to the family &, (ii) finite, and (iii) satisfies

§ Ju,l dv < oo, i=1,...,k.

Since the family 27 is dominated by a ¢-finite measure, it contains a countable
equivalent subset (Halmos and Savage (1949), Lemma 7). Let the sequence
P, P,, . .- of distributions in .&° be equivalent to .&°(so that P;(4) = 0 for all j
implies P(4) = 0 for all P in &°). Letd; = 3%, {|u| dP;, b; = 2791 + d;)7},
v = )%, b;P,. The numbers b; are strictly positive and }; b; is finite. Hence
v is a finite measure equivalent to . Also, Xk, {|u|dv = }7.,b;d; <
2151277 < oo, so that v satisfies conditions (i), (i), (iii).

Since v is equivalent to &, we have that if u is a nontrivial linear combination
of uy, -+, u, then v(|u(x)| > c) # 0 for all real c. Let %7, denote the class of sets
A4 in %7 such that y(A4) = 0. For 4 ¢ %, define the set functions U,, - - -, U, by

Ui(A):SAuidy/u(A)’ l:l,,k
Then every nontrivial linear combination of U, - --, U, is unbounded on .%/,.

Hence there exist k sets B}, - - ., B, in %, such that the matrix

U, = ({pudy, -+, {5 udv)
is nonsingular.
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By Theorem 1B, the conditions of Lemma 1B (last paragraph) are satisfied.
(§|g| & is finite since g is bounded.) Hence the representation (2.11) of
9(x, -+, x,) holds a.e. (v™). Let 4,, -.., 4, bensetsin 4,. Integrating both

sides of (2.11) over the product set 4, X --- X 4, in 7" with respect to v*,
we obtain
(6.1) G Ay, -+ +5 An) = Lazo(= 1" T (Ays - - o5 A44)
where
Gl Ay s Ap) = Saexa, 9 9150 (4) 5
Tim(Ay + o5 Aw) = Dmnem Dbz -0 Dk =1 (A o5 Ay Biyy oo o5 By )
Vi(d; .0 Vi (4;),

ViA) = u(B) §4 v dv/u(A),  ¥(x) = U, "u(x).

The representation (6.1) of the set function G'(4,, - - -, 4,) is strictly analogous
to the representation (4.1) of g(x,, - - -, x,). Since g is bounded, G' is bounded
on %7,*, and the V;'(4) are unbounded on .&7,. Thus the proof of Theorem
2A implies that G(4,, - -+, 4,) = 0 on ¥, ». Therefore

{cgd =20

for all cylinder sets C = 4, X --- X 4, in % ". Hence g(x,, ---. x,) = 0 a.e.
(*"), and thus a.e. (F#™).

Note added in proof. Some extensions of the theorems of the present paper
are considered in [7].
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