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ON UNIFORMLY MINIMUM VARIANCE ESTIMATION
IN FINITE POPULATIONS

By CARL ERIK SARNDAL
University of British Columbia

In the literature one finds (at least) two approaches towards proving
that the sample mean is uniformly minimum variance (UMYV), among
unbiased estimates that ‘‘ignore the labels,” for the finite population
mean: The ‘““traditional approach’ and the “‘scale-load approach.”” The
identity of results under the two approaches extends to a more general
setting, as shown in this paper: The Horvitz-Thompson estimate is UMV
unbiased for any given fixed effective size design.

1. Introduction. Consider a population of N units, each unit being identified
by a label k; k =1, ---, N. Let & be the set of subsets {s,}, where each s,
contains n, a fixed number, of labels drawn from the set {1, ---, N}. Let p(s,)
be a given function on &such that 3}, . . p(s,) = 1. We areassuming (through-
out the paper) a fixed effective size design p(+), i.e., p(+) assigns nonzero proba-
bility only to sets containing exactly n distinct labels.

Considering that “mass-draw” of » units may not be practical, assume that
the given design p(+) is implemented through a without replacement, draw-by-
draw mechanism now to be described:

For i =1,2,...,n — 1, let s, denote any set of i distinct labels, and let
pi(s;) = X p(s,)/(7), where ¥ is over those (4!) sets s, of which s, is a subset;
for some of the sets s,, p(s,) = 0 is, of course, a possibility. For each i,
> pi(s) = 1, where 3 is over the (¥) different subsets 5,. In particular, if i = 1
and k is the only element of s, we have p,(s,) = a,/n, where a, denotes the
inclusion probability of label k.

The draw-by-draw mechanism, to be denoted M, is defined as follows:

First draw label k, with probability p,(s;) = a, /n, where 5, = {k,}. Then, in
the ith draw, i = 2, 3, ..., n, and given that s,_, = {k,, - - -, k,_,} resulted from
the first i — 1 draws, draw label k, for k, =1, ---, N, k; ¢ s,_;, with proba-
bility p,(s;)/ip;_(s;—,), where s, = {ky, - -+, k,_;, k;}and p,(+) = p(+). Clearly, the
probability of obtaining the labels of a given set s, in any one particular of the
n! drawing orders will be p(s,)/n!.

From here on, we write simply s (in place of s,) for the set of labels resulting
from the draw-by-draw sampling, and };, for summation over k € s.

Assume that y, the character of interest, takes the value y, for unit k. We
shall consider the conditions under which the Horvitz-Thompson (HT) estimate
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tar = N7 )1, yu/ay, or its special case, y, = n~* 37, y,, has the uniformly minimum
variance (UMYV) property in unbiased estimation of ¥ = N-* 31V y,.

We may distinguish two approaches towards proving the UMV property. In
the traditional approach, the stochastic element enters by considering the measure-
ment y,, or some function thereof, as the outcome of a random variable »,, i =
1, ..., n. In the scale-load approach of Hartley and Rao (1968), Royall (1968),
Yo 5 Yos (J/ = N), say, denote the distinct numbers among y,, -- -, y,, and
the vector of sample frequencies of y, - - -, yo,, 1, = (ny, - - -, n,), is treated as
the outcome of the discrete random vector, v, = (v + 5 ).

Neyman (1934) showed, in the spirit of the traditional approach, that the
sample mean j, is UMV in the class of unbiased linear estimates, 37, c, Vi
under simple random sampling without replacement (srs). Removing the restric-
tion to linearity, Watson (1964) showed this result to hold, under srs, in the
class of arbitrary unbiased functions of Yep = 1, ..., n. Hartley and Rao
(1968) used the scale-load approach to show, under srs, the UMV property of
7, in the class of arbitrary unbiased functions of the scale-point frequencies
ny, - -+, n,. While their result is identical to the unpublished result of Watson
(1964), their approach may be seen as an alternative means of justifying the
sample mean.

Later, Hartley and Rao (1969) considered the distinct numbers among r, =
Yilar, k=1, -.-, N, as new scale points, under sampling with replacement
(hence not a fixed effective size design), a, being the probability of drawing unit
k, in each of n independent draws. They showed, among other things, that the
sample frequencies n,, - - -, n, are sufficient for the corresponding unknown
population frequencies of the new scale points.

The traditional approach was used in Siarndal (1972) to show that ¢, is UMV
in the unbiased class linear in yki/aki, i=1,...,n.

The main result shown below (Theorem 1) is that the scale-load approach of
Hartley and Rao (1969) can be carried through, for a fixed effective size design,
to show the UMV property of the HT estimate. We also note that the same
conclusion obtains through the traditional approach, i.e., the restriction to
linearity in the result of Sdrndal (1972) can be removed.

These results do not contradict the well-known fact that in a more
general, label dependent class no UMYV unbiased estimate exists (Godambe
(1955)). Any UMV result established within a less general class, including all
the results mentioned earlier in this paper, is therefore in a sense limited, cf.
the discussion in Godambe (1970). In spite of such limitations, it is interesting
that both scale-load and traditional approaches do admit the interpretation of
the HT estimate as being UMYV, in the sense specified in this paper. Considering
the recent strong interest in the foundations of survey sampling, it is important
to lay down the exact conditions under which UMYV unbiased estimation for
finite populations is indeed possible.
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2. UMV estimation in the scale-load approach. Consider the scale-load ap-
proach. Assume among the numbers z, = ny,/Na,, k = 1, ..., N, thereare J <
N distinct ones, say, b, ---, b,. Forj=1,...,J, set u;=1{k:z,=5b;}, N, =
number of elements k in u;, and 4, = Zkeui a,/n. Hence, }}%_, N; = N; A; =
0,j=1,.--,J, and 37, 4; = 1. The task is to estimate ¥ = Y 7_, 4,5,
where the b; are fixed numbers and the A; are unknown parameters.

For se % and j=1, ...,J, set n; = number of kes such that z, = b;;
hence }}7_,n; = n. We prove the following:

THEOREM 1. For any given fixed effective size design p(s), implemented by the
mechanism M and such that a, > 0, k = 1, ..., N, the HT estimate

tar = N7V 30, pufo = nt 2_im; b,
is UMV for Y in the class of unbiased estimates consisting of arbitrary functions of
nl’ sy nJ'
The proof is accomplished by showing three things: (a) that n,/n is unbiased
for 4;,j=1, ..., J, whereby it will follow that 34_ n;b,/n is unbiased for
j=14;b;; (b) that n, = (n, - - -, n,) is a sufficient statistic for 4,, - .., 4,; and
(c) that n, is complete.

Unbiasedness. Consider u;, containing N; labels. Let m = min (n, N;). For
ny; =0,1,...,m, set S4; ={s:n; = ny} and q(n,;) = 2ise 5; P(5). The un-
biasedness follows from

PE(n) = 17 S, 09(0) = 17 Dy, Do p(s) = 17 Thew, @, = 4; .

Sufficiency of m,. The observable result of the sampling is a sequence of n
pairs, (k;, bji)’ where bji =2z,,i= 1, ..., n. If we ignore the label part, the
sequence b,, consisting of the n numbers bji’ remains. Since each sequence has
the same probability, we get p(b,|n,) = [[/_, n;!/n!. This does not depend on
the A;, hence the suffiency, i.e., the drawing order is unimportant.

Completeness. First, let J = 2, i.e., z, = b, for N, labels, and z, = b, for the
rest. The possible values of nA4, are 0 (if N, = 0 ap, k=1,...,N(f N, =1
and z, = b); a, + a, k =1 =1, <+, NAf N, =2and z, = z;, = b)), etc. We
must show that E[g(n,)] = 0 for a real function g and all possible values of A,
implies g(n,) = 0 for n, = 0, 1, ..., n. Assume without loss of generality that
p(s) >0 for s ={1,2, ..., n}. First, consider N, = 0, i.e., ¢(0) = 1. Thus
E[g(n,)] = 0 implies g(0) = 0. Next, consider N, = 1and z, = b,. Then g(1) =
1 —g(0) = @, >0, and E[g(n,)] = 0 implies g(1) = 0. The sets {1,2}, ...,
{1,2, .-, n} have nonzero probability, hence we conclude that g(n,) = 0 for
n,=2,...,n Toshow the completeness for an arbitrary J > 2, a proof by
induction (similar to that of S. K. Kale, cited by Hartley and Rao (1968), page
549) may be used; the details are omitted.

3. Concluding remarks.

REMARK 1. In the traditional approach, we have a result equivalent to that
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of Theorem 1: For any given fixed effective size design p(s), implemented by
the mechanism M and such that a, > 0, k = 1, ..., N, the HT estimate,

tyr = NP 3yl =07t 30, 2,

is UMV for 7 in the class of unbiased estimates consisting of arbitrary functions
of z,, -+, z, . This statement, of which the results of Neyman (1934), Watson
(1964), Sidrndal (1972) are special cases, follows easily, letting, fori =1, ---, n,
{; be the random variable that takes the value z, if label k, occurs in the ith
draw. The probability of §;, = z, i = 1, ..., n, remains p(s)/n! under any

permutation of k, ..., k,. If f(z,,---,2,) is an unbiased estimate of Y=
Nz a/n, then‘ the symmetrized function 3 f(z,, - -+, z, )/n!, where 3 is
over all permutations r,, -- -, r, of k, ---, k,, is also unbiased and has smaller

variance than f, unless f is already symmetric. Thus, information about the
drawing order can be discarded with no increase in variance. The remaining
set of numbers, {z,: k € 5}, is complete; this follows as an extension of Royall’s
(1968) completeness result.

REMARK 2. Assume now that the given fixed effective size design is imple-
mented through “mass-draw” of the » units, i.e., by selecting the set s with
probability p(s). Now, in the absence of drawing order, the result of the
sampling, after labels have been ignored, is the set of numbers, {z,: k e s}, or,
looking at it from the scale-load point of view, the frequencies n; of the scale-
points b;. The completeness results discussed above, in the scale-load approach
and in the traditional approach, ensure the uniqueness of the HT estimate as
an unbiased estimate of Y.

REMARK 3. Consideration of the scale loads z, obviously makes good sense
only when the y,/a, are approximately constant (see, e.g., J. N. K. Rao (1975);
a similar requirement is inherent in C. R. Rao’s (1971) consideration of the HT
estimate under random permutation models). As is well known, the HT estimate
can be very poor if y, and a, are weakly or negatively correlated.

REFERENCES

[1] GopamBE, V.P. (1955). A unified theory of sampling from finite populations. J. Roy.
Statist. Soc. Ser. B 17 268-278.

[2] GopaMmBE, V. P. (1970). Foundations of survey sampling. Amer. Statist. 24 (no. 1) 33-38.

[3] HARTLEY, H. O. and Rao, J. N. K. (1968). A new estimation theory for sample surveys.
Biometrika 55 547-557.

[4] HARTLEY, H. O. and Rao, J. N. K. (1969). A new estimation theory for sample surveys,
II. In New Developments in Survey Sampling (N. L. Johnson and H. Smith, Jr., eds.)
147-169. Wiley, New York.

[5] NEYMAN, J. (1934). On the two different aspects of the representative method: the method
of stratified sampling and the method of purposive selection. J. Roy. Statist. Soc. 97
558-606.

[6] Rao, C.R. (1971). Some aspects of statistical inference in problems of sampling from finite
populations. In Foundations of Statistical Inference (V. S. Godambe and D. A. Sprott,
eds.) 177-202. Holt, Rinehart and Winston, Toronto.



UMYV IN FINITE POPULATIONS 997

[71 Rao, J.N.K. (1975). On the foundations of survey sampling. In 4 Survey of Statistical
Designand Linear Models (J. N. Srivastava, ed.) 489-505. North-Holland, Amsterdam.
[8] RoyaLL,R. (1968). An old approach to finite population sampling theory. J. Amer. Statist.
Assoc. 63 1269-1279.
[9] SARNDAL, C.E. (1972). Sample survey theory vs. general statistical theory: Estimation of
the population mean. Internat. Statist. Rev. 40 1-12.
[10] WaTsoN, G. S. (1964). Estimation in finite populations. (Unpublished report.)

UNIVERSITY OF BRITISH COLUMBIA
2075 WESBROOK PLACE
VANCOUVER, BriTisH CoLUMBIA V6T 1WS5



