The Annals of Statistics
1976, Vol. 4, No. 6, 1088-1100

ASYMPTOTICALLY EFFICIENT ESTIMATION OF
LOCATION FOR A SYMMETRIC STABLE LAW

By ALAN PauL FENECH
University of California, Davis

A well-known characteristic function representation of the family of
symmetric stable distributions &~ indexes them with a location, scale, and
type parameter. A sample of size n is taken from an unknown member of
. In this paper, an estimator of the location parameter is constructed
which is maximum probability. This means that the estimator conven-
tionally normalized converges in distribution to a normal distribution with
zero mean and variance the inverse of the Fisher Information.

1. Introduction. The family of symmetric stable distribution functions
{F,((x — 6)/s)} is identified by the corresponding family of characteristic func-
tions ¢(f) = e¥*~11%, Here —oo < 6 < 00,0 < 5 < 0,0 < @ < 2. Gnedenko
and Kolmogorov (1968) present a good exposition of the properties and mathe-
matical significance of this family of distribution functions. In recent years,
the symmetric stable distribution functions have been proposed as a useful class
of models for the behavior of the price of a commodity in a speculative market.
As a consequence, the problem of estimating some (or all) of the parameters a, ¢
and s from a sample has been studied. See Mandelbrot (1963), Fama and Roll
(1968), (1971), Press (1972) and DuMouchel (1971), (1973). This problem is
made difficult by the fact that the density function of F,((x — 6)/s) cannot be
written in closed form, except for « = 1 and « = 2. DuMouchel shows that,
subject to considering parameter spaces where « is bounded below by a positive
constant, the family of symmetric stable density functions is regular; the likeli-
hood function of a sample of identically distributed symmetric stable random
variables has a maximum; and the maximizing vector of parameter values § when
conventionally normalized converges in distribution to a normal distribution
with mean vector zero and covariance matrix the inverse of the Fisher
Information matrix. Unfortunately, § cannot be solved for explicitly, since the
likelihood function of the observations cannot be written down explicitly. No
estimators have been explicitly displayed for any of the parameters of the family
of symmetric stable distribution functions, which are efficient in a formal
sense.

In this paper a sequence of estimators 6(n), which is maximum probability
(see Weiss and Wolfowitz (1967), (1970)), is constructed for the problem of
estimating the location parameter of a symmetric stable distribution function.

Received October 1974; revised January 1976.

AMS 1970 subject classifications. Primary 62F10; Secondary 62E20.

Key words and phrases. Maximum probability estimator, location parameter, symmetric stable
law.

1088

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Statistics. RIKGLY

®
www.jstor.org



ESTIMATING LOCATION OF SYMMETRIC STABLE LAW 1089

2. The problem and a solution, outlined. Consider the family & = {F,((x —
0)/s)} of symmetric stable distributions. Here 6 is a location parameter, s is a
scale parameter, and «a is the so-called type parameter. Let X, X, -+, X, be
independent random variables with distribution function H(x) € & estimate
the location parameter 6. Hereafter, this problem is referred to as Problem A.
The estimator g(n) constructed in this paper for Problem A is shown to be
maximum probability (with respect to symmetric intervals about the origin);
loosely speaking, this means that 6(n) has asymptotically the largest probability
of falling in a symmetric interval about the parameter being estimated. An
outline of the construction of #(n) follows.

Restate Problem A as follows: let Y,, Y,, - .-, Y, be the order statistics of a
sample of size n from H(x — #), where H(x)e {F,(x/s)}; estimate the location
parameter 6. Assume temporarily that H(x) is known. Denote H'(x) by A(x).
Fenech (1973) shows by standard arguments that the family of densities A(x — 6)
satisfies the conditions of Weiss (1971), and therefore that an estimator of ¢ is
maximum probability if when conventionally normalized it converges in distri-
bution to a normal distribution with mean zero and variance {§ [# o H~'(¢)'} dt}™".
It is easy to verify that § [# o H~'(t)'} dt equals § [A’(x)/h(x)JA(x) dx, the familiar
Fisher Information for a location parameter. Suppose now that p,(n) converges
to zero and that py(n) < p,(n) < - - - < Py (n) divide the interval [ py(n), 1 — py(n)]
into k(n) subintervals of equal length Ap(n), where k(n) diverges to infinity. Then
under certain conditions one may assume that the vector (Y,, ) Yapms = * >
Yop,mym) has a specified multivariate normal distribution, and the resulting er-
ror made in probability calculations converges uniformly to zero as n increases.
Acting under such an assumption, an estimator of # can be easily constructed
which conventionally normalized has a normal distribution with mean zero and
variance asymptotically equivalent to

([ H*(pi(n»A;(go HHpt) T )™

Observe that the sum contained in brackets resembles a Riemann-sum approxi-
mation to the Fisher Information. In fact, a proper choice of the sequences p(n)
and k(n) will insure that this sum converges to the Fisher Information. It follows
that this estimator conventionally normalized converges in distribution to a nor-
mal distribution with mean zero and variance [§ [# o H™'(¢)'} dt]™"; in other
words, this estimator of # is maximum probability. Now the structure of this
estimator is important. It is a weighted average of the order statistics Y, ), -+ +»
) SN where the weights are functions of 7, n and H(x). Denote this estimator
by 6(n). At first glance, the construction of f(n) does not seem to help solve
Problem A, where H(x) is not known; instead it is only known that H(x) belongs
to {F,(x/s)}. However, the lack of knowledge of H(x) and consequently of G(n) is
overcome by borrowing an idea used in a similar setting by Weiss and Wolfowitz
(1970). Though H(x) is not known, the estimator f(n) may still be formally
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written down. A random set of weights with convenient properties is con-
structed. Denote by 6(n) the estimator which weights the Y,,, ., using these
random weights. It is shown that ni(f(n) — 6) and n*(ﬁ(n) — 0) are asymptot-
ically equivalent, regardless of which H(x) e {F,(x/s)} is true. Therefore, §(n) is
a maximum probability sequence of estimators for Problem A.

3. The solution in detail. In this section, the following notation conven-
tions are observed: § f(x)dx = (=, f(x)dx, §f(f)dt = {} f(t)dt, max Z(i) =
maXyg,<pm) Z(0), 2, Z(i) = 1% Z(i), lim Z(n) = lim,_,, Z(n). Denote F,/(x) by
f«(x). We proceed now to construct the estimator f(n) of 6 for Problem A.

Suppose that (p(n), k(n), I(n)) is a triple of sequences such that 0 < p(n) < 1,
k(n) — oo, I(n) — oo, np(n), k(n), and I(n) are positive integers, and np(n) +
k(n)l(n) = n(1 — p(n)). Let Y, Y,, .., Y, be the order statistics of a sample of
size n from H(x) e & . The estimator i(n) will be a weighted average of the
order statistics Y, 4 1y fOr 0 < j < k(n). To verify that n*(ﬁ(n) — 0) has the
proper limiting behavior, additional conditions relating the triple (p(n), k(n),
I(n)) and &~ are useful. We now list all of. these conditions and allow them to
define a class of triples (p(n), k(n), I(n)) appropriate for the construction of 8(n).

Let S = {(A(n), p(n))} where the pair of sequences (A(n(, p(n)) possess the fol-
lowing four properties:

(i) 0 < A(n) < 1, lim A(n) = 1, lim n'~4™ = oo,
0 < p(n) < %, lim p(n) = 0, lim p(n)n'—*® = oo,
(i) if H(x) e .7, lim m=2®[k o H-'(p(n))} = oo,
(i) if H(¥) € 5, lim n(sup; 0y zizasin [ o H(0)|P = 0,
(iv) if Hx)e & and 0 < ¢ < 1, lim n®*=2®3=4[h o H-Y(cp(n))]* = 0.

Now S is not empty. Choose é and &, where 0 < d < 1and 0 < § < }. Define
A(n) =1 — (logn)~? and p(n) = (log n)®~¢. Using the identity 4 o H='(f) =
s7'f, o F,7(#) and the two inequalities from Theorem A.1 (see the Appendix),
one can verify that (A(n), p(n)) € S. For each pair (A(n), p(n)) belonging to S,
we associate a triple (p(n), k(n), [(n)) through the following recipe. For n even
(odd), define k(n) to be the largest even (odd) integer in n'*~2™{1 — 2p(n)}. De-
fine I(n) to be the largest odd integer in n*™. Define p(n) through the equation
2np(n) = n — k(n)l(n), and let g(n) = 1 — p(n). It is easy to verify that the
sequence triple (p(n), k(n), I(n)) possesses all of the following properties: 0 <
p(n) < 1, lim p(n) = 0, p(n) < p(n), np(n), k(n), and I(n) are positive integers,
lim p(n)/((n)/n) = co, lim nip(n) = oo, and n~t < (I(n)/n) for all n large enough.

In Theorem 1, a result of Weiss (1973) on the asymptotic normality of a
gradually increasing number of order statistics is adapted to samples from sym-
metric stable distributions.

THEOREM 1. LetY,,Y,, ..., Y, be the order statistics of a sample of size n from
H(x)e .&. Choose (A(n), p(n)) € S. Let (p(n), k(n), I(n)) be the sequence triple
associated with (A(n), p(n)). Define p,(n) = p(n) + il(n)/n for integers i. Denote
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I(n)[n by Ap(n); let Z(ny = (Zy(n), Zy(n), - -+, Zywy(n)) where Z(n) = niho
H(pm)(Yopm — H(pu(n)).  Let V(nY = (V(n), Vin), - -, Vi (n)) be a
multivariate normal random variable with mean vector zero and covariance matrix
A(n), where

A(n)—l — (l(n) - 1) Ap(n)‘1

l(n)
ORI R ]
p(n)
~1 2 1
’ ~1 2 —1 0
1 2
X .
0 1 2 1
~1 2 1
| 1 Ay
L Py

Then for any sequence of measurable sets D(n) & R¥™+1,
3.1) lim,_, |P(Z(n) € D(n)) — P(V(n) € D(n))] = 0.

Proor. Essentially the conditions of the theorem imply that the random vari-
able obtained by evaluating the ratio of the density of Z(n) to the density of
V(n) at the random point ¥(n) converges stochastically to one. This fact implies
the conclusion. See Weiss (1969), (1973) for a detailed verification of these
points. For our purpose, a straightforward but uniformative proof of the theo-
rem consists in verifying that its assumptions imply the nineteen assumptions of
Weiss (1973). This is easy. []

Applying Theorem 1 to Problem A, we discover a random variable f(n) which
suggests the estimator 6(n).

THEOREM 2. LetY,Y,, --.,Y, be the order statistics of a sample of size n from
H(x) e &. Choose (A(n), p(n)) € S and let (p(n), k(n), [(n)) be the sequence triple
associated with (A(n), p(n)). Define Ap(n) = I(n)[n, p,(n) = p(n) + iDp(n) for inte-
gers i, and a(n) = f, o F,”(py(n)). Define

ay(n) = LBP(M[p(r) + Day(n) — ay(m)]ay(n)

Ap(m)
a,(n) = (=aj,(n) + ZCX;Z)’)— a;41(n))a;(n) for 1<j<k@m —1,
Gyny(n) = [Ap(m)[p(n) + 1)y y(1n) — @pny—s(1)]@iny(7) , and
Ap(n)

_ 1 2 a? ke (a5(n) — a;_,(n))?
b(n) = W (ag’(n) + ag(n) + 24w (Bp(n)y* Ap(n) .
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Let 6(n) = Y] b(n)~'a(n)Y,,,n) Then n(@(n) — 60) converges in distribution to a
normal distribution with mean zero and variance s*/ [ f,/(x)/f.(x)]fa(x) dx.

Proor. Define Z'(n) = (Zy(n), Z,(n), -+, Z,.,,(n)) where Z,(n) = nif, o
F,o (pi(m)s™ (Youp,my — 0 — sF,(p(n))). Since (A(n), p(n)) € S, Theorem 1 ap-
plles We proceed to find the distribution function of n#(6(n) — #), under the
artificial assumption that Z(n) has precisely the distribution function of V(n),
where V(n) is as in Theorem 1. Define a’(n) = (ao(n), a(n), « -+, a,,(n), B'(n) =
(B Bu(n) - - B, where () = f o F p)Ee (o). and Dl =
(Do(n), Dy(n), - -+, Dy(n(n)) Where Dy(n) = ay(n)Y,, ,- Then we have the linear
model E(D(n)) = (a(n) B(n))(@, sy, Cov (D(n)) = s*A(n)n~'. Using standard
methods, one may verify that the best linear unbiased estimator of ¢ based on
D(n) is G(n), and that n*(@(n) — 6) is normally distributed with mean zero and
variance s*/a(n)’ A(n)"'a(n). We use this artificial result, based on the artificial
assumption that Z(n) has the same distribution as V(n), to discover the asymp-
totic distribution of n¥(f(n) — ). Let F,(x) be a normal distribution function
with mean zero and variance s*/a(n)’ A(n)"*a(n); let F(x) be a normal distribution
function with mean zero and variance s*/§ [ f,/(x)/f(x)]’fu(x) dx. Suppose first
that

(3.2) lim a(n)' A(n)"a(n) = § [f/ (x)/fa()]'fulx) dx .

Now (3.1) implies that lim sup_.,., ., |P(n*(, — 0) < x) — F,(x)| = 0 and (3.2)
implies that lim sup_,, ., ... |F,(x) — F(x)| = 0. Therefore n¥(f(n) — 6) converges
in distribution to a normal distribution with mean zero and variance

SIS [ (0)[fu(x)]*fo(x) dx. The proof will be complete, when we verify (3.2).
We have, by Theorem A.S,

a(n) A(n)~ a(n)

I(n) — 1 n Amy\1 k(n)a” -\
= 00 1) {00t b | gy (000) = SO i)
Note that ay(n) = @y, (n). Also for a € (0, 2], lim,___, [ f,(*)]*/F.(x) = 0 follows
for a €(0,2) from (A.l) and for &« = 2 from the fact that |x|7'®’(x) ~ ®(x)
(Feller (1968), page 175). Therefore lim p(n)~'[a,*(n) + ai,,(n)] = 0. Consider
now %™ (a;(n) — a;_y(n))*(Ap(n))~*Ap(n), which equals

(3.3) Sk (fao F7(pi(n) — fo o F N (pia(n)))’ Ap(n) .

(Ap(n))”
Refer to Theorem A.2. Allowing f, o F,7'(¢) to play the role of f, we may
conclude that (3.3) differs from S;,,{’)“” [fao F,oU(t)Pdt by less than
max,<igi-pim |fa © Foa '(8)"|l(n)n~", which converges to zero by property

(111) of the pairs (A(n), p(n)) € S. It is not difficult to verify that {3 2™ [f, o

(n)

F,7'(0)'Pdt converges to | [f,/(x)/fu(*)]*fu(x) dx. Therefore 3 4™ ((a;(n) —
@;1(n))*/(Bp(n))*)Ap(n) converges to § [ f,/(x)/fu(x)I'ful(x) dx. [

We now construct the estimator g(n) for Problem A. Denote the coefficient
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of Y,, . in the random variable 6(n) by I(n, i, @). Then we have A(n) =
2 ln, i, a)Y,, ,. Now by Theorem 2, n}(f(n) — 6) converges in distribution
to a normal distribution with mean zero and variance the inverse of the Fisher
Information. However, the random variable f(n) is not an estimator of 6 for
Problem A, because the I(n, i, «) are functions through the a,(n) of the unknown
type parameter a. Theorem 3 and Theorem 4, which follow, show that estimates
of the unknown /(n, i, a) can be constructed from Y,, Y,, - .-, Y, in such a way
that the estimator §(n) of ¢ for Problem A obtained by welghtmg the Y, ., by
the estimates of the I(n, i, @) has the same asymptotic properties as the random
variable f(n).

THEOREM 3. Suppose that Y, Y,, - .., Y, are the order statistics of a sample of
size n from F((x — 0)/s)e 7. Suppose that estimators I(n, i) of the I(n, i, a) are
such that I(n, iy = I(n, k(n) — i) for integers i, Y I(n, iy =1, and such that for
ce(0,1)

{ nik(n) }

" L(n)f, o F, Y (cp(n))

regardless of the value of a. Define ﬁ(n) x l(n )Yy, Then ﬁ(n) is a maxi-
mum probability estimator of 6 for Problem A.

(3.4) max |{(n, iy — I(n, i, @)] = O

ProoF. It is enough to show that n}(f(n) — 0) — ni(f(n) — 0) converges sto-
chastlcally to zero. The Y,, ,, are estimators of the H-!(p,(n)); in particular,
since (A(n), p(n)) € S, the conditions of the Theorem A.3 are satisfied, and so

. 1 n—% ,

(3.5) Ym:i(m =0 + sF,(py(n)) + m A(n, i),
where max |2(n, i)| = O,(1). By assumption, we may write

nik(n)
l(m)fe o Fu"Y(cp(n)
where w(n, i, @) = w(n, k(n) — i, @) for i (0 < i < k(n)), > o(n, i, a) = 0, and
max |a(n, i, a)] = O,(1). Using (3.5) and (3.6), we write

nik(n) .
s Pt )

x (04 sF 2 (p(m) +

(3.6) in, iy = I(n, i, a) + o(n, i, a),

o) = 3 (I(n, i, a) +

n—% .
oo ey )
which equals 0(n) 4 (ntk(n)/I(n)] Ja o F7Hep(n)T) 3 w(n, i, @)A(n, i). Therefore
n}(@(n) — 0) — ni(@(n) — 0) is absolutely bounded by
nik(m)(k(m) + 1) max |w(n, i, a)| max |A(n, i)| .
() fe o Foa™ep(m))]

Replacing I(n) and k(n) by their asymptotic equivalents n*® and ni-2, property
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(iv) of pairs (A(n), p(n)) in S implies that this last random variable converges
stochastically to zero. []

We are left now with the task of producing a set of estimators I, iy of the
I(n, i, @) satisfying the conditions listed in Theorem 3.

THEOREM 4. Assume that Y,, Y,, - .-, Y, are the order statistics of a sample of
size n from H(x) € & . Define d(n) through nd(n) = [nt]. Define §(n) to be
Y 5(n) N 8(n) ¥
2 ani(n)+nﬁ(n) - ani(n) Y’nﬂk(,n)_i(n)+n8(n) - ank(m_im)
Define the collection of functions f(i, n) by l(n, i, @) = f(i, n)(ay(n), ax(n), - -,
y(n), and let I(n, i) = f(i, n)(@un), §u(m), -+ > Goow(n)).  Then K(n, i) = Kn, -
k(ny — i) fori (0 <i < k(n), X I(n,i) =1, and

N N k(n)n?
max |I(n, i, &) — i(n, )] = O, { DRy £ } .

ProOOF. H(x) = F,((x—0)/s); denote H'(x) by h(x); define g,(n) = ko H™(p,(n))
and g(n)’ = (go(n), g:(n), - - -, Gpmy(n)). To begin with, note the form of the func-
tions f(i, n). For example, ‘
[(U(n)/np(n) + D)ay(n) — ay(m)]ay(r)

I(n)[n

l(m)[(l(n) — D)[ea(n) A(n) " (n)]

It is easy to verify that f, o F,7(p,(n)) = sh o H™'(p,(n)), that is a,(n) = sg,(n),
and so [(n, 0, @) = f(0, n)(a(n)’) = f(0, n)(g(n)’). In general, [(n,i,a)=
S, n)(a(n)") = f(i, n)(g(n)’). In particular, we may write

[(m)/mp(m) + Dw(r) = (]

I(n, 0, a) = Km)/n
o I(n)/(I(n) — 1)g(n)' A(n)—g(n)

(=gia(n) + 294(n) — gisi(n)) g.(n)

= l(n)/n
(3.7) I(n, i, a) = I(n)/(I(n) — 1)g(n) A(n)~*g(n)

[Am/mp() + Dsn(®) = G g

I(n, k(n), @) = ln)/n
T I(n)/(I(n) — 1)g(nY A(n)~g(n)

Since the g,(n) are simple quantities defined in terms of H(x) and the sample

comes from H(x), we can estimate the g,(n) from the sample. Specifically, since
(A(n), p(n)) € S, the conditions of Theorem A.4 are satisfied, so

(n, )

l(n, 0, a) = f(0, n)(a(n)") =

a(n) n-
(3.8) =g(n) + —————o
Ym:i('n)+n6(n) - Y”T’i(”) fa ° Fa—l(cp(n))

where ¢ € (0, 1) and max |w(n, i)| = O,(1). Notice that g,(n) = g,,,_«(n) for i
(0 =i < k(n)). This leads naturally to the estimators §,(n), which are an average
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of the estimators given by (3.8) for g,(n) and g,,,_,(n). Clearly §,(n) = Fi(n)-i(n)
for i (0 £ i < k(n)) and

(3.9) max [g,(n) — §.(m| = O, {f+*(cp(n$} '

The collection of i(n, i) are obtained by substituting the §,(n) for the g,(n) in
(3.7). Since §y(n) = Giuny-i(n), i(n, i) = I(n, k(n) — i). Using Theorem A.5,
> l(n, i) = 1. Denote the numerator in (3.7) by e(n, i); it follows that the de-
nominator of I(n, i) equals }; e(n, /). Define the é(n, i) as the e(n, i) with the
g;(n) replaced by the §;(n). Of course, I(n, iy = é(n, z)/Z é(n, j)). Using (3.9),
it is not difficut to verify that

nt

F, " (ep(n)) }

max |é(n, i) — e(n, i)| = O, { o

and

> é(n, i) = > e(n, i) + O

{ k(n)nt }

" Uiy, o F 7 ep(m) )

Using these two facts and the observation that >} e(n, j) converges to a positive
constant, it is not difficult to prove that

g . . k(n)nt
max |i(n, i) — I(n, i, a)] = O { } i
P Ui(n)fe o Fi(ep(m)
This completes the construction of an estimator f(n) for @ for Problem A
which is maximum probability.

APPENDIX
Some properties of the symmetric stable densities, used in this paper and in
the appendix, are as follows. For a¢(0,2], f,(x) is symmetric about zero,
strictly positive, nonincreasing for positive x, and possesses derivatives of all
orders. For a (0, 2), as x — oo,

(A.1) faP(x) ~ Clk, a)fxerrt

where C(k, @) is a nonzero constant; f,(x) is the normal density function with
mean zero and variance 2. These properties are referenced or verified in Fenech
(1973), pages 81-88. One consequence to note: F,~'(f) is defined on (0, 1), maps
onto (— oo, o), and is differentiable.

THEOREM A.1. Consider a symmetric stable density f,(x). Then for all positive p
small enough, min, ., ,_,, fo o F,(t) > exp(—p~?) and max, 1, | fo o F7(1)"| <
exp(p™)-

Proor. First, for a € (0, 2), we derive bounds on the approach of F,7(+) to
—co and f,(+) to 0. By (A.1), as x » —oo, F,(x) ~ C(0, a)a~'|x|~%. For fe
(0, 2), define the function H,(x) = |x|=# for x € (—oo, —1). Hjy(x) is monotonic
and maps onto (0, 1); therefore H,™'(p) exists, and H,"'(p) = —p~#"". Suppose
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B < a. Then as x —» —oo, x € (—o0, —1), Hy(x)/F(x) — 4 co; and so for all
p small enough H,~'(p) < F,”'(p). Or, for a choice of § < a, for all p small
enough,

(A.2) —p P < FN(p) -
Now for 7 € (0, 2), define the function g,(x) = |x|="*" for x € (— o0, 0). Suppose

7 > a. Then by (A.1), g,(x)/f.(x) — 0 as x - —oco. Or, fora choice of y > a,
for all x small enough,

(A.3) [x|~TH L fi(x) -

We obtain the first inequality. By the monotonicity and symmetry of f.(x),
min,, , 1_p, fu © F,7 () = fu o F,7Y(p). Consider a € (0, 2); choose a, and a, satis-
fying 0 < a, < @ < @, < 2. By the monotonicity of f,(x) and (A.2), for all p
small enough, f, o F,7(p) = fu(—p~7"); by (A.3), for all p small enough,
ful—p~e7Y) > (p)=teatd, O, for all p small enough, £, o F,7}(p) > p'+*?/=.
Recalling that exp(x) dominates any polynomial in x as x — oo, for all p small
enough, f, o F,%(p) > exp(—p~?). Consider a =2. In this case, f,(x) =
int exp(—x*/4). By (A.1), fy(x) ~ C(O, 3)|x|=#+V as x — — oo, so for all p small
enough F;=Y(p) < F,”(p). By (A.2), —p~ < Fy7)(p) forall p small enough, and
s0 fy(—p™Y) < fu o F,7)(p) for all p small enough.

Now we obtain the second inequality. To begin with, f, o F,7}(¢)" equals

(A4 e FOfo o FTOF — [fd o FTOF a0 FOF -

Note that (A.4) is continuous for ¢ € (0, 1), and is symmetric about # = }. Using
(A.1), as ¢ goes to zero, we obtain the equivalences f,”" o F,7'(#)/[ fu F, (O} ~
C@, [CO, T |F D and [ o FXOF/Lfa o FOF ~ [C(1L, a)F[C(O,
a)]|F,~(t)|*="*. Consider a € (0, 1]. The above equivalence relations together
with the continuity and symmetry of (A.4) imply that |f, o F,7}(#)"| is bounded
for 1 € (0, 1); the inequality follows. Consider a € (1, 2). In this case, the equiv-
alence relations imply that for all p small enough, max,. ,,1 |/« © F ()" <
|F,7'(p)]. Using (A.2) with g =1, we have for all p small enough,
MaX, e ,1-p | fu© Fa '(1)"| < 1/p; the inequality follows. Finally, consider
a = 2. Substituting (47?) exp(—x*/4) into (A.4), we find f, o F,7}(1)" = [a +
bF,Y(t)*] exp[F,'()*/4] where a and b are nonzero constants. Therefore, for
all p small enough, max,. ., |f; o Fi((t)"| < exp[F,(p)’]- Using @(x) <
|x|~'®"(x) for x < O (see Feller (1968), page 85), for all x small enough Fy(x) <
exp(—x?), and so for all p small enough, F,”'(p)’ < —log p. Therefore, for all
p small enough max,. ,.,_,, | fs o F,7'(#)"’| < exp[ —log p]; the inequality follows. []

THEOREM A.2. Assume that f is real-valued on (0, 1), that f is twice differentiable
on (0, 1), and f(}) = 0. Choose p where 0 < p < 4; choose k, a positive integer.
Define Ap = (1 — 2p)[k, p; = p + jAp, and E = sup,zez_, |f"()]. Then

';=1V[[(1_’at)_%f.(_1,’1:12]_2; — P [f(O)] dt| < 9E*Ap.
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Proor. By the continuity of f’(f) and the mean value theorem,
(A.5) L oFde = XL [0,

where p;_, < 6(j) < p;. Now, using Taylor’s theorem,

(A.6) f(_l’a;),}fm = pi) + f"(z(j)) Ap,
P

where p;_; < o(j) < p;, and

(A7) f'(ps—) = [16()) + E()) »
where |E(j)| < EAp. Combining (A.6) and (A.7),

(A3) Aed 2= = 60y + &G

where |R(j)| < 3EAp. Now substitute (A.8) into

si LAp) = Fpid]
= Apz
The resulting sum expands naturally into four terms; one of them is identical to
the right-hand side of (A.5), and the other three are each easily bounded in
absolute value by 3E*Ap. []

THEOREM A.3. Assume that H(x) is a distribution function, such that H'(x) =
h(x) exists, is strictly positive, and is symmetric and monotone about some point.
Assume that 0 < p(n) < 1, lim p(n) = 0, np(n) and I(n) are positive integers,
lim np(n)/l(n) = co. Choasece (0, 1). Let Yy(n), -- -, Y,(n) be the order statistics
of a sample of size n from H(x). Define C(n) = {i: np(n) — I(n) < i <n— np +
l(n)}, and A(n, i) through

i

Yi(n) = H- <_> +

h

-4
L — T
h o H ' (cp(n))
Then
MaX;eom [A(, J)] = O,(1) -

Proor. Define Wi(n) = n¥(H(Y,(n)) — i/n). Applying Taylor’s theorem to

the left-hand side of H=*(n=W(n) 4+ i/n) = Y (n),

n_%Wi(n) = Yz(n) ’
h o H=Y(6(i, n))
where 0(i, n) depends on i, n, and W,(n), and (i, n) is between i/n and i/n +
n=tWy(n). )

We proceed now to bound with probability approaching one the approach of
min, g, A o H7*(0(i, n)) to zero. By Kolmogorov’s theorem (see Fisz (1963),
page 394), max |W(n)| = O,(1). Choose c € (0, 1) and define the sequence a(n)
through n~ta(n) = (1 — c)p(n) — l(n)/n; note that n~ia(n) goes to zero, while
a(n) goes to infinity. Therefore lim P{max |n~#W(n)| < n~ta(n)} = 1. Note that

(A.9) H(ifn) +
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{max [n=,(n)] < n~ta(n)} < {max |0(i, n) — ijn| < n~*a(n)}  {[np() — ()}~ —
n~ta(n) < 0(i, n) < [n — np(n) + I(n)]n~* 4 n~ta(n) for ie C(n)}. Substituting
the definition of n~ta(n) into the preceding event, we conclude that lim P{cp(n) <
0@i,n) < 1 — cp(n) for ieC(n)} = 1. Therefore, min, ., ko H(0(i, n)) is
bounded below by % o H=!(cp(n)) with probability approaching one.

Referring to (A.9),

o (1)

max,e o,

|W(m)
h o H-X(0(i, n))

= _____n‘_*_ maX;e g M max |W(n)| .
i o H(cp(n)) i o H-X0(i, n))

The conclusion of the theorem follows. [J

= n~t max;. o,

The basic idea of Theorem A.3, that of using the Kolmogorov theorem to
bound the maximum difference between a collection of order statistics and the
quantiles they estimate, is found in Weiss and Wolfowitz (1970).

THEOREM A.4. Assume that H(x) is a twice-differentiable distribution function
such that H'(x) = h(x) is strictly positive, is symmetric and monotone about some
point, and sup |H'(x)| is finite. Assume that 0 < p(n) < 1; that lim p(n) = 0; that
np(n), k(n), and I(n) are positive integers; that lim np(n)/l(n) = oco; that np(n) +
k(n)l(n) = n — np(n); that lim ntp(n) = oco; and that n~* < I(n)/n for all n large
enough. Define p,(n) = p(n) + il(n)/n and 6(n) through nd(n) = [n?]. LetY,(n),. - -,
Y, (n) be the order statistics of a sample of size n from H(x). Choose c € (0, 1). Then

o(n) = o B2 + s ot
_— = ho H Y (p(n)) + ko H Y(cp(n)) 9

np;(n)

Y

np;(n)+nd(n)
where max |w(n, i)] = O,(1).
Proor. Define d(n) by nd(n) = [n'*#], where —1 < 8 < 0. Note that d(n) ~

nf. Later we will choose 8 = —%. By Taylor’s theorem,
H(y) — H(x) _ H'(6),
y—x

where @ is between y and x. It follows that

uld = KO, ).
H7(pn) + (n)) — H™(p(n))
where H™Y(p(n)) < 0(i, n) < H™*(p(n) 4 d(n)). Denote sup |#'(x)| by M. As-
sume that d(n)/p(n) goes to zero; note that this is true for d(n) ~ n=*. Recall
that c € (0, 1). Then for all n large enough, cp(n) < p(n) + d(n) < 1 — cp(n).
Now by Taylor’s theorem, &(6(i, n)) = h(H *(p(n))) + #'(¢(i, n))(0(i, n) —
H~Y(py(n))) where HY(p,(n)) < ¢(i, n) < 6(i, n). So for all n large enough,

[ ($(i, m)@(, n) — H™(pi(m))| = M 3(n)/(h o H™(cp(n))) -
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We conclude that for all n large enough,

A.10 5(”) — ho H™ ; < Mii(n)
A0 g “H(pdn) + d(m)) — H(pn)) (PO =5 “Hep(n))

for 0 < i < k(n). We proceed now to estimate
(A.11) : 3(n) : .
HY(pyn) 4 d(n)) — H7'(pn))
Notice that the conditions of Theorem A.3 are written into the conditions of
Theorem A.4. Note that for all n large enough,

np(n) — l(n) = np(n) < npy(n) + n o(n) < n(1 — p(n)) + I(n)
for 0 < i < k(n). Therefore Theorem A.3 implies that, defining C(n) = {np(n),
np(n) + nd(n), 0 < i < k(n)}, for je C(n)
i -3
Y.(n) = H L) " am ),
() <n + h o H™Y(cp(n)) (n. J)

where max; ¢, |A(1, NI = 0,(1). Subétitute these estimates of H=*(p,(n) + (1))
and H-Y(p,(n)) into (A.11). Tedious but straightforward manipulation of the
result yields

(A.12) 3(n) - o(n)

Yopim  H(pdn) + 8(n)) — H(pi(n))

n-t 1 .
) o "

where max [5(n, i)| = O,(1). Now (A.10) and (A.12) together imply that

Yn(pi(n)+6('n)) -

o(n) — ho HY(pyn))

Yn(pi(m+6(n)) Y'np,-(n)

M o(n) n~t

S W H ep(m) | Ko HNep(m) o(n) 7 i)

where max |7(n, i)] = 0,(1). Recall that d(n) ~ nrf, where —1 < 8 < 0. Clearly,
in order to maximize the rate of convergence of the above error bound to zero,

choose § = —%. The conclusion of the theorem follows. []

Recall the definition of A4(n)~! given in Theorem 1.

THEOREM A.5. Consider the (k(n) 4 1) vector a(n), where a(n) = (a,(n),
a,(n), - -+, Aymy(n)). Then

{{m)/(U(m) — 1)}a(ny A(n)~a(n)
_ {Ap(m)[po(n) + Day(n) — ar(n)}a(r)
Ap(n)
k(n) (_'aj—l(”) + 2“:‘(”) _ aj+1(n))aj(")
o Ap(n)
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+ {(Ap(n)[po(n) + 1)a4n) (1) — Gpimy—1(1)}Akiny(1)
Ap(n)
3 k) (a;(n) — a;_y(n))’
P )(ao (n) + ai(n) + 25 Bp(n)
Proor. Note that a’'(n)A(n)"'a(n) = (a’(n)A(n)')a(n); this gives the first equal-
ity. Multiplying out the middle expression above and rearranging the terms of
the resulting sum gives

a’(n) + Gm(m) sk 9 (n) — 2a;_\(ma;(n) + aj_y(n) 0
po(n) Ap(n)
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