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INDUCED PRIORS IN DECISION PROBLEMS

By D. R. BArRr AND F. R. RICHARDS
Naval Postgraduate School, Monterey

The well-known principle that a decision maker’s subjective proba-
bilities are determined from his preferences among finite compound lotteries
is developed in an especially transparent approach. This development can
be easily modified to give versions of the result in a variety of infinite
contexts.

1. Introduction. A definition of subjective probability in terms of a decision
maker’s utilities is given by Anscombe and Aumann [1]. Let &’ be a set of
payoffs, < a preference relation on the set .7°* of finite probability distribu-
tions on & and © = {f,, - - -, 0,,} a finite sample space. Let & be the set of
all functions from @ into &”* and let < be the decision maker’s preference
relation on the set &* of all finite probability distributions on <. Anscombe
and Aumann show that if the two preference relations satisfy certain assump-
tions, then there exist utilities » on .Z°* and u, on &*, and unique probability
masses @, ---, T,, such that # agrees with <, u, agrees with <,, and, for all
Ge T,

u(G) = 2 u(G(@,)x, .

Fishburn [4, 5] and Ferreira [3] obtain similar results and some extensions.
With different sets of underlying assumptions they remove the restriction that
O is finite; they show that the utility functions are bounded; and they obtain a
“subjective” measure that is countably additive.

In this paper, we remark that the above result is essentially an application
of the representation theorem for linear functionals on finite-dimensional linear
spaces. This remark allows easy generalizations of the result to a variety of
conditions on © and &, using corresponding representation theorems for linear
functionals in infinite-dimensional spaces.

2. Development. We follow as closely as possible the notation of Ferguson
(2], pages 11-21). Assume that there is a utility function # from Z?* onto
[0, 1] agreeing with <, an enjoying the expected utility property. Let &7 be
the set of random variables u o G where G runs over &; <7 is essentially the
unit cube in m dimensions. Let <Z* be the set of all finite probability distri-
butions on & and let <, be a preference relation on <7*. We consider < to
be embedded in =7 by identifying degenerate distributions in &7* with points
in . Assume that there is a utility function u, on &* agreeing with <,, and
enjoying the expected utility property. Suppose the following further assumptions
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(essentially those introduced by Anscombe and Aumann and labeled A,—A,; by
Ferguson, with <, in place of <) are satisfied:

A, (monotonicity): If D’ and D are points of < such that D’(6) < D" ()
for all 6, then D’ <, D".

A, (nondegeneracy): If D’ and D" are points of & such that D'(f) = d’ <
d" = D'"(¢), then D’ <, D".

A; (equivalence): If D* is a point of Z* assigning masses «; to points D, in
Z, and if D e & is the convex combination D = 3} «,D,, then D ~, D*.

By A,, u, is nonconstant over &7 and by A,, u,(D,) < uy(D) =< uy(D,), where
D,=0, D,=1 and D is any element of &. Let us choose that version of #,
for which u,(D,) = 0 and u,(D,) = 1.

THEOREM. There exists a unique mass function = over © such that for any
D ¢ 2, uy (D) is the expected value of D with respect to «.

ProoF. Let0 < « < 1and D, D’e &. By A, and the expected utility prop-
erty, us(aD + (1 — a)D’) = auy (D) + (1 — a)uy(D’), since both sides are the
utility of the point in <7* that assigns mass « to D and mass | — « to D’. Hence
u, has a unique linear extension to the linear space <7, spanned by . Let D!
be the ith unit vector in this space, i.e., D¥(0) =1 if6 = 6,, and D(f) =0
otherwise. Set 7, = n(6,) = u,(D?); then =, = 0 by A;. From the linearity we
get Y, m, = uy(X DY) = uy(D,) = 1; and for D in ), uy (D) = uy,(}; D(0,)D?) =
3 D(0,)w,, as asserted.

3. Extensions. This approach to defining subjective probabilities can be
readily generalized to more general sample spaces, using in each case an ap-
propriate representation theorem. For example, let © consist of the unit in-
terval with its Borel subsets; for simplicity let .5 be finite, and let & be the
set of all measurable functions from © into .&°*. In this case & is the set of
measurable functions from © to [0, 1], Z, is the space of bounded measurable
functions on ©, and the subjective probability z turns out to be a finitely additive
measure (cf. Fishburn [4]).
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