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PROPERTIES OF STUDENT’S ¢+ AND OF THE
BEHRENS-FISHER SOLUTION TO THE
TWO MEANS PROBLEM

By G. K. ROBINSON
University College London

Conditional properties of the usual confidence intervals for the situ-
ations referred to in the title are investigated. It is shown that there can
be no negatively biased relevant selections in a sense which implies that
there can be no negatively biased relevant subsets in the sense of Buehler
(1959). The intuitive meaning of these results is that there is no way of
betting that the quoted confidence levels are too high which yields positive
expected return for all parameter values. In addition it is reported that the
coverage probabilities for the Behrens-Fisher intervals are always larger
than the nominal significance level would suggest. Thus the Behrens-
Fisher and Student’s ¢ procedures can be considered to be conservative.

1. Introduction. Suppose that we have a sample space Z and a parameter
space O, typical elements of these being z and 6, respectively. We will take an
interval estimator of # to be a set function /(z), which assigns a subset of © to
each z in Z, together with a confidence level function a(z), which maps Z into
[0, 1]. The value of the confidence level function a(z) is intended to express a
level of confidence, in some sense, in the possibility that § € I(z). Some writers
reserve the word ““confidence” for interval estimators in the classical or Neyman-
Pearson sense. I will not be doing this. Instead, I will be qualifying the word
“confidence” whenever it refers to the ideas of a particular school of thought
on statistical inference.

Buehler (1959) contributed to the formalization of a way of investigating the
appropriateness of confidence interval functions for their set functions. He in-
troduced two players, Peter and Paul, who make bets in order to question Peter’s
statistical procedures.

Let us think about a situation where Peter asserts that he has confidence a(z)
that ¢ e I(z) and Paul wishes to question the validity of this confidence by betting
against him. We could think about betting procedures in which Paul sometimes
says that a(z) is too high and sometimes says that it is too low, but our present
concern is only with Paul betting that a(z) is too high. We are interested to
know whether or not Paul can claim that Peter’s level of confidence is too great.

A pure betting strategy for Paul would be to select a subset C of Z in which
he thinks that Peter’s confidence that # € I(z) is too high. In line with the
philosophy of relevant subsets outlined by Buehler, Peter does not accept bets
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whereby he risks a(2) in order to win 1 — a(2) if # € I(z). Rather, he only risks
a(z) — e to win 1 — a(z) + ¢ for some ¢ > 0 which does not depend on z.

Let us use the usual characteristic function notation so that y,,,(6) is 1 if 6 €
I(z) and is 0 if 6 ¢ I(z). If

E[x::)(0) — a(2) + ¢|z€C,0]1 <0

for all 6 then we call C a negatively biased relevant subset. (This reduces to
Buehler’s definition when a(z) = a.) The inequality says that Peter’s expected
gain is negative for all 4, supporting Paul’s claim that Peter’s confidence is too
high.

A randomized betting strategy for Paul would be to specify a selection: a
function k(z) from Z to the unit interval which has the interpretation that he
bets with probability k(z) when z is observed. This idea was introduced by Tukey
(1958) and has been used by Wallace (1959) and Pierce (1973). We will call a
selection a negatively biased relevant selection if

(i) it is nontrivial in the sense that E[k(z)|6] > O for some 4,
(ii) Peter loses for all @ if Paul uses it, i.e.

E[{1;:(0) — a(2) + €}k(2)|6]1 < O for some ¢ >0, forall 4.

Wallace (1959) purports to prove results related to the present ones. Stein
(1961) showed that his Theorems 2 and 3 are incorrect and this can be seen
from the example given by Buehler and Fedderson (1963) which gives a positively
biased relevant subset for a Neyman confidence interval based on the ¢ distri-
bution. This provides a counterexample to Wallace’s Theorem 2. The comple-
ment of that confidence interval is also a Neyman confidence region, although
not an interval, and for this confidence region the conditioning set that they
have investigated is a negatively biased relevant subset. This isa counterexample
to Wallace’s Theorem 3.

Brown (1967) has extended Buehler and Fedderson’s example to allow the
t distribution to have more than one degree of freedom. Olshen (1973) has
further extended the ideas to regression problems, but has only found semirele-
vant subsets (Buehler’s notation again), not relevant subsets. At the other end
of the line, Buehler and Fedderson’s paper is itself an extension of an example
of Stein (1961). Stein found a positively biased relevant selection which is rather
similar to Buehler and Fedderson’s relevant subset.

In order to prove the analytical results in Sections 2 and 3, we shall define
a(2) in terms of particular improper Bayesian prior densities. That these prior
densities give the same results as the 7 distribution and the Behrens-Fisher dis-
tribution is well known. The reader is referred to Lindley (1965), Fisher (1935)
and Jeffreys (1940).

2. Result for the ¢ distribution. Suppose that we make n (> 2) observations
on a normal population with unkown mean x and unknown variance 6. Let us
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denote the vector of observations by x, the mean by X and the sample variance
by s®. Suppose that we have a set function /(x) for x and we quote a confidence
level function a(x) which is calculated using the ¢ distribution or, equivalently,
using the usual 6-! improper prior density for § and p.

THEOREM 1. Provided that I(X) is always an interval containing X, there is no
negatively biased relevant selection for a(X) as a confidence level function for I(X);
i.e. there is no function k(x) and ¢ > 0 such that

(i) 0<kx <1,
€)) (i) E[k(x)] >0 for some p and some 0, and
(iii)  E[{x;(p) — a(X) + e)k(x)|p, 01 <0 forall p andall 4.

Proor. Define a,(x) to be the Bayesian confidence level for /(x) based on the

improper prior 6-'*7 for x and 6 where y = 0. The likelihood of # and /. given
X is proportional to

0-4 exp[ —(1/20){n(% — 2 + (n — 1)s7}]
Denoting {n(x — u)* + (n — 1)s% by S, our posterior density is proportional to
O-i"=141 exp (—S/20) ;

so the marginal posterior density of x# can be found, by integrating out ¢, to be
proportional to S~#"+7 and hence to

2 —in X —
<l—l— ! ) o where =X "F nt,

n—1 s
Denoting (=, {1 + #2/(n — 1)}* dt by K(p),
e, (x) — a(x)]
- !S"—"m Lro (1 + 2f(n — 1))+ di
K(r — $n)
_ 8% i ({1 + 2)(n — 1)}H" dt‘
K(—4n)

— | {1 + #/(n — HYK(—4n) £\

= ‘S—m Xl(x)(fl){ K(r — in) 1}(1 4 — 1) dt‘
= s |(1+ S Y K=k — gy — 1] (14 S ar

which — 0 as y — 0 by the dominated convergence theorem.
(2) Hence a,(x)— a(x) uniformly in x as y — 0.

Now define §,(x), for y > 0, to be the Bayesian confidence level for /(x) based
upon the improper prior density 6-*7 truncated to the region 0 < 8 < R, — o0 <
¢ < oo. The value of R is finite but otherwise of no relevance to the calculations.

Let f,(#) and g,(x), respectively, denote the marginal posterior densities for
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u for the nontrucated and truncated formal prior distributions. Then

9:(p) _ $Spp )" Tev dy

J() & ytiremr dy
where S denotes n(¥ — p)? + (n — 1)s?, as before. For fixed ¥ and s%, S is
increasing as a function of |¥ — y| so the ratio of densities decreases with
increasing [¥ — pf. In other words, the densities have decreasing monotone
likelihood ratio in £ — g|. It follows that
) B(%) = Treo 9x() At Z 100 [ 1) dpt = a,(X)
for any interval /(x) containing the point p = %.

Finally, define 8,"(x) to be the confidence level for /(x) based on the proper

prior density for ¢ and p proportional to
07 1(L + |pfm]}=*
over —oo < < 00,0 < 0 < R. Again y > 0 and R is finite. We shall make
use of the inequalities
{1+ [%/m|}{1 — 2[m)|x — pl}

= {1+ |p/m|}”?

= {1+ [x/m}™{1 4 2/m)|x — p| + 3/m})|x — p’}
which we shall discuss in the form:
{1+ lal}*(1 = 2ja — b)) < {1 + 6]} < {1 + |a]}"{1 + 2]a — b] 4 3|a — b7}
for all real a and b.

It is straightforward to prove the left-hand inequality by looking at the tangent
to the curve {1 4 [b]}"*at b = a. If |a] < |b] the right-hand inequality is trivial.
We may as well suppose that a and b are of the same sign so it is sufficient to
look at the case 0 < b < a. The inequality becomes

(1 +a) = (1 + b)1 + 2(a — b) + 3(a — b)}
which is established by showing that
(I + )1 4 2(a — b) + 3(a — b)*} — (1 + a)?®
= 2a(a — b) + 2b(3a® — Sab + 4b%) + 3b%a — b)* > 0.
Now, using f(x; p, #) to denote the probability density function of x,
Br"(X) _ 58 Saeo {1+ |pfm)) 7207 47f(x; p, 0) dpe df
B(x) & SZa{l + |pfm|}20747f(X; pr, 0) dpe dE
@ oo N =0 071((%s g, 0) dpe dF
§¢ Sae) 0747f(%5 12, 0) dpe dB
30 V100 071 + (2[m)|% — g + (3/m?)|% — p’} f(X; pt, 0) dpe O
§ S 100 0747f(X; 12, 0) dpp df
$o' §20 07 1f(%; 11, 0) dpe df
§6 §2a 071 — 2[m)|% — pl} f(x; 2, 0) dpe, dB

I\
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With k being 1 or 2,

Vi 1% — pIf(X5 1, ) dpp - §25 |% — pI*f(X; 2, 0) dpe
§ro0 f(X5 1, 0) dpe T (e f(xs p, 0) dp
since I(x) is an interval containing x. Since § < R and each of these last two
integrals is independent of x, (4) gives an upper bound for g,"(x)/8,(x) which
tends to unity uniformly in x as m tends to infinity.
We could similarly obtain a lower bound for 8,™(x)/8,(x) which tends to 1
uniformly in x as m tends to co. Since g,(x) < 1,

%) B,™(X) — B,(x) uniformly in x as m— oo.

Suppose that for some ¢ > 0 there is a selection k(x) as described in the statement
of the theorem. From (2), (3) and (5)

lim inf e ;o) B,™(X) = a(X) uniformly in x.
Therefore there are values of m and y such that

B,"(X) = a(X) — 4¢ forall x.
So, using (1),

(6) E[{xreo(p) — B,"(%) + $efk(x)| 1, 0] = 0.

But the prior expectation of E[{y,.,(¢) — 8,"(X)}k(x) |z, 6] according to the
proper prior upon which $,™(x) is based is zero. Therefore the prior expecta-
tion of

El{xron(r) = B,"(%) + 3e}k(x)] 2, 0]
is strictly positive in contradiction with (6). This proves the theorem.

3. Result for the Behrens-Fisher solution to the two means problem. We
observe a sample of size n, (> 2) from a first normal population and a sample
of size n, (= 2) from a second. Let X, y, X, J, 5.2, 5%, 11, pts, 0, and 6, denote the
vectors of observed values, the observed means and variances and the population
means and variances.

Suppose that we have a set function /(x, y) for 6 = g, — p, which we quote
at confidence level a(x, y) based on the fiducial argument or, equivalently, on
a (0,0,)~* improper prior density for g, u,, 6, and 6,.

THEOREM 2. Provided that I(X, y) is always an interval containing the point j — %
there is no negatively biased relevant selection.

OUTLINE OF PrROOF. This theorem could be proved in a similar manner to
Theorem 1. We shall omit some of the steps here.

First define a,/(x,y), for y = 0, to be the confidence level for I(x, y) based
on the improper prior density (#,60,)~**" for p,, u,, 6, and 6,. We could show,
analogously to the proof of Theorem 1, that

@) a (X, y) — a(X,y) uniformly as 7 — 0.



968 G. K. ROBINSON

Then define g (x,y), for y > 0, to be the confidence level for I(x, y) based
on the improper prior density (6,6,)~**" truncated to 0 < 0, <R, 0<80,<R.
We wish to prove that B, (x,y) = a.(x,y).

Using a result from the proof of Theorem 1, we have that the marginal
posterior distribution for g, for the truncated formal prior is more concentrated
about ¥ than is the posterior for the untruncated prior in the sense that the
densities of these distributions have decreasing monotone likelihood ratio in
|¥ — p|. Similarly, the marginal posterior distribution of s, for the truncated
prior is more concentrated about y than that for the untruncated prior. This
implies that the marginal posterior distribution of § = p, — g, for the truncated
prior has decreasing monotone likelihood ratio in |, — g, — (J — x)| with re-
spect to its distribution for the untruncated prior. (See Karlin and Proschan
(1960).)

Therefore, since I(x, y) is an interval containing the point ¢ = j — %, the
proportion of the posterior for the truncated prior within ¢ e I(x, y) is greater
than the proportion of the posterior for the untrucated prior, i.e.

®) B (%, ¥) 2 a,(X,y) .

Finally, define 8,™(x, y) to be the confidence level for I(x, y) based on the
proper prior density proportional to

(6:0)74 L + |pfml}{1 + |/ m]}2

over0 < 6, < RO O, <R, —o0o < pt; < 00, —c0 < Yo < 0. Thatﬁr"‘(x,y)
tends to §,(x, y) uniformly in x and y as m tends to infinity for fixed y > 0 can
be proved in a similar manner to the corresponding result in the proof of
Theorem 1.

Now (7), (8) and the last assertion are completely analogous to (2), (3) and 5)
in the proof of Theorem 1, so the remaining argument of the proof is the same
as that of Theorem 1. Similar notation has been used to enable this to be
readily seen.

4. The coverage properties of Behrens-Fisher intervals. Bartlett (1936) was
the first to show that the confidence regions of the Behrens—Fisher solution do
not cover the true parameter value with probability the nominal confidence
level.

A problem equivalent to that of finding coverage probabilities is that of finding
type I error rates for the associated tests of the hypothesis § = 0. Such proba-
bilities of error have been calculated by James (1959), Mehta and Srinivasan
(1970) and Wang (1971). James (1959) investigated only the case n, = n, = 2
for which it is easy to find the significance points. Mehta and Srinivasan (1970)
looked at three cases: n, = n, = 4; n, = 4 and n, = 20; and n, = n, = 20. How-
ever they used Fisher’s (1941) asymptotic expansion to find their significance
points, so only for n, = n, = 20 can their probabilities of type I error be con-
sidered reliable. Wang (1971) found probabilities of type I error for the case
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n, = 7, n, = 13. Presumably he used Sukhatme’s (1938) significance points and
interpolated between them. In comparison with a table of type I error rates
which I have calculated his table appears to contain slight inaccuracies which
seem to be attributable to the inaccuracy of such interpolation.

Kempthorne (1966) performed a Monte Carlo experiment to investigate the
probabilities of type I error but it was too small to be useful.

These calculations all tended to support the idea that the type I error prob-
abilities are alwavs less than the nominal significance level. I have recently
tabulated the probabilities of type I error for one-sided significance levels 0.1,
0.05, 0.025, 0.01, 0.005, 0.001, 0.0005 and 0.0001; for n, and n, belonging to
the set {2, 3, 4,5,6,7, 8,10, 12, 14, 18, 24, 32, 50, 100, oo} and 0, n,/6,n, belong-
ing to the set {;5 1é0 3 00 B 3 50 & 1, 3,2, 3,5, 10, 30, 100, 1000}. In
all cases the probability of type I error was found to be less than the nominal
value. The accuracy of the calculation varies but I consider that sufficient
accuracy of calculation and fineness of tabulation has been achieved to infer
with reasonable certainty that the type I error rate is always less than the
nominal significance level for Behrens—Fisher tests.

The actual calculation has little intrinsic interst. Firstly, significance points
were found using either Sukhatme’s method involving numerical integration or
using a numerical adaption of Fisher and Healy’s (1956) method. This part of
the calculation was accurate to at least 10 significant figures. Secondly, the
significance points were fitted by polynomials in the angle, usually denoted 4,
upon which they depend. Thirdly the probabilities of type I error were found
by using numerical integration like that used by Wang (1971). Approximate
significance points were calculated from the fitted polynomials to greatly speed
this step.

5. Should we use the Behrens-Fisher solution to the two means problem in
statistical practice? The two means problem has long been of interest as a
testing ground for theories of statistical inference. Consequently, whether or
not one believes that the two means problem is an important one from a practi-
cal point of view, it is important to decide what statistical procedure we should
use in a two means situation.

The Behrens-Fisher solution to the two means problem has two properties
which seem very desirable:

(i) Its confidence regions for 6 cover the true value of § with probability
always larger than the nominal confidence level.
(i) There are no negatively biased relevant selections.

Thus it seems to yield procedures which are conservative in an intuitive sense.
I would like to propose that the word “conservative” be used in a technical
sense to mean that these two properties hold.

As was remarked by Buehler (1959), Fisher (1956) shows that there is a
negatively biased relevant subset for a Neyman confidence interval statement
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devised by Welch (1947) for the two means problem. Iagree with Fisher (1956),
Buehler (1959) and Wallace (1959) that the existence of such a subset seems to
undermine the validity of a confidence statement. Certainly Welch’s test is not
conservative in the technical sense suggested above.

Perhaps the Behrens—Fisher test is optimal in some sense amongst the class of
procedures which are conservative. I, personally, suspect that it will eventually
be regarded as the correct test to use except when a proper Bayesian test is
considered appropriate. I believe that research towards finding a test with ap-
proximately constant probability of type I error is misguided. In the two means
situation it seems that such a test would inevitably have unacceptable con-
ditional properties.
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