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SEQUENTIAL SEARCH WITH RANDOM OVERLOOK
PROBABILITIES!

By GAINEFORD J. HALL, JR.
The University of Texas at Austin

Suppose an object is hidden in one of N boxes. The initial prior prob-
ability that it is hidden in box i is known to the searcher, who once a day
must choose a box to be searched. The probability that the jth search of
box i will be unsuccessful, given that the object is in box i, is described by
a random variable a;;. Assuming that each search of box i costs ¢; > 0,
sufficient conditions on the joint distribution of the {a;}5_, are found in
order to guarantee that a particular search rule (analogous to earlier search
rules found independently by R. Bellman, D. Blackwell, W. Black and J.
Kadane) is optimal with respect to minimizing the total expected search
cost of finding the object. An extension of a search problem studied by
C. Sweat is also treated.

1. Introduction and summary. An objeét is hidden in one of N boxes, labeled
1, ..., N, where it remains until found. It is in box i with prior probability
pit =0, where >}, p' = 1. Knowing these probabilities, a searcher selects a
box to be searched each day. The conditional probability that the jth search
of box i discovers the objects, given that it is in box i/, is a random variable «,;,
called a random overlook probability or overlook random variable. For each i, the
random variables a;, @;,, - - - have a joint distribution which the searcher also
knows, while the sequences {a,;}7,, - - -, {ay,}7-, are independent.

Two forms of the problem are considered. In the first, each search of box i
costs ¢, >0, 1 < i< N. In the second, there is no search cost but there is a
positive probability 1 — §, that a search of box i will result in termination of
the search process without finding the object. The searcher receives a reward
of one unit if he finds the object before termination, and zero reward otherwise.
Thus 8;, 0 < B; < 1, acts as a discount factor.

Consider the problem with costs. Suppose that the searcher has already
searched unsuccessfully for the object for n — 1 days and assume that box / has
been searched m(/) = 0 times, sothat > , m(l)=n — 1,1 <[ < N. The searcher
is aware of the values 7, -, #, ,,, which the random overlook probabilities
@15+ > &y s Tespectively, had assumed for each box I. If the searcher selects
box i to be searched next, he pays cost ¢, and learns the actual value of «
during this search of box i.

i,m(i)+1
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If the searcher finds the object, search is terminated and no more cost is
incurred. Otherwise the searcher uses the observed value t = «; ;). tO revise
his opinion of the object’s location (via Bayes’ rule) and search continues. The
value 7 is the probability that the searcher will fail to find the object on the
(m(i) + 1)** search of box i, given it is in box i. The searcher must find an
optimal policy to minimize the total expected search cost of finding the object.
If for each i @;; = a, is a constant independent of j then this search problem
reduces to the one solved by Blackwell [3] and Black [2]. If for each i {a;;}5.,
is a sequence of (possibly different) constants then this search model reduces to
the model considered by Kadane [8]. We could treat the search problem wherein
the cost for the jth search of box i, ¢,;, depends on j, as in Kadane, but the proof
for the more general cost structure of Kadane is similar to the proof given.

In the discounted reward problem, if a search of box i is unsuccessful, the
search process continues with probability 8, and the searcher’s opinion of the
object’s location is revised via Bayes’ rule. The searcher must find an optimal
policy to maximize the total expected discounted reward, or equivalently to
maximize the probability of eventually finding the object. If for eachia,; = a;
is a constant independent of j then this problem reduces to that of Sweat [11].

We obtain the following results in this paper: For the search problem with
cost we find necessary and sufficient conditions on {a,;}7_,, 1 < i < N, such that
the minimal total expected search cost is finite. Under a certain monotonicity
condition on the joint distribution of {«,;}7_,, 1 < i < N, we show that an optimal
search rule exists which agrees with the optimal rules found by Blackwell, Black
and Kadane when the «,; are constant. (If {@;;}7., is a sequence of constants,
our monotonicity condition reduces to that of Kadane for the case ¢;; = c,,
independent of j.) We give an example in which the monotonicity condition
fails to hold and this analog of the Blackwell-Black-Kadane rule is not optimal.
For the search problem with discounted reward, we show that under the same
monotonicity condition there is an optimal search rule which is the appropriate
analog of the Sweat search rule. Lastly, we shall give some examples illustrat-
ing the theory.

2. The dynamic programming model for the search problem with cost. In
order to show the existence of an optimal search policy, we formulate the search
problem with cost as a negative dynamic programming problem (cf. Strauch
[10]). To do this we must define the state space S, the action space 4, the transi-
tion probability g(« |+, «): S x 4 — S and the cost functionc: §x 4 x S — R.

The action space is 4 = {1,2, ---, N}. To define S, first let AY = {p =
(o -+ py): P22 0,1 i< N, and 3%, p, = 1}. Thus A¥ is the set of all
location vectors p for the hidden object. Define s*, an isolated point, to be the
state into which the system is mapped once the object has been found. For
ieAand te[0, 1], define the map 7T(i, r): AY — AY U {s*} as follows. If p e A",
T(i, O = ' where p/ = tp/(1 — (1 — 1)p) and p/ = pf(1 — (1 — Op;) for
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[ + i (here we tacitly assume 1 — (1 — 7)p, + 0). If p is the prior location vector
at some stage, action i is taken, the value ¢ is observed and the search of box i
is unsuccessful, then T(i, 7)p is the posterior location vector for the object, com-
puted by Bayes’ rule. If 1 = 0 and p = e’ (e’ is the vertex of A¥ with 1 in the
ith coordinate and O elsewhere) define 7'(i, O)e? = s*, since if the overlook is
zero during a search of box i/ when p = €¢, the object is sure to be found.

Now define S, = AV and forn = 2, define S, = {s, = (p', i1, P% iy, + -+, iy, P?) :
Vm,1<m<n-—1,p"*eA¥and 3u,¢c [0, 1] such that p™+' = T(i,, u,)p"}.
Finally, § = Uy, S, U {s*}, the disjoint union with the usual topology and Borel
sets. For notation, if i, =le 4,lett,, , = u,, wherey,(I) = v, (liy, -+, in_y)
is the number of times that / occurs in i, -+ -, i,, | Em < n — 1.

Let p,, denote the (marginal) distribution of a,; and for each m > 1 let 7o
be a transition probability of [0, 1]™ into [0, 1] which is a conditional distribu-
tion of &, ,,,, given ay;, + -+, &, 1 < i < N. To define the transition probability
g, letseSandie A. If s =s,¢eS, for some n, let t,,, - -, ¢, ., denote the ob-
served values of a;, - - -, a; ,(, Occurring in s,, as before, where m(i) = m(i; s,)
is the number of times i is searched in 5,. For convenience of notation write
Pimra(* [52) = Limeya(e [ s =5 tymay).  Then define g(s*|s,, i) = p[1 —
E(a; ms)41]5.)] Where E(@; 41| 5,) = $0 14 mesys1 (dt]s,). For B a Borel subset
of A¥, define ¢({(S,, )} x B8, 0) = §o[1 — (1 — )P, mcy (@2 | 5,,), where C =
{te[0,1]: TG, np" e B}. Thus ¢(S,s.|5,, i) =1 — g(s*|s,, i). Lastly, define
g(s*|s*, i) = 1, for all i. Thus for s, e S,, g(s*|s,, i) is the probability that the
object is found during the (m(i) 4 1)* search of box i and g({(s,, i)} x B|s,, i)
is the probability that the object is not found and the posterior location vector
will lie in B. To define the cost function ¢, let ¢(s,, i, ') = ¢,, for 5, S,, ' € S,
i€ A, and let ¢(s*, i, s') = 0.

Thus we have completely specified the decision model for our problem. By
results of Strauch [10], there exists a stationary optimal policy. Here, a policy
0 = (0,)x-, is a sequence of maps o,,: S, — A4 where o,(s,) is the action taken
at time n at state s,. Furthermore, ¢,(p) denotes the expected search cost under
policy o at state p and ¢ = inf, ¢, is the total minimal expected search cost.
The first theorem gives necessary and sufficient conditions on {a;;}3, in order

that ¢(p) < oo.

THEOREM 1. Suppose that for the initial state p we have p; > 0, for eachi. Then
¢(p) < oo if and only if 3.7, E(]]j ai;) < o0, 1 i< N.

Proor. First we show thatif 3> , E(]%_, a,;) < oo for each i then ¢(p) < oo
for all pe A”. Let = be the policy which searches boxes 1,2, ---, N cyclically
until the object is found. If the object is in box i, so that p = e?, then the
expected number of searches required to find the object (by always searching
in box i) is 1+ N2, E([5ay). Hence p(e) < ¢ (e) < (N, e)(l +
2in=1 E(]]%-1 @;;)). Thusif p e A¥ is the initial prior location vector, then ¢(p) <
0.(p) < (D1 €)( T Al + Do BT @i5)]). Hence if
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MaX, i<y 2inor E(115o ai5) < o0

then ¢(p) < oo for all p e A”.

Conversely, suppose that p, > 0 for 1 < i < N and that ¢(p) < co. Now ¢ is
concave on A¥, since ¢(p)=min, ¢,(p) = min, Y1\, p;p,(e‘) = 2L, p; min, ¢,(e)=
S¥, p,o(e?) for all pe AY. Therefore if each p, > 0, 1 < i < N, we must have
e E(T]72, ;) < oo, for each i. []

From now on we shall assume that >z, E(]]%-, @;;) < co for each i. We
also assume that p, > 0, 1 < i < N, for the initial location vector p.

3. The solution to the search problem with cost.. In this section we find
conditions on the joint distribution of {a;;}7_,, 1 < i < N, under which the ap-
propriate analog of the Blackwell-Black-Kadane search policy is optimal. We
first prove the following theorem.

THEOREM 1. (i) In the search problem with cost, suppose that the following in-
equality is satisfied for all i, 2 < i < N, and all m = 1:

(1) pll — Eaylje, = p(1173 a)[l — E(apm | @is -+ o5 @ymi)]/€is @S-

Then if o is any search policy with o,(p) # 1, there is a policy o' with o,/(p) = 1
and ¢,(p) = ¢,(p). (i) If p is such that p[1 — Eay]je; > pfl — Eayl/c;, 2 =
i < N, and (1) holds, then ¢,(p) > ¢,.(P), where o, o’ are as in (i).

Proor. We show that for any search rule ¢ such that ¢,(p) < oo and o,(p) =
h =+ 1 there is a rule ¢’ such that ¢//(p) = 1 and ¢,(p) — ¢,.(P) = ¢, p[1 — Eayy] —
e;p[l — Eay,], from which both (i) and (ii) follow. Intuitively, (1) states that
box 1 is the “most attractive” box to search at state p, and if some other box is
searched, box 1 remains the most attractive.

Now let {t,;}>_, be a sample path of {a,,}5,, | <i < N, and let the sequence
of decisions which ¢ prescribes for this sample path be denoted by i, iy -+,
Im—1» Ims Imy1s + -+ Where by assumption i, = & = 1. Suppose thati, =1 and that
i, # 1 for1 < k < m — 1. Leto’ be the policy which prescribes for this sample
path of overlook probabilities the actions 1, iy, « ««, in_15 Imp1s Imgas = - * Notice
that this determines a well-defined policy ¢’. We find the difference of the con-
ditional expected values of the search cost under policies ¢ and o', given a;; = 1,5,
j=z1,1<i<N.

Let 1 < k < m — 1, and notice that the difference of the conditional expecta-
tions of total cost for the sequences of actions i, iy, * * +, ff_ys igs 15 iggs - .. and
iy iy » v ig_1s Ly iy Igeqs - - - equals the difference in conditional expected cost
at times k and k -+ 1 since before time k and after time k + 1 the conditional
expected costs are the same. T hus, the conditional difference given that the
object is not found before time k is

(2) ¢, + [1—pr(l — i 0 6)]e — (e, + [1 = p(1 — ti)]es))
=prl — )€, — P{Fk(l — Lipugip)Cis
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where v,(/) is the number of times / occurs among i;, - - -, i,. By the definition
of the map T(i, ¢),

(3) Pi* = p(IT5ar ) Zila p(TT e 1,170 l<i<N.
The probability that the object is not found at stages 1,2, ..., k — 1 is, given
a; =ty jzL, 1<i<N,

4) 2l [T ;.

The difference of conditional expected costs under ¢ and ¢’ is found by using
the sum of differences (2) by moving action 1 each step one place further toward
stage 1. Combining this with (3) and (4) we get for the conditional expected
difference

(5) X, — e, — Pik(H;'éTI(i") tik,j)(l - ti,,,»,,(i,,))"'l] .

Let J, be the random variable which is obtained from the kth term of (5) by
substitution of {a,;} for {z,;} and by substitution of the action which ¢ prescribes
at time k for i,. Let & be the first time ¢ prescribes action 1. Since p, > 0 and
©,(p) < o0, 2 £ & < oo a.s., under policy . Thus

©,(P) — ©o/(P) = E[ Ximes Ligem) 2205 ]
== EU[Z:I:o:l I{e>k)Jk] = Ea[Jl] ’
by (1) and the independence of the N processes, where I} is the indicator func-
tion of event B. Note that /., is a function only of «,; for 1 < j < v, (i),
1 i< N. Since E|[J,] = p(1 — Eay)e, — pu(1 — Eay,)c,, the conclusion of
the theorem follows. []

Next we define the “‘weak monotonicity condition.”

DerINITION 1. Let a;, a,, @, - - - be a sequence of [0, 1]-valued random vari-
ables. We say that {a;}7_, satisfies the weak monotonicity condition (or W.M.C.)
if forallm =1,

(6) 1 — Ea, = (T[" a)[1 — E(ap| s «+ o5 Ap_y)], a.s.
The W.M.C. is a kind of “local optimality” condition, as shown by the next

theorem.

THEOREM 2. Suppose that in the search problem with cost for each box i, 1 <
i £ N, the overlook random variables {a;}5_, satisfy the W.M.C. (6). Let box i
be such that p[l — Ea,l/c, = max, .y pi[l — Eay]/c,. Then if o is any policy
with 6,(p) # i, there is a policy ¢’ with a,/(p) = i and ¢,(p) = ¢,(P)-

Proor. The conclusion follows immediately from (i) of Theorem 1. []
The monotonicity condition referred to in the introduction is the following.

DEFINITION 2. The sequence {«;}7_, of [0, 1]-valued random variables satisfies
the strong monotonicity condition (or S.M.C.) if (J]™} a;)[1 — E(a, |y, - - -,
a,_,)] is monotone nonincreasing in m, a.s.
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Notice that the S.M.C. essentially implies that the W.M.C. is satisfied at each
stage and that if {a;}7., are i.i.d. [0, 1]-valued random variables the S.M.C. is
automatically satisfied. The search policy we are interested in is the following.

DEFINITION 3. Define f = (f,)7-, as follows. If s = s,€S,, let f,(s,) be any
action 7 achieving

(7) Pl — E(; meay4a | $p)]/ec = maxig oy pr°[1 — E(a mayia | Sa)]/ey 5

where p” is the last coordinate of s, and m(l) is the number of times box / has
been searched in s,. If s = s*, f,(s*) is arbitrary. This is the Blackwell-Black-
Kadane (or B.B.K.) policy.

Roughly speaking, this policy always selects that box which has maximum
present probability of success per unit cost of search, i.e., it always selects the
“most attractive” box.

THEOREM 3. Suppose that in the search problem with cost, for eachi,1 < i < N,
the overlook random variables {a,;}7., satisfy the S.M.C. Then the B.B.K. policy
is optimal, i.e., ¢ = ¢, on A¥,

Proor. Note that on the event {T]%_, a;; > 0}, {a;;}7,,, satisfies the S.M.C.,
for any k = 1. Hence we may use the fact that an optimal policy exists together
with the proof of Theorem 1 at each stage n to conclude that the B.B.K. rule
is optimal. []

4. The search problem with discounted reward. In this section we study the
extension of the Sweat problem described in the introduction. Note that the
problem can be extended to that in which the discount factor g,; depends on
the jth search of box i, but again, the solution is similar to that given.

To formulate the discounted reward search problem as a dynamic program-
ming problem, define the state space S, action space 4 and transition probability
g(+ |+, +)asinSection2. Todefinetherewardr: Sx AxS— R, letr(s*,i,5s’) =0
for all s e S and r(s,, i, s') = (11221 Bi,)P:"[1 — E(@; m41]5,)]> @s in our earlier
notation, where i, - - -, i,_, is the sequence of searches in s, € S,. Then we know
from results of Blackwell [4] or alternatively from Hinderer [7] that an optimal
policy with respect to the total maximal expected discounted reward exists. Let
1,(p) denote the expected discounted reward under policy ¢ and I(p) = sup, 7,(p)
be the maximal expected discounted reward.

THEOREM 1. (i) In the search problem with discounted reward, suppose that the
following inequality is met for all i,2 < i < N, and all m = 1:
(1) pll — Eay]/(1 — By)
Z pI175 a1 — E(@im| @i -+ -5 @m)]/(1 = B) 5 s
Then if o is any policy with a,(p) # 1, there is a policy o' with ¢,'(p) = 1 and

1,(p) < 1,.(p). (ii) Ifpissuchthat p[1 — Eay]/(1 — B,) > pll — Ea,]/(1 — B,),
2 < i< N, and (1) holds, then I1,(p) < 1,(p), where o, ¢’ are as in (i).
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Proor. Analogously to the proof of Theorem 1, Section 3, we show that for
any search rule ¢ such that ¢,(p) = & = 1 there is a rule ¢’ such that ¢,/(p) = 1
and 1,,(p) — 1,(p) Z pl — Eay)(1 — ) — py[1 — Eeyy](1 — B), from which
both (i) and (ii) follow. We indicate the appropriate changes in the proof of
the earlier Theorem 1.

Given {a;;} = {t;;}, it is easy to show that the probability of finding the object
under the sequence i,, - -+, i,_;, 1, i}, i,y -+ - minus the probability under the
sequence iy, -« -, iy_y, iy, 1, iy, + -+, given that the object is not found before
time k and the search does not terminate before k is

(2) Pl — )1 — Bi,} — pi(1 — L)l — Bi} -

This is the expression in the right-hand side of (2), Section 3, with 1 — g, for c,.
The probability that the object is not found and the search does not terminate
before stage k is

) (IL= 8:,) 2% pit T3 1, -
The posterior probabilities are in (3), Section 1. The remainder of the proof is
the same. []

We shall leave to the reader the task of restating Theorem 2, Section 3 for
the Sweat search problem, where ¢, is replaced by 1 — 8, and ¢, is replaced by
I,. The policy of interest for the Sweat problem is the following.

[

DEerFINITION 1. The Sweat search policy ¢ = (4,)7_, is defined by setting 4,(s,,)
equal to any action i such that

(4) Pl — E( msyin | 82)1/(1 — B5)
= maX,gcy Pi"[1 — E(@mayaa | $:)1/[(1 — B) s

where 5,€S,, n = 1.

THEOREM 3. Suppose that in the search problem with discounted reward for each
i the overlook random variables {a,;}5_, satisfy the S.M.C. of Section 2. Then the
Sweat search rule is optimal, i.e., I = I, on A",

Proor. Follows immediately from Theorem 1 of this section and the fact
that there is an optimal policy. [

5. Applications and examples. In this section we give several interesting ap-
plications and examples of the preceding theorems.

(a) Searching for a gold coin. Given are N boxes, each box i containing a
known number n;, > 0 of brass coins. A box is chosen at random, box i with
probability p;' > 0, and one brass coin is replaced with a gold one. A searcher,
who knows the initial vectors n = (n,, n,, - - -, ny) and p' must choose boxes
sequentially to search for the gold coin, paying a cost ¢, > 0 for each search of
box, i, 1 <i < N.

In a search of box i, the searcher withdraws a random number W of coins
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whose distribution depends only on the number of coins in the box and the index
i. For0 < w < m < n,, f(w|m) denotes the probability that a search of box i
will withdraw w coins when there are m coins in the box. It is assumed that
f0|m) < 1 for1 <m < n,and that 37_, fi(w|m) = 1,0 <w < m < n;. The
searcher knows {fy(w|m): 0 <w < m < n;,1 <i < N}. Furthermore, if the
gold coin is in box i and a search of box i withdraws w coins from the m coins
in the box, the probability that the gold coin is among those withdrawn is w/m.
Thus 1 — w/m is the overlook probability for that search. The searcher learns
the number of coins he withdraws at each stage. The problem is to minimize
the total expected cost for finding the gold coin.

We assume, for 0 < m < r < n,, that
(1) i fir—m|n>0 then XNn_,wfiw|m) < Siowfiw|r),

1<i<N.

From our definition of W, E(W|m) = Y, m_, wfy(w|m). Intuitively, (1) says that
the expected batch size E,(W|m) is nonincreasing in m as m decreases.

THEOREM 1. Suppose (1) holds whenever 0 < m < r < n,,1 <i < N. Thenan
optimal search rule in the gold coin search problem is: If m, is the present number
of coins in box I, 1 <1 < N and p is the present location vector for the gold coin,
search any box i which achieves p,E(W|m,)[c,m, = max,g,<y p, E(W|[m)[c,m,
where we include only those expressions for which m, > 0.

To prove the theorem, we note that if W,; is the random number of coins
withdrawn during the jth search of i, the distribution of {W,;} is determined by
the {fy(w|m)}, and the overlook random variables are determined by {W,;}.

From (1), the S.M.C. is satisfied, so the B.B.K. rule is optimal.

(b) The parametric adaptive search problem. In this example we treat the adap-
tive search problem wherein the overlook random variables for box i {a;;};_, are
i.i.d. given 0,, where 0, is a fixed, unknown parameter. Moreover, we assume
that prior to the beginning of the search nature chooses the parameters ¢,, - - -, 0y
independently from known prior distributions F,, - - -, Fy, respectively.

If ¢, ,(p') denotes the (conditional) expected cost using policy o starting at
state p' when 8 = (0,, - - -, 0,) is the true state of nature, Eg, ,(p') is the expected
cost using o, where @ has distribution ®X, F;. Since {a;;}7, arei.i.d. givend,,
by computing the conditional posterior distribution of 0, given a;, -+, &; m_s
we may find E(a;, | @, -+ 5 @; ). To give an example for this search problem
in which the S.M.C. holds, we restrict attention to a given box by dropping the
subscript i, and let 6 have the gamma density g(f) = (I'(a))7'6°0° "¢~ ""15,..,(6),
a > 0, b > 0. Denote this distribution by &(a, b). Given 6, let {a;}7_, bei.i.d.
with density fla|0) = 6a’"Ij, (), § > 0. Then for n > 1, the posterior dis-
tribution of  given a;, « -+, @, is L(a + n, b — 3 %_,log a;). Ifi=a+n—-1
and 8 = b — Y 2-iloga; are fixed, one can easily show that (i) E(1 — a,|a;, -+ -,
a,,) = E{(1 + p*U)7}, where Ue ¥4, 1), and that (ii) ¢(a,) = a,E(1 —
Uppr| @y -5 @) = a, E{(1 + (8 — log @,)”'W)™"} is monotone increasing in
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a, €[0, 1] provided b = 1, where W e &(4 + 1, 1). Since the quantity in (i) is
atleast (1), the S.M.C. is satisfied. Theorem 1 of Section 2 shows that ¢(p) < co.

(c) The adaptive search problem with Dirichlet processes as nonparametric priors.
In this section we assume that the overlook random variables {a,;}5, are i.i.d.
according to a probability measure P, on 227 = [0, 1] which is unknown to the
searcher. The measure P, is chosen and fixed at the beginning of the problem
by nature according to a Dirichlet process (cf. Ferguson [4], [5]) with parameter
2;, which the searcher does know. From Ferguson, 2, is a nonnull finite measure
on 77, and P, is a random probability measure such that for each kK > 1 and
every measurable partition {B,}}_, of .27, the random vector (P(B,), - - -, P(B,))
has a Dirichlet distribution with parameter (1,(B,), - - -, 4,(B,)); this is denoted
by P,e Z(2). We assume P, ..., P, are chosen independently and let
P:(Pv "”PN)’

If ¢, ,(p) denotes the (conditional) expected search cost using policy ¢ when
P is the true state of nature, ¢(p) = inf, E(¢p ,(P)). A similar expression holds
for the Sweat problem. Since {a,}5., are i.i.d. given P, we can compute
E(a;p| @y, ++ 5 a; m_y) if we can compute the conditional posterior distribution
of a Dirichlet process given a sample from P,. One of Ferguson’s main results
isthat Py ey, «+ ) @y my € D4 + 275 04,))s where d, is the probability measure
with mass one at x. We are interested in finding conditions on 4; such that the
S.M.C. is satisfied. We drop the subscript i and assume that A({1}) < 1, so that
the overlook will not be degenerate at 1.

Let w denote 2([0, 1]) and v = {j x di(x)/w denote the prior mean. If a sample
of size n is taken of the Dirichlet process P with observed values ¢,, - - -, 1,, the
posterior mean given f, -, ¢, is v(t;, - -+, t,) = {3 xd(A + 27 6,j)/(w + n) =
(wv + X7 t;)/(w + n). Thus for the S.M.C. to hold we need

(2 tall =+ X+ t)/(w +n+ DI 1 — (W + 23 85)/(w + 1)

for almost all ¢; € [0, 1] such that T3¢, > 0,1 <j<n+41, forall n=0,1,
2, ..-. We have the following theorem.

THEOREM 2. If (1 — v)w = 1, then the S.M.C. (2) holds. If1 is in the support
of A, then (2) holds if and only if (1 — v)w = 1.

Proor. The proof is elementary and left to the reader. J
Unfortunately, it is not always true that ¢(p') < oo, as simple examples show.

(d) An adaptive search problem for which the B.B.K. search rule is not optimal.
Here we give an interesting example of a parametric adaptive search problem
which does not satisfy the W.M.C. Set N =2 and ¢, = ¢, = 1. Let the pa-
rameter space for 6, be ©, = {6,°, 6,'} and let f| be the probability mass function
of F, with fi(6,°) = ¢, fi(6,)) =1 — ¢, where 0 < ¢ < 1 will be chosen later.
Let ,({3}10,°) =1 and g, ({1 — ¢}|6,) = 1. For box 2, let ©, = {6} and
#:({3}16,") = 1. Thus the searcher already knows the value 1 of the overlook
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random variable for box 2, and once he searches box 1 he learns the true value
of the overlook probability there, and the problem then becomes one with known
constant overlook probabilities.

We compute E(1 — a,;) = ¢(3/2 —¢) = 7. Choosee, (3 —74)/4 < e < (3 — 5%)/4,
so that ¢ is very close to (3 — 7%)/4. The W.M.C., 1 — Ea;, = a,,[1 — E(ay,|ay)]
a.s., fails to hold for @, = 1. Letp,! = 1/(29 4 1), p;! = 29/(29 + 1). Accord-
ing to the B.B.K. policy, the searcher may search either box 1 or box 2 first,
since p(1 — Eay;) = p (1 — a,). Let g” denote the version of the B.B.K. rule
which searches box 2 first and ¢’ be the rule which first searches box 1 and then
acts optimally. It is then strightforward to show ¢, ,.(p') < ¢, ,..(p"). It is easy
to see from the computations that by changing p,' slightly so that p,' < 1/(27 + 1)
but p;* close to 1/(2y + 1), the B.B.K. rule is no longer indifferent and must
choose box 2 to search first. Since g’ will still be a better rule, the B.B.K. rule
is not optimal. '

Acknowledgments. I wish to thank my advisor, Professor Thomas S. Ferguson,
for suggesting the original search problem that I worked on and for his guidance,
suggestions and constant encouragement while I was writing my Ph. D. disser-
tation. Many thanks go to the referee for suggesting the much shorter proof
of Theorem 1, Section 3, and his many invaluable comments.

REFERENCES

[1] BELLMAN, RICHARD (1957). Dynamic Programming. Princeton Univ. Press.

[2] Brack, WiLLiaM L. (1965). Discrete sequential search. Information and Control 8 159-162.

[3] BLACKWELL, DAVID (1962). Notes on dynamic programming. Unpublished notes. Univ.
of California, Berkeley.

[4] BLAckWELL, DavID (1965). Discounted dynamic programming. Ann. Math. Statist. 36
226-235.

[5] FErGUSON, THOMAs S. (1973). A Bayesian analysis of some nonparametric problems. Ann.
Statist. 1 209-230.

[6] FErGUsON, THOMAS S. (1974). Prior distributions on spaces of probability measures. Ann.
Statist. 2 615-629.

[71 HINDERER, K. (1970). Foundations of Nonstationary Dynamic Programming with Discrete Time
Parameter. Springer-Verlag, New York.

[8] KADANE, JosepH B. (1968). Discrete search and the Neyman-Pearson lemma. J. Math.
Anal. Appl. 22 156-171. ’

[9] Ross, SHELDON M. (1969). A problem in optimal search and stop. Operations Res. 17 984~
992.

[10] STrRAUCH, RALPH E. (1966). Negative dynamic programming. Ann. Math. Statist. 37 871~
889.
[11] SweAT, CALVIN W, (1970). Sequential search with discounted income, the discount a func-

tion of the cell searched. Ann. Math. Statist. 41 1446-1453.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF TEXAS AT AUSTIN
AUSTIN, TExAs 78712



