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REMEZ’S PROCEDURE FOR FINDING OPTIMAL DESIGNS

By WILLIAM J. STUDDEN AND JIA-YEONG TSAY
Purdue University and University of Cincinnati

The Remez exchange procedures of approximation theory are used to find
the optimal design for the problem of estimating ¢’f in the regression model
EY(x) = 61fi(x) + Ozfa(x) + -+ + Orfi(x), when c is not a linear combination
of less than k vectors of the form f(x). A geometric approach is given first with
a proof of convergence. When the design space is a closed interval, the Remez
exchange procedure is illustrated by two examples. This type procedure can
be used to find the optimal design very efficiently, if there exists an optimal
design with k support points. :

1. Introduction. Let /" = (f}, f;, - - -, fi) be a vector of linearly independent
continuous functions on a compact set -2°. For each x or “level” in -2° an
experiment can be performed whose outcome is a random variable Y(x) with
mean value 0'f(x) = 3, 0, fi(x) and variance ¢*, independent of x. The functions
fioi=1,2, ...,k are called the regression functions and assumed known to the
experimenter while the vector of parameters ¢’ = (6,,0,, ---, 6,) and ¢* are
unknown.

An experimental design is a probability measure £ on .27, If the unknown
parameter vector 6 is estimated by the method of least squares with N uncor-
related observations {¥(x,)}/_,, then the covariance matrix of the best linear un-
biased estimator  is given by ¢?/N- M-1(£), where M(§) = (m;(§)), with m;(§) =
§ fi(x)f;(x) d&(x), is the information matrix of the design &.

A fairly general problem in design theory is to minimize a convex function
W(M(€)) of the information matrix M(§). For example, W(M(§)) = tr BM~'(§)
for B positive semidefinite (L-optimality) or W(M(§)) = —log |M(§)| where
|M(§)| denotes the determinant of M(§) (D-optimality). Recently a number of
equivalence theorems and closely related iterative procedures have appeared for
minimizing W(M(£)), see Kiefer (1974) for references. The purpose of this paper
is to describe and study some special iterative procedures which can be used to
find optimal designs very efficiently, if there exists an optimal design with k
support points. In Section 2 we provide and discuss the procedures. Section 3
contains a special case which in approximation theory is called the Remez ex-
change procedure. Examples are given in Section 4.

2. Procedures. One of the general iterative procedures for minimizing ¥(M)
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is the following: if at the nth step we are at M(§,) = M, we then move locally
in a direction with “steepest descent.” This is, we choose an information matrix
M, so that

g(@) = (1 — a)M, + aM,)

has a minimum derivative at « = 0. Then let M,,, = (1 — a)M,, + aM, and «
be suitably chosen to give a decrease in W. Since the set of all information
matrices M(§) is “‘spanned” by the set of matrices M(§,) = f(x)f"(x), xe€ 27 (£,
is a design with mass one at the point x) we restrict the matrices M, to be of
the form M = f(x)f"(x) and choose the point x minimizing ¢’(0) to have M, ,, =
(1 — a)M, + af(x)f'(x). It is known that ¢’(0) = tr VI(M,)- (f(x)f"(x) — M,)
where VW (M) is the k x k matrix with entries (V¥(M)),; = (9/om,;)¥ (M), and
¥ is convex, thus for any design &,,

2.1) inf, tr V&(M,)- (f(x)f'(x) — M,) <0, or equivalently
inf, f()VE(M,)f(x) < tr VE(M)M, .

In certain special cases of ¥, the a = a,, at the nth step may be explicitly chosen
in an optimal manner. The Fedorov procedure belongs to this type. The sim-
plest method to choose a, is just to use any a, — 0 to obtain some sort of con-
vergence, and Y a, = oo to prevent convergence before reaching a minimum.
Wynn’s procedure (1970, 1972) is an example.

If there exists an optimal design with k support points, a special iterative pro-
cedure can be used, which is described as follows. Given a set S, of k points
Xgis Xggs + + +» X SUCh that the k vectors f(Xy), f(Xe), * - - » f(Xq) are linearly inde-
pendent we find the optimal weights p,; on x,;, i = 1,2, - .-, k, that is,

£, = {xou Xogs * xok}
Pors Pozs ** 5 Pok

is an optimal design on S,. Then we find a point x, minimizing f"(x)VW¥(M(£,))f(x)
and exchange x, with a point x,, in S, according to some exchange rules to form
a new set S, of k points x,,, X, - - -, X, Repeating the same procedure on S, as
Sy, we get an optimal design &, on S, and point x, minimizing f"(x)V¥(M(§,))f(x)
which is used to exchange with some point x,; in S, to form S,. Continuing this
process, we obtain a sequence of designs {¢,} which converges very quickly to
the optimal design, sometimes even in a few steps. If the set S, happens to be
the support of the optimal design, then we obtain the optimal design in one step
only.

Now the technical problems remaining are how to find the optimal weights
and how to exchange the points at each step. These problems depend on the opti-
mality criteria. For example, in the case of D-optimality we may take 1/k for all
points in S, and exchange x, with the point closest to it in S, or by some other
means. The explicit forms for finding optimal weights and exchanging points
will be given with a proof of convergence for the following special L-optimality.
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Let ¢ be a vector which cannot be written as a linear combination of less
than k vectors in the set { f(x)|x e 227}, and let W(M(§)) = ¢’M~*(§)c (c-optimal-
ity). Then V¥(M(§)) = — M~*(§)cc’M~*(£), hence from (2.1) we have

(2.2) sup, (¢'M~Y(§)f(x))* = /M~'(§)c

where the equality holds if and only if § is c-optimal by Theorem 2.9.2 of
Fedorov (1972). The existence of a c-optimal design with k support points is
assured by a theorem of Elfving (see Karlin and Studden 1966)) which states
that £* is c-optimal if and only if there exists a function ¢ with |¢(x)| = I such
that { ¢(x)f(x) dé*(x) = B,c for B,7* = inf, /M~*(§)c and B,c is a boundary
point of a set R which is the convex hull of the set { f(x) | x € Z27}.
From the relation 8,~? = inf, ¢/M~(§)c, it follows that over the set of vectors
d with d’M(§)d #= 0
(c'dy?
d'M(§)d
2.3) > inf, (€
§ (d(x)) dé(x)
_ (edy
sup, ((x))’
Thus for any vector d such that ¢’d = 1, we have

(2.4) sup, |df(x)| = B -

It is interesting to note that from (2.3) and (2.4) the design problem (minimizing
¢’M~(§)c over the set of designs §) becomes an approximation problem (mini-
mizing sup, |[d’f(x)| over the set of vectors d with ¢’d = 1).

Let S, = {Xq, X, - - *» X} such that the vectors f(x,), i =1,2, .-, k are
linearly independent. By the Elfving theorem mentioned above applied to the
set S,, the optimal weights p,; on x,; are a solution of the equation

(2.5) 2it-1 Poi Pos f(xor) = Boc
where ¢, = +1, py; = 0and X p,, = 1, 8, > 0 and B, is the minimum value
of ¢/M~(§)c for & with support on S,. Hence

£ = {xov Xoz> *** s Xop }
Pos Poas ** * s Pok
is a c-optimal design on S, and the vector d = ¢/M~'(&,)/c’M~*(§,)c minimizes
the value sup, . |d'f(x)|. Now the vector d, gives a hyperplane d/z = g, (2 =
(21 2, -+ -5 2,)) at Byc to the set R, defined as the convex hull of the set
{£f(x)|xeS;}. Let y(x) = d/f(x). From (2.5) 8,c is a convex combination of
b0 f(x,;) and each @, f(x,;) lies on the hyperplane d,z = §,, that is, ¢y, (X)) = B,
fori=1,2, ..., k. If& is c-optimal then we stop, in this case sup, |¢,(x)] = B,.
If ¢, is not, we then choose the point x, maximizing |¢,(x)| so that ¢,¢,(x,) > B,

B,* = inf, sup,
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or equivalently we find a vector ¢, f(x,) which lies on the side of the hyperplane
d/z = B, opposite the origin and farthest from the hyperplane. If we can ex-
change ¢,f(x,) with one of the vectors ¢, f(Xy;), say Bq; f(Xo;), s0 that 8¢ (8, > 0)
is a convex combination of the new set of vectors, then 5, = 8,. This is true, since
ﬁ‘A = B,dyc = dy/B,c

= dy[ Xisi PriPoif (Xor) + Prj bof(x0)]
(2.6) = d/[ X: PriPoiS(X0i) + Pri(Bof(X0) — Po; [(Xo5))]

= 23 P1%oi Po(X0i) + Pri(BoPo(X6) — Poj Po(¥o5))

= Bo + Pri(|o(X0)| — Bo) -

In order to determine how the exchange should be made we let, for the con-
venience of notations, a = @,f(x,), @; = Po, f(Xe;)s pi = Po; fOr i = 1,2, -+, k.
Then (2.5) can be written as
(2.7) Bo¢ = Dt pias
and we wish an exchange so that a similar equation holds. We simply take a
representation

(2.8) a= 3 4q:a
and consider an exchange using a; with g; # 0. Solving (2.8) for a; and sub-
stituting in (2.7) we get
(2.9) Bo€ = Xiin; Psti + Pi(@ — Xiixj 4:99)/4;
= Zi*iqi<&_£j‘>ai +2ia.
i i i
In order to have all coefficients positive we choose j = j, to give minimum value

for p;/g; in those g; > 0. Let s = ¥.,.; q(Pi/9: — P3/9:) + Pi,/9s,» then a renor-
malization of (2.9) gives

(2.10) Bic = X pla/
Where Pi, = qt(Pt/qt - pio/qio)/s’ ai, =a for i ¢j0 and p;o = pjo/sqjo’ a.;o = a,

and B, = B,/s.
The procedure above holds at each step, hence in (2.5) and (2.6) replacing 0

and 1 with n and n + 1 we have
(2.11) Bu€ = N1 Pui®uif(xn),  and
(212) AB'n+1 = ﬂ'n + P(n+1)j(|90n(xn)| - ﬂn) ’

from which we obtain a sequence of designs {£,} with

E _{xm’xnz""’xnk}
w =
Pnla Pnz’ tc "pnk

to be c-optimal on S, = {x,,, X5 - - -, X} and
l¢n(xn)| = SUPges,, IC'M‘I(E”)f(X)/C'M_l(En)cI .
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THEOREM. For the sequence of designs {€,} generated above, ¢’ M~(§,)c converges
monotonically to ¢’ M~ (§*)c where &* is c-optimal.

ProOF. Since ¢’M~'(&,)c = B, and ¢!M~*(§*)c = B,~?, we will show that 8,
converges monotonically to g,.
In (2.12), |¢.(x,)| — B. = O for every n, it follows that

‘Boé.81§‘82§§.8*

Hence B, converges monotonically, say, to B. To prove p = B, it suffices to
show that the limit inf

(2.13) lim inf, p,, > 0 forall i=1,2,- ---,k,

since the convergence of 8, and (2.12) imply |g,(x,)| — B, — 0, but 8, < 8 <
By < |ea(x,)|, thus |¢,(x,)| and B, converges to the same limit 8 = B,.

Suppose (2.13) is not true, then there exists an i and a subsequence {p, ;}
such that p, ; — 0. We refine the subsequence so that all Pajis Xnjis and P ;s CON-

verge, say, to p;, X, ¢, fori = 1,2, - .., k where p, = 0. From (2.11) we have

‘B”jc — Zf=l P,,,ji¢n,-if(xnji) ‘

Let n; — oo, it follows by continuity that

fe = Th.pid.f(%)
= Zf¢zol—’z95zf(7_‘z) .

But 8 > 0, hence ¢ is a linear combination of k — 1 vectors in {f(x)|x e 27}
which contradicts the assumption of ¢. This proves the theorem.

REMARKS. The procedure described above is closely related to the Silvey and
Titterington procedure (1973). The latter at each step has the best k-point sub-
set with optimal weights on it. The former, however, does not generally have
the best k-point subset, although the weights are also optimal on the set. Each
has its own advantage. For instance, at the nth step &, is an optimal design on
the set S, = {Xn1, Xpg> ** +» X, and x, is the point maximizing |¢,(x)|. In the
Silvey and Titterington procedure §,,, is chosen to be the best k-point design
(in terms of B,.,) from the set S,* = {x,, X1, Xu3, - - -5 Xni}. Therefore, in order
to determine the best 3,,,, among all k-point subsets of S,* we have to solve the
system of equations (2.11) k times. But in the procedure given above, x, is ex-
changed with some point in S, according to certain rules. Thus S,,, is not
generally the best k-point design from S,*, but we only have to solve (2.11)
once instead of k times. Of course, the best advantage of the Silvey and
Titterington procedure is no restriction on the number of support points for the
optimal design, hence its applicability is wider. But the complicated calculation
is the price to be paid.

3. A special case. For the procedure given in Section 2 if 27 = [a, b], there
is a special exchange method which in approximation theory is called the Remez
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type procedure or the Remez exchange procedure. This procedure is taken from
Meinardus (1967), but in a design theory context.

As before, ¢ is assumed to be a vector which can not be written as a linear
combination of less than k vectors in {f(x)|x €[a, b]}. Therefore, the deter-
minants

D) = Dy€; Xy, Xy =+ =, Xg) = | f(X)s -+ 5 fXiza)s ¢, f(xipa)s -+ 5 f(X0)

are ngver zero and they alternate in sign for any set of k points a < x; <
X, < --- < x, < b. Now we start with a set S, = {xq1, Xo» " * -Xo,} such that
< Xy < Xog < v o0 < X £ b. Solving (2.5) we have

Po = IDUNTim DO, fu=sgn D), . and By

is the minimum value of ¢!M~'(§)c for £ with support on S,. Let &, denote the
above design and let the function gi(x) = ¢’M~(§)f(x)/c'M~*(§)c. Then we
choose a new set S, of k points a < x; < X;, < -+ < X, < bsuch that

(i) Igpo(xu')l = ABO’ i=12,---, k
(i) |eo(x15)| > B for some
(iii) sgn @y(x,;) = @ sgn @,(X,;) where the constant «a is either 1 or — 1.

Continuing the same procedure on S,, then S, and so on, we obtain a sequence
of the designs {£,} with 8, = ¢/M~(§,)c which can be shown converging mono-
tonically to inf, ¢’M~'(§)c by the same proof of the theorem in Section 2.

With regard to the conditions (i), (ii) and (iii) for the new set of points there
are two usual methods of proceeding. Typically the function ¢,(x) will have
k-2 local extrema x,, i =2,3,.--,k — 1 and we use these together with
x,, = @ and x,, = b. The other method is to just choose w to give |p (@) =
max, |¢ (x)| and then exchange o with one of the x,, values to satisfy (iii).
Roughly speaking, this entails exchanging @ with an adjacent x,, value (if we
connect two ends a and b) for which ¢, has the same sign. Note that the values
@o(x0)s i = 1,2, - - -, k also alternate in sign. In general we use the following
rule:

o value sgn py(w) = o replaces

a = o< Xy sgn @g(Xo1) Xo1
a< o< Xy —sgn @y(xy,) Xog
I1<ig<k-—1

Xp < 0 < Xgiq1 g @g(Xo:) Xo;

Xos < @ < Xojqq —SgN @y(Xq;) Xoi+1
Xp < 0 = b g0 @g(Xor) Xok

Xp < 0 = b —SgN Q(Xg) Xo1

In the next section, two examples will be given to illustrate this exchange
procedure.
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4. Examples.

ExampLE 1. Let 27 =[—1, 1], f'(x) = (1, x)and ¢’ = (0, 1). For the initial

set Sy = {xq, X} We use x,, = —1 and x,, = . Then from (2.5),
—1, 3
€o={ 2 i}, po(x) =x—4% and o= -1
2 2 .
giving | (w)| = max, |p,(x)|. Moreover ¢y, = —1 = sgn @y(X41), Poy= 1 =SZN Yo(X0y)
and 8, = §. One can easily show that « = — 1 must be exchanged with x, = —%

giving B, = . The exchange with x, will give a decrease to 8, = % which is
not what we want. The next step will produce w = 1 which will exchanged
with 3. Therefore the c-optimal design .
-1, 1
&= { 1, %}
is obtained in two steps.

ExampLE 2. Let f'(x) = (1, x, X%, (x — 9),*) on 27 =[—1, 1], where (x —
)+t = (x — )* if x = » and equals zero for x < 7. We consider the cases ¢’ =
(0,0,0,1)and » = 0, .4, .8. Four equally spaced points on [—1, 1] are used
for the initial set of points x,, i = 1,2, 3,4. The procedure is terminated if
the critical value

Zn — “ﬁD”” - ABn < 10-5 .

where ||¢,|| = max, |p,(x)|. The results can be found in Table 1.
The design &, for each case is then

Case (i). =0
£ = { —1 —.4142 .4137 1}
: .1465 .3537 .3535 .1463
and
B~ = 135.8824 .
TABLE 1
n Xn1 Xn2 Xn3 Xn4 lgn An
7=0 0 —1 —.3333 .3333 1 8.3333x10-2 4.1667 x 10-2
1 -1 —.4166 .3333 1 8.4641 x 102 3.8339x10-2
2 —1 —.4166 .4137 1 8.5785x10-2 3.5083x10-5
3 —1 —.4142 .4137 1 8.5786 x 102 1.3237x10-¢
p=.4 0 —1 —.3333 .3333 1 4.5000 x 10-2 1.0345 x 100
1 -1 —.3333 .5862 1 6.3108 x 10-2 2.2624 x 102
2 —1 —.2545 .5862 1 6.3514 x 102 7.5706 x 10—
3 —1 —.2545 .5941 1 6.3534 x 102 6.3136 x 10-8
p=.8 0 -1 —.3333 .3333 1 5.0000 x 10-3 3.9130 x 100
1 —1 —.3333 .8261 1 1.3498 x 10—2 1.5178 x 10!
2 -1 —.0922 .8261 1 1.3799 x 10-2 1.6546 x 10-3
3 —1 —.0922 .8309 1 1.3810x 102 1.7458 x 10-8
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Case (ii). » = .4

c _{ —1 —.2545 .5941 1}
* 7 1.0938 2810 .4062 .2190
and
Bt = 247.7351 .

Case (iii). n = .8
£ ={ —1 —.0922 .8309 1}
? .0396 .1437 .4604 .3563

and
B:~* = 5243.6836 .

The Fedorov procedure for this example was run for 30 iterations in each case,
the rounded-off design (as described in Fedorov (1972), page 109) for each case is
Case (l). n = 0

g ={ —1 —.3986 .3958 1}
% 1424 3440 3712 .1424
and

' M) = 136.3643 .
Case (ii). » = .4

530={ —1 —.3166 .5305 ‘ 1}
1144 2427 4633  .1796
and

'M~(€,)c = 267.8787 .

Case (iii). 7 = .8

Eo— { —1 —.2657 .7589 1}
. .0677 .1088 .4955 .3280
and

' MY )e = 7267.5000 .

From the comparison above it is known that the Fedorov procedure converges
much more slowly than the Remez procedure. The main drawback of the
Fedorov procedure is that it cannot throw out bad points during the iterative
process. This becomes more serious when the initial design contains some bad
points with heavy weights as Case (iii) in this example. Although the Atwood
procedure (1973) can overcome this problem, it still cannot give the right point
and throw out the bad point simultaneously. Further, it cannot give the optimal
weights on the support points at each step. Thus it needs many steps to get the
optimal design, even if we use the support points of the optimal design with in-
adequate weights for the initial design.
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