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OPTIMAL STRATEGIES FOR A CLASS OF CONSTRAINED
SEQUENTIAL PROBLEMS!

By JosepH B. KADANE AND HERBERT A. SIMON
Carnegie-Mellon University

This paper considers and unifies two sequential problems which have
been extensively discussed. A class of sequential problems is proposed
that includes both. An arbitrary partial ordering constraint is permitted
to restrict possible strategies. An algorithm is proposed for finding the
optimal strategy, and we prove that a strategy is optimal for the class of
problems if and only if it can be found by the algorithm. The main tool
is a set of functional equations in strategy space.

1. Two important sequential problems. The first sequential problem considers
a single object hidden in the kth of n boxes with probability p,. Without loss
of generality, suppose }; p, = 1. A search strategy for finding the object is a
permutation of a subset of the first n integers saying what to do next if the object
has not yet been found. Thus (9, 2, 3, -) is interpreted to mean that box 9 is
to be searched first; if the object is not found then box 2 is searched, etc. In this
section we consider the simplified model in which a search of a box containing
the object is sure to be successful, although this assumption is later relaxed. A
search of box k costs ¢, if it is unsuccessful and x, if it is successful.

There are at least two kinds of such searches. In a derection search, the goal
is to find an object in some search of some box. In a whereabouts search, the
goal is to state correctly at the end of a search which box contains an object.
This can be accomplished either by finding an object in the search, as in the
detection case, or alternatively, by guessing correctly at the end of an unsuc-
cessful search which box contains an object. See Kadane (1971) for a treatment
of optimal whereabouts search.

In this paper, the first sequential problem is to determine a search strategy
that includes each of the boxes and minimizes the expected cost of a detection
search. An earlier paper (Kadane (1968)) deals with maximizing the probability
of a successful detection search spending no more than some budget B (when
x, < ¢, for all k).
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Let g, (i = 1, 2) be disjoint strategies. Then ¢ = 7,0, is a strategy which looks
first at the boxes specified by ¢, in the order specified by ¢,, and then at the
boxes specified by g,, in the order specified by ¢,, until the object is found or ¢
is exhausted. Also let g, * be the strategy consisting of a search at box k only.

For a strategy g, let X(o) be the expected cost of g, P(c) be the probability
that ¢ is successful and C(¢) be the conditional expected cost of ¢, given that ¢
is unsuccessful. Then we have the initial conditions

X(o,*) = pexi + (1 — pi)es
(L.1) o) = ¢ »
P(a,*) = ps>
and the recurrence relations
X(0,0,) = X(0,) + X(0,) — P(0,)C(0,) ,
(1.2) C(0,0,) = C(0,) + C(a,) ,
P(c,0,) = P(0,) + P(0,) .

The first equation in (1.2) arises because X(s,) + X(o,) is the cost of going
ahead with ¢, even if the object was found using ¢,. The probability of its being
found in ¢, is P(s,); and if it was, it is sure not to be found in ¢,, so C(s,) is the
appropriate cost.

For consistency, if A is the empty strategy, define

(1.3) C(A) = P(A) = X(A) = 0.

Using these definitions, C, X and P are associative and C and P are commutative.
Problems of this type are considered by Adophson and Hu (1973), Bellman (1957),
Black (1965), Blackwell (n.d., see Matula (1964)), Denby (1967), Greenberg
(1964), Hall (1976), Horn (1972), Kadane (1968), Matula (1964), Sidney (1975),
Staroverov (1963), and Stone (1975, pages 110-114), among others.

The second sequential problem can also be stated as a search problem. In
this problem there may be any number of objects, from zero to n, hidden. The
event E, that an object is hidden in the kth of n boxes again has probability p,,
but E, is now independent of E,, (k == k'), where in the first problem {E,, k =
1, ..., n} is disjoint. Again a search of box k costs ¢, if it is unsuccessful and
x, if it is successful. Once again we assume for simplicity that a search of a
box is sure to be successful if an object is there, although this assumption will
be relaxed later. Search continues until the first object is found or until all boxes
have been searched. We seek a search strategy having minimum expected cost.

For the strategy o, let V(o) be the expected cost of using ¢ and S(¢) be the
probability that the strategy is not successful in finding an object. Then we
have the initial conditions

(1.4) V(g,*) = pix, + (1 — pp)ey s
S(O'k*) =1 — Pr>
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and the recurrence relations

(1.5) V(e,0,) = V(a,) + S(o,)V(0,),
S(a,0,) = S(0,)S(0y) .

For consistency, if A is the empty strategy, define
(1.6) V(A) =0, S(A)=1.

Problems of this type are considered by Bellman (1957), Dean (1966), Garey
(1973), Joyce (1971), Kadane (1969), Mitten (1960), Simon and Kadane (1975),
and Sweat (1970).

2. A convenient class of problems embracing both search problems. This
section owes a large, but not transparent, debt to the paper of Rau (1971). The
class of problems proposed below is a proper subclass of the class proposed by
Rau (see Kadane (1975)), which in turn is a proper subclass of the class proposed
by Smith (1956). Suppose that three functions f, F and G are defined on strate-
gies ¢, * consisting of a single search of box k. Suppose also that f, F and G are
extended to arbitrary strategies by the recurrence relations

(2.1) F(o,0,) = F(0,) + F(0,) + G(o)f(0,)
(2.2) floy03) = flo,) + [1 + mG(a,)] - flo,)
(2.3) G(o,0,) = G(0y)) + [1 + mG(0,)]G(a,)
where m is a fixed number. For an empty strategy A, we take
(2.4) F(A) =f(A) =GA)=0.

First we establish a basic theorem about the system 2.1-3:

THEOREM 1. With the above definitions, f, F and G are defined consistently on
strings of arbitrary length. In particular

(2.5) F((ab)c) = F(a(bc)) ,

(2.6) fl(ab)e) = fla(be)) »

2.7 G((ab)c) = G(a(bc)) .
Proor.

F((ab)c) = F(ab) + F(c) + G(ab)f{(c)
= F(a) + F(b) 4 G(a)f(b) + F(c) + f(c)[G(a) + G(b) + mG(a)G(b)]
F(a(bc)) = F(a) + F(bc) + G(a)f(bc)
= F(a) + F(b) + F(c) + G(b)f(c) + G(a)[f(6) + [1 + mG(B)]f ()]
thus F((ab)c) = F(a(bc)), proving (2.5).
The proofs of (2.6) and (2.7) are similar, and are therefore omitted. []

Next we establish that the two search problems of Section 1 are special cases
of the system 2.1-3.
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THEOREM 2.

(@) When m = 0, associating f with —C, G with P, and F with X, the system
(2.1-3) yields the recurrence relations (1.2).

(b) When m = —1, associating F and —f with V, and G with 1 — S yields a
consistent set of recurrence relations identical with (1.5).

Proor.

(a) Let m = 0, and make the substitutions indicated. (1.2) is immediate.
(b) Let m = —1, and consider (2.3):

1 — 8(0,0)) = 1 — S(0,) + S(a)[1 — S(a,)]
=1 — $(a,)8(a,) .

Now the second equation of (1.5) is immediate. Next consider (2.1):

V(e 0,) = V(g,) + V(o,) — G(a,))V(0,)
= V(o,) + S(o)V(a;)

which repoduces the first equation of (1.5).
Finally, consider (2.2):

—Wo,0,) = —V(a,) — S(a,)V(ay)

which again reproduces the first equation of (1.5). This shows that the substi-
tutions yield a consistent set of equations identical with (1.5). []

That the first equation of (1.5) has two (identical) generalizations in (2.1) and
(2.2), causes no problem in the sequel.

Thus the system (2.1) to (2.3) is a class of sequential problems including both
search problems proposed in Section 1. Kadane (1975) shows that, allowing for
a possible rescaling of f and G, any two nonzero values of m yield equivalent
problems. Thus m = 0 and m = —1 are in this sense the only two essentially
different values of m in (2.1) to (2.3). Hence, without loss of generality, we
may assume m < O for the remainder of this paper. However, when m = —1,
the two equations (2.1) and (2.2) need not collapse into one as they do for the
second example above, so there are really three essentially different special cases
of the system (2.1) to (2.3), of which two are the examples of Section 1.

3. Constraints. Reconsider the first search problem of Section 1 where now
there is a probability «; , of overlooking the object in the jth search of box k,
given that it is in box k and has not been found before the jth search of box k.
Then the unconditional probability p; , that the jth search of box k is successful
(if it is in the search strategy) satisfies

(3.1) Pive = Pell = ;) Tlo<ircs @i -
Additionally the jth search of box k can be supposed to cost some amount c; ,
if it is unsuccessful and x; , if it is successful. The notation can be simplified
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by denoting the jth search of box k by a single index, say i. Thus p, is the prob-
ability of success, ¢, the cost if unsuccessful and x; the cost if successful, of some
search. If the object is found in the jth search of box k, it is found in no other
search of any box. Hence the events E; , that the object is found in the jth
search of box k are disjoint. In effect this observation allows a; , = 0 without
loss of generality, at the cost of introducing a constraint on the optimal strategy.
A strategy is called feasible if the jth search of box k is preceded by the (j — 1)st
search of box k for every k and every j > 1. Clearly feasible strategies are the
only ones which make sense.

Constraints of this type are called “‘parallel” because they can be graphed as
n parallel lines, one for each box, indicating that the jth search of box k must
be preceded by the (j — 1)st of box k and must precede the (j 4 1)st search of
box k.

A similar generalization of the second problem would have the jth search of
box k cost ¢, , if unsuccessful, x; , if successful, and have probability p; , of
success. In order for this to be a valid generalization of the second problem,
the event E; , must be independent of E;, ,, provided (j, k) # (j’, k’). Again
only feasible strategies are interesting. See Kadane (1969) for a discussion.

More generally, suppose S is a set of searches and C is a set of constraints, or
arcs, asubset of S x S. Thusif ¢ = (s,, s5,) € C, then search s, must be conducted
before search s5,. The pair (S, C) form a graph. See Berge (1962, 1973). The
transitive closure C* of C is the subset of S x S such that (s,, 5) € C* iff there exist
51 8y, - -+, s such that (s, 5,) € C, (s, 55) € C, - ... Thus (S, C¥) is again a graph,
and has all the constraints implied by C* and transitivity. If (s, 5,) € C* then
s, is a predecessor of s, and s, is a successor of s,.

We now restrict the discussion to graphs such that, if (s;, 5) € C*, there is a
finite sequence (s, $,, - -+, §,, 5) such that (s, s) € C, (s,, 5,) €C, -+, (5,, 5) € C.
Notice that in the case of parallel constraints above this restriction is satisfied.
A case where it would not be satsfied is where all searches of box 1 had to be
completed before any searches of box 2 could be undertaken. With this re-
striction, if s, is a predecessor of s,, and no other predecessor of s, is a successor
of s,, then s, is an immediate predecessor of s, and s, is an immediate successor of
s,. The immediate graph C- is formed by (s,, s,) € C~ iff 5, is an immediate prede-
cessor of s,. .

The case of parallel constraints is then seen to satisfy the restriction that every
search has no more than one immediate predecessor and no more than one im-
mediate successor.

A cycle is a sequence of arcs

=y sty
such that

(1) each arcu,; 1 < k < g, has one endpoint in common with #,_, and the
other endpoint in common with u,,;
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(2) the same arc does not appear twice;
(3) the endpoint u; does not share with u, is the same as the endpoint u, does
not share with u,_,.

A chain satisfies the first condition above only. Notice that in a cycle the endpoint
u, shares with u,,, need not be the successor in u,. Thus (s;, 5,)(5s 5,)(Ss, ) Is @
cycle.

A connected graph is a graph which contains, for every two nodes x and y, a
chain from x to y. Since the relation, x = y or there is a chain from x to y, is
an equivalence relation, the equivalence classes divide S into connected com-
ponents. Finally a tree is a connected graph without cycles, and a forest is a
graph without cycles, i.e., a graph whose connected components are trees.

A forest is thus a more general structure than parallel constraints. The theory
of Sections 4 and 5 applies to an arbitrary graph of constraints on S. However
the Garey reduction algorithm of Section 5 applies especially well to finite
forests. Further details about graph theory may be found in many books, for
example those of Berge (1962, 1973).

4. Search over a partially ordered set. In this section we present several
algorithms and prove that a strategy is optimal if and only if it can be found
by any of the algorithms for every member of the class of problems introduced
in Section 2 under arbitrary partial ordering constraints. This section generalizes
the main results of Sidney (1975) and Simon and Kadane (1975). Since we are
dealing with algorithms we assume that the basic set S is finite, although many
of our results hold more generally.

Before stating the first algorithm, a few lemmas are convenient.

LemmMma 1.
G(ab) = G(ba) .
PRrROOF.

G(ab) = G(a) + [1 + mG(a)]G(b)
= G(a) + G(b) + mG(a)G(b)
= G(b) + [1 + mG(b)]G(a)

LEMMA 2.

F(abed) — F(acbd) = [1 + mG(a)]{f(c)G(b) — f(b)G(c)} .
Proor.
F(abed) — F(achd)
= F(abc) 4 F(d) + G(abc)f(d) — F(acb) — F(d) — G(acb)f(d)
= F(abc) — F(acbh)
= F(a) + F(bc) + G(a)f(bc) — F(a) — F(cb) — G(a)f(cb)
= F(be) — F(cb) + G(a)[ f(be) — f(cb)]
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= F(b) + F(c) + G(b)f(c) — F(b) — F(c) — G(c)f(b)
+ G@)[f(b) + flc) + mG(b)f(c) — f(b) — flc) — mG(c)f(])]
= G(b)f(c) — G(o)f(b) + mG(a)[G(b)f(c) — G(e)f(b)]
= [1 + mG(a)][G(b)f(c) — G(e)f(b)] ’
where Lemma 1 has been used several times. (]

A feasible strategy on a set of nodes S is any strategy of the nodes of S that
satisfies the order constraints C on those nodes. An optimal strategy for (S, C)
is a feasible strategy on S that minimizes F over feasible strategies on S.

For the rest of the paper, assume 1 + mG(a) > 0 for all a, and G(a) > 0 for
all nonempty a. For every nonempty a, let @(a) = f(a)/G(a).

THEOREM 3. Suppose (abcd) and (acbd) are feasible strategies, b and ¢ are non-

empty, and @(c) > @ (b).
Then F(acbd) < F(abcd), so (abed) is not optimal.

Proor. Using Lemma 2,
F(abed) — F(acbd) = [1 + mG(a)]{f(c)G(b) — f(b)G(c)}
= [1 + mG(a)]G(O)G()[@(c) — B(6)] > 0. 0
Let A4 be a partially ordered set of nodes, and let it contain B and D = 4 —
B. We say B is an initial subset of A and D is a terminal subset of A iff there exist
feasible strategies b on B and d on D such that a = (bd) is a feasible strategy on
A. If B is initial for 4 and D is terminal for 4, and if &’ is a feasible strategy

for B and d’ is a feasible strategy for D, then a’ = (b'd’) is a feasible strategy
for A.

If a is a strategy, the set of a, denoted T'(a), is the set of nodes ordered by a.
A strategy a is @ *-maximal for the set N iff
(i) T(a) is initial for N;
(i) @(a) = @(a’) for all @’ such that 7(a’) is initial for N;
(iii) a has no substrategies satisfying (i) and (ii).
ALGORITHM 1.

0. Set the current initial set N equal to S, set & = A.

1. Let @’ be a *-maximal strategy for N.

2. Let a be a feasible strategy minimizing F over all feasible, *-maximal
strategies on T(a’).

3. Append a to the end of a.

4. Replace N by N — T(a).

5. If N is empty, stop. a is the strategy found by Algorithm 1. Otherwise
return to 1.

We now prove a series of lemmas leading to a proof of the following theorem:

THEOREM 6. A strategy is optimal if and only if it can be generated by Algorithm 1.
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The following function and lemma are useful in the sequel. Let R(a) =
fla) — mF(a).
Lemma 3.
R(aya,) = R(a;) + R(a;) .
PROOF.
R(aya;) = f(alaz) — mF(a,a,)
= flay) + [1 4+ mG(a)]f (@) — m(F(a,) + F(ay) 4 G(e)f(as))
= flay) = mF(ay) + fla,) — mF(a,)
= R(a,) + R(a,) . 0
Therefore R is symmetric. Let H(a,; a,) = F(a,) + G(a,)f(,).
LEMMA 4. Let a, be fixed. a, minimizes F(+) over T(a,) iff a, minimizes H(+; a,)
over T(a,).
PROOF. a, minimizes H(+; a;) over T(a,) iff a, minimizes
H(+; @) — G(a)R(+) = F(+) + G(a)f(+) — G(a)f(+) + mG(a)F(+)
= [1 + mG(a,)]F(+)
over T(a,) iff @, minimizes F(+) over T(a,). Note that the symmetry of R proved

in Lemma 3 is used in the first statement above. []

LEMMA 5. Suppose an optimal strategy B has an initial set I, so that B = (B, B,)
where T(B,) = I, and let I, = T(B,). Then a feasible strategy of the form a =
(aya,) where T(a,) = I, and T(a;) = I, is optimal if and only if

(i) a, is optimal for I

(ii) a,is optimal for I,.

Proor. In view of Lemma 4, the following can be substituted for (ii) above:

(ii") a, minimizes H( ; a;) over I,.

Suppose «, is optimal for I, a, is optimal for I, and a, minimizes H( ; a,)
over I,. Then

F(8) =z F(a), F(B) = F(ey)  and  H(By a)) = H(ay; @) .
By Lemma 1, G is symmetric so G(a,) = G(8,), so H( ; ;) = H( ; 8,). Then

F(B) = F(8,) + H(B,; )
= F(a)) + H(a,; ;)
= F(a).
Optimality of 8 now implies optimality of a.
Conversely now suppose that « is optimal, and suppose, contrary to the hy-
pothesis, that a, is not optimal for I, i.e., suppose a* satisfies

Fla*) < F(a)) and  T(a*) = T(a) =1, .
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Since G is symmetric, G(a*) = G(a,). Then

Fla*a,) = F(a*) + F(a,) + G(a*)f(a,)
< Flay) + F(a,) + G(a))f(ay)
= F(a),
which contradicts the optimality of a. Hence a, is optimal for I,.

Now suppose that a is optimal and suppose, contrary to the hypothesis, that
a, does not minimize H( ; a;) over I,, i.e., suppose a* satisfies

H(a*; a)) < H(a,; ay) and T(a*) = T(a,) = 1I,.
Then
F(a,a*) = F(a,) + H(a*; a))
< Fla,) + H(ay; ay)
= F(a) .
Then « is not optimal, which is a contradiction. Thus a, minimizes H( ; «a,)
over I,. []
LEMMA 6. Let a and b be nonempty strategies. Then

D(@) = 0@ (k) + DO — 6@ G@)

PROOF.

B(ab) = [@) _ [@ +[1 + mG@]f(b)
G(ab) ~ G(a) + [1 + mG(a)IG(b)

_ fla) Gl , f1b) GO)I + mG(a)]

~ G(a) G(ab) = G(b) G(ab)
— @(a) (S@) _
= 2 (Geps) + PO ~ G(@/G(ab) . i

LemMmA 7. If s is @@*-maximal, then T(s) occurs as an uninterrupted string in
every optimal strategy.

Proor. To show this, consider a related problem in which the constraint set
C is reduced by eliminating all constraints in which a member of 7'(s) is required
to precede something not in 7(s). Thus we consider the constraint set

C' = C — {(a, b)|(a, b) e C, ae T(s), b ¢ T(s)} .

Thus the feasible strategies for C are feasible for C’. We shall show (1) T{(s)
must occur as an uninterrupted string in any optimal strategy for C’ and (2) at
least one optimal strategy of C’ is feasible (and hence optimal) for C. Hence
every optimal strategy for C is optimal for C’ and therefore T(s) occurs as an
uninterrupted string in it.

To prove (1) assume the contrary, i.e., that there exists an optimal strategy
a for €’ such that

a = g1h1g2h2’ ) grhrgr+l
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where r > 1, T(s) = U T(k;), (T(s))° = U T(g;) and all strategies g; and &, are
nonempty except possibly g, and g,,,. Let k = min{j|@(%;) = @(h,)} for
m=1,2,...,r. Hence @®(h,) = @(h;) for all j, and

D) > @(hy)  for j<k. ™)
Observe that k + 1, since if k = 1, &, would violate the @ *-maximality of s
using Lemma 5.

Since a is optimal under C’ and since, by construction of C’, any g, can be
interchanged with an adjacent 4; without disturbing C’ feasibility, we conclude
by Theorem 3 that @(g,) = @ (k). By (*), D(h-) < @ (k). Hence, exchang-
ing h,_, with g, will yield a strategy o’ which is feasible for C’ and such that
F(a') < F(a), which contradicts the assumption that a is optimal for C’. Thus
T(s) occurs in an uninterrupted string in any optimal strategy for C’, proving (1).

It remains to show that at least one optimal strategy of C’ is feasible (and
hence optimal) for C.

Let o’ = a,5'a, be optimal for C’, where T(s") = T(s). Clearly a = a,sa, is
feasible for C’, and

F(a') — F(a) = F(a,) + H(s'ay; ay) — F(a,) — H(say; ay)
= H(s'ay; a;) — H(say; ay)
= (H(s'a,; ;) — G(a,)R(s'a,)) — (H(sa,; a;) — G(a;)R(sex,))
= (1 + mG(a))F(s'ay) — (1 + mG(a,))F(sa,)
= (1 + mG(a,))(F(s'a;) — F(sa,)), using Lemma 3.
Now
F(s'ay) — F(say) = F(s') + G(s)f(as) — F(s) — G(s)f(ay)
= F(s') — F(s), using Lemma 1.
Thus
Fa') — F(a) = (1 + mG(ay))(F(s") — F(s)) -
Optimality of a’ for C’ and feasibility of a for C' imply F(a') < F(a), so
F(s') £ F(s).

Now using the symmetry of R proved in Lemma 3, R(s) = R(s'), i.e., f(s) —

mF(s) = f(s') — mF(s’). Then

m(F(s") — F(s)) = f(s") — f(s) = G(s)(D(s) — D)) -
Now @ *-optimality of s implies @(s") < @(s), and G(s) > 0, so either m = 0
or F(s") = F(s).

If m + 0, then F(s') = F(s). Then @(s') = @(s'). On the other hand, if
m = 0, then f(s') = f(s), s0 @(s') = @(s). Then in both cases, 5’ is @ *-optimal
as well. .

Now consider a* = s'a,a,.

F(a') — F(a*) = F(a,s") — F(s'ay) = G(a)G(s')(D(s") — D(a)) = 0.

Therefore a* is optimal for C’ and feasible for C. ]
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Lemma 7 is proved for the second example of Section 1 in Simon and Kadane
(1975). The proof of Lemma 7 yields the following:

LemMmA 8. If s is d*-maximal, then there exists an optimal strategy a of the
form a = s'u where T(s) = T(s") and J(s) = @(s').

LEMMA 9. If m £ 0, and if s is ¢ *-maximal then there exists an optimal strategy
of the form a = su.

PROOF. a** = sa,a, suffices.

It may seem to the reader that Lemma 9 should also hold for m = 0. Consider,
however, the following example: Suppose S = {a, b, ¢} and C = {(a, ¢), (b, ¢)}
so that both @ and 4 must be done before ¢. Thus abc and bac are the only
feasible strategies including all of S, and the only feasible initial strategies are
a, ab, abc, b, ba and bac. Now suppose F(a) = F(b) = F(c) = 0, G(a) = G(b) =
G(c) = % and f{a) = 1, f(b) = 2 and f(c) = 6. A simple computation shows that
if m = 0, bac is @ *-maximal (as is abc) but not optimal. However if m = —1,
bac is (uniquely) ¢ *-maximal and optimal.

THEOREM 4. Algorithm 1 generates only optimal strategies.

Proor. By induction on |N|. If |[N| = 1, the theorem is trivial. Suppose it
is true for [N| = 1,2, ..., n — 1, and assume |[N| = n.

Let @, be the @*-maximal subset selected during the first iteration. Then
Algorithm 1 will ultimately produce an algorithm of the form a = a,a, (where
@, might be empty).

Lemma 8 guarantees the existence of an optimal strategy a* of the form a* =
a,'u where T(a)) = T(a)') and @(a,) = @(a,"). Then a,’ is also *-maximal.
By operation of step 2 of the algorithm, F(a,) < F(a,’). Now Lemma 5 applies,
and says that for «,'u to be optimal, «, must minimize F over T(e,’). Then
F(a,') < F(ay), so F(a,') = F(a;). Then a, also minimizes F over T(a,’). The
inductive hypothesis implies that a, minimizes F over 7T(a,). Then Lemma 5
applies again, and implies that « is optimal. []

LemMma 10. Suppose B is an optimal strategy of the form B = s,ss,, where s, or
s, or both may be empty. Suppose [’ is the strategy B’ = s,5's,, so T(s) = T(s').
Then @ (s) = @(s). .

Proor. If m = 0, @(s) = @(s’) for all s’ such that T(s) = T(s’), so the lemma
is easy. Suppose then m < 0. Then by Lemma 3,

mF(s) — f(s') = mF(s") — f(s'), i.e.,
m{F(s) — F(s)] = fls) — fls') = G(s)(D(s) — D)) -
Now
0= F(B) — F(B') = F(s,58,) — F(s,5's;) = F(s5,5) — F(s,5")
= H(s; s,) — H(s'; 5y)
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= [H(s; 8)) — G(s)R(s)] — [H(s; 5,) — G(s)R(s")]
= [1 + mG(s)]LF(s) — F(s")]
= [1 + mG(s)]G(s)(D(s) — D(s))/m .

[1 + mG(s)] >0, G(s) >0, m < 0= @(s) = B(s). 0

LEMMA 11. Suppose a, and a, are distinct @ *-maximal strategies. Then T(a,) =
T(ay) or T(a)) N T(a,) = A.

Then

Proor. Let § be an optimal strategy. By Lemma 7, a, and a, must occur as
uninterrupted strings in 8. If they overlap, the only way this might occur is
for 8 to be of the form

B = s,a/xa,'s,

where T(a) = T(a/x), T(a) = T(xa,) and T(a) n T(a;) = T(x). Suppose
T(x) += A. Since T(a,) is initial and xa,’ is feasible, x must be feasible and
initial. Lemma 10 implies that ¢ (a,) = @(a,/x) and @ (a,) = @(xa,). Now if
a, were empty, then @ (a,) = @(x) = @(a,), so x would be an initial substrategy
of a, satisfying (i) and (ii) of the definition of @ *-maximality of a,, and therefore
contradicting the assumption of  *-maximality of a,. Therefore a,’ is not empty.

Since a,’ is not empty, and is an initial substrategy of a;, @(a,") < @(a,). Now
Lemma 5 displays ¢ (a,) = @(a,x) as a convex combination of @(a,’) and @ (x).
Then @(x) > @(a,). But x is initial and not empty, so this contradicts the @ *-
maximality of a,. Hence x is empty. []

LeMMA 12. If a is an optimal strategy, then there is a J*-maximal strategy a,
such that « = a,a,, and such that a, minimizes F over all feasible, (*-maximal
strategies on T(a,).

ProoF. Suppose there are k nonoverlapping  *-maximal strategies s, 5,, - - -

s, and suppose

a = Bi5/Bys) -+ BiSiBrs
where T(s/) = T(s;), i =1, ---, k. Lemmas 7 and 11 allow a to be written in
this form. Suppose $, is not empty. By construction, §, is not (»*-maximal,
nor is any substrategy of 8, ¢*-maximal. Lemma 10 implies @(s,") = @ (s,),
i=2,.--+,k.

Now @(8,) > @(s/) = @(s,) contradicts in @*-maximality of 5,. @(8,) =
@(s,) and B, being initial implies that 8, or some substrategy of 8, is @ *-maxi-
mal, which contradicts the construction. Then »(8,) < @(s;). By Theorem 3,
a is not optimal, which again is a contradiction. Hence 8, is empty.

Now suppose a, does not minimize F over all feasible, ¢ *-maximal strategies
on T(a,). Then let a)’ be a feasible strategy such that T(a,) = T(a)), @(a;) =
@(a)) and F(a) > F(a,). a/a, is a feasible strategy for S. Then

F(a)a,) — F(aya,) = F(a)) + G(a)) f(a,) — F(ay) — G(a,) f(@,)
= F(a) — F(a)) < 0.



STRATEGIES FOR SEQUENTIAL PROBLEMS 249

This contradicts the optimality of «. Hence «; minimizes F over all feasible
@ *-maximal strategies on T(a,). [J

THEOREM 5. If a is optimal, it can be generated by Algorithm 1.

Proor. The theorem is trivial if [N| = 1. Suppose it is true for |N| = 1,
2,...,n—1 and assume |[N| =n. Let a be an optimal strategy on N. By
Lemma 12, there is a ¢ *-maximal strategy @, that minimizes F over all feasible,
@*-maximal strategies on T(a;) such that @ = «a,a,. Then Algorithm 1 might
choose «, in its first iteration. This leaves a problem on N = N — T(«,) with
[N — T(a;)| < n. Now Lemma 5 applies to show that a, is optimal on 7T(a,) =
N — T(a;). And the inductive hypothesis applies to show that «, can be gener-
ated by Algorithm 1 for [N — T(a,)| = |T(a,)] < n. Hence a can be generated
by Algorithm 1. [J

THEOREM 6. A strategy « is optimal if and only if a can be generated by
Algorithm 1.

Proor. If: Theorem 4; only if: Theorem 5. []

We note that if m = 0, step 2 of Algorithm 1 is unnecessary, by application
of Lemma 9. The example following Lemma 9 shows that without step 2,
Algorithm 1 could generate suboptimal strategies when m = 0.

LemMA 13. Suppose the sequence of (*-maximal strategies generated by two

applications of Algorithm 1 are (s, 55, - - -, 5,) and (1}, t,, - - -, t,) Where the strategies
are ordered in order of their generation by the algorithm. Then a = b and there is
a permutation © of {1, ..., a} such that T(s;) = T(t,,) fori=1,...,a.

Proor. By induction on |S|. The proof is a straightforward extension of
Lemma 10 of Sidney (1975).

Then the class of sets of strategies £ = T|(e) such that e occurs in some sequence
of @ *-maximal subsets is well defined, independent of the particular realizations
of steps 1 and 2 of Algorithm 1. Consider the restrictions defined on sets E by
& = {(E;, E;)|(e;, e;) e C* for some e, e E;, e;e E; or @(e;) > @(e;) where
@(e)) = @(e/) for all strategies e, on E,, and (e;) = @(e,’) for all strategies
e; on E;}.

Lemma 13 can now be rephrased as

THEOREM 7. A strategy « is optimal iff it is of the form a = a; 0, -+ - «
where

i(a)

(1) T(aiw,) = E., and ayy, is optimal for E, . ;
(2) E, s -+, Ey,, is consistent with <.

A strategy a is @-maximal for N iff

(i) T(a) is initial for N;

(il) @(a) = @(a’) for all @’ such that T(<’) is initial for N.
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Theorem 7 implies the following corollary:

Any @-maximal strategy is a concatenation of optimal strategies on E-sets.
Thus step 1 of Algorithm 1 may be replaced with:

1*: Let @’ be a @-maximal strategy for N.

The resulting algorithm, 1*, satisfies

THEOREM 8. A strategy is optimal if and only if it can be generated by
Algorithm 1*.

Sidney correctly observed that the key to Algorithms 1 and 1* is steps 1 and
2. He gives algorithms which are specializations of Algorithms 1 and 1* to con-
straints in the form of parallel chain networks, parallel networks, job modules
and rooted trees, all of which generalize readily to the class of problems con-
sidered in this paper. However, he does not give a computational method for
accomplishing steps 1 and 2 when the constraints form an arbitrary partial
ordering. It is to this topic that we now turn.

The following algorithm, 1’, is an implementation of Algorithm 1*. In
Algorithm 1’, N is the current initial set, K is the set of -maximal strategies
on N, U is the value for ¢ on K, H is the subset of K having the same set as
a’, and « is the strategy being constructed.

ALGORITHM 1’,

Set N=S,a= A, K= A, H= A and U = 0.
If N= A and K = A, stop. « is the strategy found by Algorithm 1’.
If N= A and K= A, goto6.
Order N according to @, highest first. Let n € N have the largest (% in N.
If n is feasible,
a) f K= A, K—{n}, U= @(n), N>N — {n}, gotol.
b) fK+ A,if @(n)=U K—KU {n}, N>N — {n}, goto lif @(n) <
U, go to 6.
5. If n is not feasible, let B C N be the set of immediate predecessors to n.
N—>N —{n} u{bs|beB}. Gotol.
6. Take any elementad’ ¢ K. H—{d'}, K— K — {d'}, U= 0.
7. a. f K= A, goto8. '
b. Choose fe K.
c. If T(f) = T(a'), then H— H U {f}.
d. K— K — {f}. Returnto 7a.
8. Order H according to F, lowest first. Let a satisfy F(a) < F(a*) for all
a* e H.
9. Append a to the end of a.
10. N— N — T(a). Returnto 1.

Eal s

To see the connection between Algorithm 1’ and Algorithm 1, note that steps
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2, 3,4, 5 and 6 implement step 1 of Algorithm 1, and that steps 7 and 8 imple-
ment step 2. The crucial step is 5, which is justified by Lemma 5.
Since Algorithm 1’ is only an implementation of Algorithm 1, we have

THEOREM 9. A strategy is optimal if and only if it can be generated by
Algorithm 1.

5. Garey reduction theorems and a hybrid algorithm. While Algorithms 1,
1* and 1’ have the comforting property that a strategy is optimal if and only if
it can be found by each algorithm, this does not guarantee that these algorithms
are quick to find the optimal strategy. In particular the material of Section 4 is
predicated on searching over all strategies, of which there would be n! if they
all were feasible. If there were no constraints, Theorem 3 suggests that a very
simple sort on  over searches would yield an optimal strategy, and in fact every
optimal strategy. This suggests that some preliminary algorithm might be used
to process parts of the problem which have a simple topology, before turning
the problem over to the all-purpose, but probably slower, Algorithm 1.

One approach to this end is given in a recent paper by Garey (1973). Garey’s
treatment is limited to the second example of Section 1. He gives an algorithm
which finds an optimal strategy, and is easily modified to find every optimal
strategy, for problems where the partial ordering graph has an immediate graph
C- which form a forest. Additionally Garey’s algorithm reduces every problem
that has a general partial ordering restriction by eliminating constraints and by
requiring certain searches to be conducted in a particular order, thus aliowing
them to be treated as a unit in finding the optimal strategy. The purpose of this
section is to show that Garey’s reduction theorems and reduction algorithm
apply to the whole class of problems developed in Section 2.

A search is called rerminal iff it has no successors, and initial if it has no prede-
cessors. A search s is a maximal successor of search s, iff it is an immediate
successor of s, and satisfies, if s’ is any immediate successor of s, @(s) = @ (5').
[For readers comparing this treatment with Gareys, note that Garey’s R satisfies
R(s) = — @(s).] Asearchisa minimal predecessor of search s, iff it is an immediate
predecessor and satisfies, if s’ is any immediate predecessor of s, @ (s') = @ (s).

THEOREM 10. For any problem of the class considered here that has an optimal
strategy, let t; be a nonterminal search having only terminal successors. If t; is a
maximal successor of t; satisfying @ (t;) = @ (t;) and t; has no other immediate prede-
cessors, then there is an optimal solution in which the subsequence t,t; occurs.

PROOF. Let ¢ be an optimal strategy. Since ¢ contains every search some-
where in ¢, and each of the successors of ¢, say #,'t,/, - ., including ¢; occur in
o after ¢,, let, without loss of generality

0= at;atat .. at;a,.,,

where every a, except possibly a,.,, contains no successor of f,. Then every
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nonempty a,, except a,, and a,, is interchangeable with r;_, and #,’. Therefore,
using the optimality of ¢ if a, is nonempty @ (fi_,) = @(a,) = @(t}). If a, is
empty, f;_, and ¢,* are exchangeable and again by the optimality of ¢ @ (#}_,) =
@ (t,"). Therefore

Q) =z (@) =z D) = -+ = D(1y)

(where empty a;’s can be dropped from the above string of inequalities).
Since ¢, is maximal among successors to f,,

2(t;) = B(1)
so equality obtains throughout the above expression.

o = ayt;at;tttaty - a.a,,,

is a strategy, and Theorem 2 implies
F(o) = F(d') .
Now if a, is empty the theorem is proved. If not, it is exchangeable with both
t; and ¢t;. Then
() = (@) = B(t))
by Theorem 2. Now @(t;) = () by assumption, so equality obtains in the
above. Hence
F(o) = F(a, ayt;t;t' at) -+ - a.a,.,)
and the theorem is proved by optimality of ¢. []

THEOREM 11. Let t; be a terminal search having an immediate predecessor t; such
that @(t;) > @(t;). Consider the modified problem which is identical to the given
problem except that the constraint graph C of the modified problem is formed from
the original constraint graph by replacing the constraint from t; to t; by a constraint
from each immediate predecessor of t, to t;. Then every optimal solution to the modi-
fied problem is also an optimal solution to the original problem.

Proor. Let ¢ be an optimal solution to the modified problem. Suppose that
t; precedes ¢, ino. Then we can write ¢ = (a,¢;a,t,a,), where a,’s may be empty
for i =0, 1,2. Suppose @, is not empty. All predecessors of ¢; must be in a,
since ¢ is a solution. Hence all predecessors of ¢, are in a,, also. Finally, since
t;is terminal, all predecessors of a, are in a,. Hence 7; and a, are interchangeable,
and q, and ¢, are interchangeable. Then

(1) = () = @(1) -
If @, is empty, ¢; and ¢, are interchangeable, leading to
() = D(t)
by the optimality of ¢. But these inequalities are impossible by the assumption

of the theorem that @ (t;) < @(r,). Hence ¢, precedes r;ing. Hence o isalsoa
solution to the original problem.
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Let o, be an optimal solution to the original problem. Since the original pro-
blem is the more restricted,
F(oz) = F(o) .
Then F(s) = F(o) and ¢ is optimal for the original problem. []
The following theorems are duals to Theorems 10 and 11.

THEOREM 12. For any problem of the class considered here which has an optimal
strategy, let t; be a noninitial search having only initial predecessors. If t, is a mini-
mal predecessor of t; satisfying @(t;) < @(t;) and t; has no other immediate suc-
cessors, then there is an optimal strategy in which the strategy t;t; occurs.

THEOREM 13. Let t; be a terminal search having an immediate predecessor t; such
that @ (t;) > @(t;). Consider the modified problem which is identical to the given
problem except that the constraint graph C of the modified problem is formed from
the original constraint graph by replacing the constraint that t; precede t; by con-
straints that t; precede each immediate successor of t;. Then every optimal solution
for the modified problem is also a solution to the original problem.

The proofs of Theorems 12 and 13 are the same as those of Theorems 10 and
11, respectively, with the sense of each constraint reversed, each inequality
reversed, and each strategy reversed.

Garey then proposes a reduction algorithm which includes steps (2) to (g) and
(i) below.

ALGORITHM 2.

Step (a). Select a connected component, containing at least one constraint
from the current reduced precedence graph. If none exists, go to step (i).

Step (b). Choose any nonterminal task ¢/, having only terminal immediate
successors, from the current reduced version of the component under conside-
ration. If no such task exists, go to step (e).

Step (¢). Find a maximal successor ¢,/ of ¢/. If @(¢;/) < @(t/), go to step
(d). Otherwise reduce the component by deleting ¢,” and the constraint from ¢,/
to #;/, and replace ¢/ by a new strategy [¢,/, ;/]. If the new task is terminal, go
to step (b). Otherwise repeat step (c).

Step (d). For each immediate successor #,” of ¢, replace the constraint ¢ to
t,/ by a constraint from the immediate predecessor of ¢ to #,’. Go to step (b).

Step (e). Choose any noninitial task ¢;, having only initial immediate prede-
cessors, from the current reduced version of the component under consideration.
If no such task exists, go to step (h).

Step (f). Find a minimal predecessor ¢ of ¢;/. If @ (1)) < @ (), go to step
(g). Otherwise reduce the component by deleting 7, and the constraint from ¢,/
and ¢/ and replace ¢ by a new strategy [z, 1;/]. If the new strategy is initial,
go to step (e). Otherwise repeat step (f) with [z, ¢//] acting as the strategy ¢,’.

Step (g). For each immediate predecessor #,’ of z;’, replace the arc from 7,/
to ¢;/ by an arc from #,’ to the immediate successor of 7;/. Go to step (e).
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Step (h). Perform Algorithm 1’ on the resulting reduced component, but re-
place step 9 of Algorithm 1 with the following:

9’; Bracket a and treat it as a single strategy.

Step (i). Lett/,t/, ---,t,’ denote the remaining strategies in the completely
reduced precedence graph. Order themas#; ,#, - -+, 1, sothat 3(r )= D (%, )
foralli, 1 <i < m— 1. Removing the brackets from this sequence results in
an optimal solution to the original problem.

This hybrid algorithm completely reduces a forest without using step (h) and
reduces the work of Algorithm 1’ in an arbitrary partially ordered graph. Garey
concludes his investigation by saying that in the partially-ordered case “the
proper choice may depend somehow on the overall likelihood of success for the
complete set of tasks or certain large subsets thereof, a nonlocal property which
may be difficult to use in an efficient algorithm” (Garey (1973), page 55). We
believe that the material of Section 4 constitutes the nonlocal results sought by
Garey.

6. Conclusion. The results of Section 4 through Theorem 8, but excluding
Algorithm 1’, are available already for the first example in the paper of Sidney
(1975). A development leading to Lemma 7 is given for the second example in
Simon and Kadane (1975). Similarly the results of Section 5 are available in
the paper of Garey (1973) for the second example. This paper then unifies the
theory, and adds the application of each of these results to the other members
of the class proposed in Section 2.

No monotonicity constraints, such as those discussed by Kadane (1968, 1969)
are required for the first example. Because of that, this paper suggests an al-
gorithm for finding the best strategy in the parallel constraint case, by dividing
the searches of each box into strategies on E-sets as follows: (57 is the current
set of strategies on E-sets, and g, ; is the jth search of box i).

(a) Set = (0;,,0,,), h = 3.

(b) Suppose &= (B, By, -- -, B,). If ®(B,_,) = @ (B,) then gotostep (c). If
not then join B,_, and B,, and return to the start of (b). If & has only one search,
go to step (c).

(c) Set = (F 0,,), h = h + 1, return to (b).

Because each box can be searched inﬁnit’ely many times, some conditions must
be imposed to ensure that the algorithm above will terminate. Once each box
has been treated with this algorithm, the best search is found by ordering
resulting strategies according to @, highest first. The resulting search will be
feasible. The regularity conditions imposed in Kadane (1968), that p,;/c;; be
nonincreasing in j for each i, is thus seen to be the condition that each E-set
consist of only a single element.

In this sense Theorem 4 generalizes the result proposed, but not proved, in
Kadane (1968).
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