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RESOLVABILITY OF BLOCK DESIGNS

By SANPEI KAGEYAMA!
Osaka University

The concept of resolvability of a balanced incomplete block (BIB) de-
sign, introduced by Bose (1942), was generalized to p-resolvability of an
incomplete block design by Shrikhande and Raghavarao (1964). As a fur-
ther generalization of these, the concept of (s, p2, - -+, su)-resolvability is
here introduced for an incomplete block design. This concept may be
useful from both combinatorial and practical points of view. Furthermore,
some methods of constructing BIB designs with the generalized concept
are discussed with illustrations. One method is based on a finite geometry
over a Galois field.

1. Introduction and background. The concept of resolvability introduced by
Bose [2] was generalized to p-resolvability by Shrikhande and Raghavarao [12]
in a combinatorial sense. The concept of p-resolvability can be further gener-
alized to (g, pty, - - -, p,)-resolvability as follows.

DEFINITION. A block design is called (s, py, - - -, p,)-resolvable if the blocks
can be separated into ¢ sets of m, (= 2) blocks such that the set consisting of m,
blocks contains every treatment exactly g, (= 1) times, i.e., the set of m; blocks
forms a p,-replication set of each treatment (i = 1,2, ..., ). Furthermore,
when g, = p, = - .- = p, (= p, say), it is called p-resolvable for p > 1.

Note that this definition of y-resolvability corresponds to that of p-resolvability
introduced by Shrikhande and Raghavarao [12]. Then a l-resolvable block de-
sign is simply called resolvable in a sense of Bose [2].

Further, note that the existence of a (s, p, - - -, ,)-resolvable incomplete
block design with parameters v (number of treatments) and k (block size) im-
plies the existence of # incomplete block designs with parameters v* = m, (number
of treatments), b* = v (number of blocks), r* = k (replication of each treatment)
and k* = g, (block size), i = 1,2, ..., 1.

We now consider a BIB design with parameters v = 16, b = 40, r = 15,
k =6 and 2 = 5. This design is not resolvable since v (= 16) is not divisible
by k (= 6), but this design is (3, 6, 6)-resolvable since this design can be gen-
erated by the blocks [(0, 1, 3, 8,9, 11)(1, 2, 4,9, 10, 12)(2, 3, 5, 10, 11, 13)(3,
4,6, 11,12, 14)(4, 5,7, 12, 13, 15)(5, 6, 8, 13, 14, 0)(6, 7, 9, 14, 15, 1)(7, 8, 10,
15,0, 2)J[(0, 1, 3, 5,9, 12)(0, 1, 2, 3, 6, 12) mod 16]. This example shows the
practical usefulness of (y,, s, - - -, p,)-resolvable BIB designs.

As a practical application we can consider an experiment of comparing washing
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power of sixteen washes by means of the dishwashing test, quoting in part from
[4]. In this testing procedure, plates soiled with a standard soil are washed one
at a time until they are clean. Furthermore, six basins shall be used, i.e., six
washes are tested at the same time. The six operators wash at the same speed
during the test, and the “yield” reported is the number of plates washed before
the foam disappears. If we consider each set of six such concurrent trials as a
block, it is clear that variation between the blocks can be expected, due to some
factors. However, in order to make the number of such factors as less as pos-
sible, we would like to wash plates together according to kinds of a soil of plates,
for example, plates soiled by the meat, fish, oil, vegetable and so on, being a
kind of balancing in a combinatorial sense for this experiment. As an arrange-
ment with sixteen treatments in some blocks of six plots each satisfying those
requirements we may use the above BIB design. Then the meaning of this ex-
periment is as follows: For example, for plates soiled by the fish we test each
wash three times (i.e., we form a 3-replication set of each wash), and for plates
soiled by the meat we test each wash six times (i.e., we form a 6-replication
set) and so on. Thus, (g, f, - - -, #,)-resolvable BIB designs may be useful and
be utilized for a practical experiment.

For the combinatorial parameters v, b, rand k of a (g, pty, - - -, p,)-resolvable
incomplete block design we clearly have from definition

b= >t m,, r= >t p, vr=bk,

vy, = mk, bp, =mr, i=1,2,...,¢t.

Moreover, as inequalities to hold for these designs, it is known (cf. [6], [9]) that
for a p-resolvable BIB design with parameters v, b, r, k and 4, i.e., g =
Y, = -+ = p, = i, aninequality b = v 4+ ¢t — 1 holds. Now we can show that
for a (g, f - - -» po)-resolvable BIB design with parameters v, b = i_, m;, r =
>ii_, tt, k and 2 such that Iy’s (1 < [ < r) among wy, oy, - -+, p, are equal, an
inequality & > v 4+ [ — 1 holds. For, from assumption, let for example p, =
ty, = - =, (= p'¥, say) and N be the incidence matrix of the (z,, gy, - - -, p)-
resolvable BIB design. Then we have m, = m, = ... = m, (= m", say). In
each of [ sets of m® blocks (or columns) each in N, where a set of the m®
columns is such that each treatment occurs exactly ¥ times, adding the Ist,
2nd, ..., (mY — 1)th columns to the m'"’th column of a set, we obtain a column
consisting of ;' only. As there are such / sets evidently v = Rank N < b —
(! — 1). Therefore we have b = v + [ — 1. Finally, in this case note that if
there exists a divisibility between #® and g, (i =1+ 1, -+, 1), the inequality
b =wv 4 [ — 1 can be improved further.

The above definition of (g, p,, - - -, p,)-resolvability can also be applied to
that for a general block design which is balanced in a certain sense [8].

2. Construction. For constructions of p-resolvable BIB designs the reader
is referred to, for example, [5], [6], [11] and [12]. Here we mainly consider
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constructions of (s, ¢, - - -, p,)-resolvable BIB designs with b = Y¢_ m, and
r= 2t p in which g, % p; for some i, j (#)=1,2, -+, ¢.
First, some obvious results can be observed.

(i) The existence of a (y4,, pty, - - -, p,)-resolvable design implies the existence
ofan (m; — p, my — py, - -+, m, — p,)-resolvable design by the complementary
method, and vice versa.

(if) If there exists a p (= I)-resolvable BIB design with more than two p-
replication sets, then grouping of some yp-replication sets in the design leads to
a (pipt, patts -+ -, ppp)-resolvable BIB design for some positive integers p;,
i=1,2,...,0(Z0).

(iii) If there are (p,', ", - -, p¥)-resolvable BIB designs (i = 1, 2) with
common parameters v and k, then a form of juxtaposition of incidence matrices
of the designs leads to a (g, V', ", - -+, s iy '™y e, pY)-resolvable BIB
design.

(iv) If there are BIB designs with parameters v, k, b,, r, and 2, (i =
1,2, ...,1), then there exists an (r, r,, - - -, r,)-resolvable BIB design with pa-
rameters v, k, b = Yt b, r= > r,and 2 = >, A,

(v) If there are m-associate PBIB designs with parameters v, k, 6%, r'®, 2,0,
Jj=12,---,m(i=1,2,...,1) based on the same association scheme such that

2ii-1 4, = constant (= 4, say), forall j=1,2, ..., m,

then there exists an (r™, r®, ..., r).resolvable BIB design with parameters
Vok,b=>1_b", r= ¢t r'and 2 = PN~ j(i).

Examples of observations (i), (ii), (iii) and (iv) can be easily given. The fol-
lowing two examples illustrate observation (v).

ExampLE 1. If there exists a PBIB design with incidence matrix N and param-
etersv = mn, b,r, k = n, 2, = 0, 4, = 1, based on an N, type association scheme
of v = mn treatments (m groups of n treatments), then juxtaposition [N: I,, ® E, ]
isan (r, 1)-resolvable BIB design with parametersv’ = v, k' = k =n,b' = b 4 m,
r"=r+1and 2 =1, where E,,, is an n X | matrix with elements all unity
and /,, ® E,,, is the Kronecker product of the unit matrix I, of order m and
E,.,. Some of 2-associate PBIB designs of this type can be found in [3]. Fur-
thermore, if N is (g, pty, - - -, p)-resolvable, then [N: I, ® E,.,] is (1, ftar - - -
., 1)-resolvable. ‘

ExampLE 2. Consider triangular type PBIB designs with parameters v = 10,
k=6,b=5r=324=2,24=1v=10, k=6, b=10, r =6, 1, = 3,
2y =4, n, =6, n, = 3 [3]. Then there exists a (3, 6)-resolvable BIB design with
parameters v — 10, k = 6, b =15, r =9 and 1 = 5.

From Theorems 2.2 and 2.3 in [6] we respectively have

(vi) Let N, be a BIB design with parameters v,, b,, r,, k,, 1, and N/ =
(m/,n/, ..., mj ), where n,n/ =r, (i =j) or 2, (i # j), N/ is the transpose of
an incidence matrix N,. Let N, be a (¢, g5, - - -, ,)-resolvable BIB design with
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parameters v,, b, = f_,m,, r, = D1t py, ky = v, 4,. Substitute v, distinct row
vectors n,(1 X b,) in place of v, distinct units and 0(1 x b,) in place of v, — v,
distinct O (zero) in every block of an incidence matrix N,. Then the resulting
matrix is an (ry gy, rypy, -« - -, 1y g1,)-resolvable BIB design with parameters v = v,,
b = b1b2, r = rr,, k = k1 and 1 = 2122.

(vii) If Nyisa(m, py, - - -, p)-resolvable BIB design with parameters v,, b, =

fo1 My 1y = 3300 pys ko, 4, satisfying b, = 4(r, — 2,), and N, is a BIBdesign with
parameters v,, b,, r,, k,, 4, satisfying b, = 4(r, — 2,), then N = N,® N, + N,* ® N,*
isan (ay, a,, - - -, a,)-resolvable BIB design with parameters v = v,v,, b = b, b,,
r=mnr 4 (b, —r)(b, — 1), k=kk,+ (v, — k)v, — k), A=r—b/4, a,=
pily + (m; — p)(b, —ry), i = 1,2, ..., ¢, where N;* is the complement of a
BIB design N; (j = 1,2) and A® B = ||a,; B|| denotes the Kronecker product
of matrices 4 = ||a,;|| and B.

(viii) From Takeuchi’s table [13] which gives all possible combinations of
BIB designs with v < 100 and r < 20 and of symmetric BIB designs with v <
100 and r < 30 and difference sets generating them, it is clear that if difference
sets listed in the table do not include the symbols oo and 4, B, C (fixed varieties)
which remain unaltered in the developed blocks, then a BIB design generated
by the difference set is (y;, gy, - - -, p,)-resolvable. For example, a BIB design
with parameters v = 9, k =4, b = 18, r = 8 and 1 = 3, generated by (0, 1, 2,
4)(0, 3,4, 7) mod 9, is 4-resolvable. As mentioned in Section 1, a BIB design
with parameters v = 16, k = 6, b =40, r = 15 and 1 = 5, generated by (0, 1,
3,8,9, 11)PC (8)(0, 1, 3, 5, 9, 12)(0, 1, 2, 3, 6, 12) mod 16, is (3, 6, 6)-resolvable
which is not resolvable, where symbol PC(f) stands for a partial cycle of 0, i.e.,
by adding successively 1, 2, ..., # — 1tothe integers of the block, other blocks
are obtained.

Observation (viii) may show the possibility of constructing a (z;, #,, - - -, p,)-
resolvable BIB design by the method of differences. One example of this ap-
proach will be discussed hereinafter.

A finite projective /-dimensional geometry over a Galois field GF (g), where
g is a prime or a prime power, is denoted by PG (z, g). It is known that a BIB
design with parameters v = ¢(1, 0, q), b = ¢(1,d,q), r = ¢(t — 1,d — 1, g),
k = ¢(d,0,q), 2 = ¢(t — 2,d — 2, g) is obtained by choosing the points as treat-
ments and all d-dimensional linear subspaces (d-flats) as blocks from PG (, ¢),
where g(1,d, ) = (¢ — 1)(g" — 1) - - (¢ — D)J(g"*' — 1)(g* — 1) .-+ (g — 1)
is the number of d-flats in PG (¢, q) [1]. The design so obtained is denoted by
PG (¢, q): d. Furthermore, a p-fold spread S is defined as a collection of d-flats
in PG(1, g) such that each point of PG (z, ¢) occurs in exactly y d-flats of S [10].
Then we obviously have

LEmMA 1. A BIB design PG (t, q): d is (pty, pty, - - -, p,)-resolvable if and only if
all the d-flats in PG (t, g) are decomposed into ldisjoint p-fold spreads, i = 1,2, ...,1,

Concerning conditions for the existence of spreads, we have
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LemMA 2 (cf. [10], [14]). Whent + 1 andd + 1 have i + 1 as a common factor,
a p-fold spread of d-flats in PG (t, q) exists, where p = ¢(d, 0, q)/$(i, 0, q) which
assumes the unity when ¢(d, 0, q) divides ¢(t, 0, q).

Lemma 2 shows that when # + 1 and d + 1 have i + 1 as a common factor,
PG (1, q): d is a (g, r — p)-resolvable BIB design with r = ¢(r — 1,d — 1, gq)
and # = ¢(d, 0, q)/4(i, 0, g), which is not resolvable provided i = d.

LeEMMA 3. A necessary condition for the existence of a p-fold spread of d-flats
in PG (¢, q) is that p is a multiple of an integer (q*** — 1)/(q° — 1), where
g=(¢+ 1,d+ 1).

Proor. If a p-fold spread exists, then we have vy = xk (x being the number
of d-flats of the p-fold spread). Since x is integral, we obtain vy = 0 (mod k).
Now, g = (t+ 1,d + 1) implies t + 1 = 1,9, d + 1 =d,g and (1,,d)) = 1.
Since (¢ — 1,¢% — 1) =¢* — 1, we have (1 4 ¢7 4 .- 4 ¢*47V, 1 +
¢+ - g =1, ie, (0,,0,) =1, 6, = (¢ — 1)/(¢° — 1) and 6, =
(¢*** — 1)/(¢° — 1). Furthermore, from v/k = 6,/6,and vy = 0 (mod k), we get
0,p = 0 (mod 6,), which leads to = 0 (mod 6,) by (6,,0,) = 1. Hence p is a
multiple of 6, = (¢*** — 1)/(¢° — 1).

Note that when (¢ + 1,d + 1) = 1, there does not exist an [-fold spread of
d-flats in PG (¢, q) for 1 <1 < k = ¢(d, 0, g). Further, note that ¢ = ¢(d, 0,
9)/9(i, 0, g) in Lemma 2 is a multiple of 8, = (¢*** — 1)/(¢* — 1).

Lemmas 2 and 3 imply the existence of many g-fold spreads of d-flats in
PG (¢, g). Thus, some (g, pty, - - -, p,)-resolvable BIB designs PG (¢, g): d can
be obtained by use of the concept of a p-fold spread.

It is well known that starting with a given d-flat (which is called an initial d-
flat in PG (¢, ¢)) represented by a set of integers, we can generate other d-flats
by adding successively integers 1,2, ... to each element of the d-flat and re-
ducing the integers mod v (= ¢(¢, 0, ¢)). However, not all d-flats so generated
may be distinct. Now, the smallest integer ¢ such that at the f-stage the initial
d-flat is reproduced is called the cycle of the initial d-flat. We call the minimum
value of # the minimum cycle (m.c.) of the initial d-flat. The maximum value
of 4 is clearly v. Then it is obvious (cf. [10]) that all the d-flats of PG (¢, ¢) can
be generated cyclically from a set of initial d-flats which may be of different
cycles. As a more explicit form of this fact we have

Lemma 4 (cf. [14]). (1) If (¢t 4+ 1,d + 1) = 1, then all d-flats in PG (¢, q) have
the m.c. v and can be generated from $(t, d, q)/v initial d-flats. (2) If (t + 1,
d+ 1) = ppy2 -« p*t(> 1, p’s are primes such that p, < p,..), then the number
of different m.c. is [[!_; (1 + a,). Let

Oxi 5y s 1] = (g% = Df(gn™nt — 1),
1xy, x50 -+ x] = (r + 1)/([71Z1 ept) =1,
d[xp Xgy + 00 xl] = (d + 1)/(P1x1 e Plxl) -1 ’

z. xr
m[xl’ Xgy * vy xl] — qu 1eep) L
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Then the numbers of d-flats having the cycle 0[x,, - - -, x,] and m.c. O[x,, - -, X1
are respectively

n(Xy, -, X)) = @(tfxy, -, xlsdlx, oo, ], mlx, -0, X)),

n*(al, ey, al) — n(al, ceey a'l) R
Ry, e, X)) = n(Xy, e, x;) — szsujs“j;ij”‘jqj n*(Yis o5 Y1) -
The number of initial d-flats of any m.c. 0[x,, - - -, x,] isn*(x,, « - -, x)[0[xy, - -+, x,],

from which the totality of d-flats having the m.c. 0[x,, - - -, X,] can be generated.
From Lemmas 1, 2, 3 and 4 and grouping of some spreads we have

THEOREM. Design PG (1, 9): d is a (py, ptyy - - -, p1,)-resolvable BIB design with
parameters v = ¢(1, 0, q), b = ¢(t,d, q), r = ¢(t — 1,d — 1, 9), k = ¢, 0, q),
A=t —2,d — 2, q) for some p,, pty, -+, .

CoROLLARY. When (14 1,d 4 1) =1, PG (t,q):d is a (g ftar -, m)-
resolvable BIB design with p, = p, = - =y, = k = 0,0, q) and | = ¢(t,d,
9)/$(t, 0, q) which is not resolvable.

The corollary and observation (ii) yield many (s, pty, - - -, p,,)-resolvable BIB
designs with I < [ and g, # g, for some i, ().

ExampLe 3. PG (3,3): lisa (1,4, 4, 4)-resolvable BIB design with parame-
ters v =40, b =130, r = 13, k =4 and 1 =1 having a solution (0, 10, 20,
30) PC (10)(0, 1, 26, 32)(0, 7, 19, 36)(0, 3, 16, 38) mod 40 [13].

ExampLE 4. PG (5,9): 3 is a (s, fty, - - -, p)-resolvable BIB design with pa-
rameters v = (¢° — 1)/(g — 1), b = (¢° — 1)(¢* — D/(¢* — 1)(g — 1), r = (¢° —
D(g' = Dg* = g — 1), k=(g'— g — 1), 2= (g" — (@ — D/(g" —
I)(g — 1) and g, = (¢* — Df(g—1or(g?+1),i=1,2, ..., 1 since 3-flats in
PG (5, 9) have the cycles [1] = (¢° — 1)/(¢* — 1) and 6[0] = (¢° — 1)/(g — 1).
This design is not resolvable.

For a finite affine ¢-dimensional geometry over a Galois field we may also
have an argument similar to that of PG (s, ¢), since a BIB design can be obtained
by choosing the points as treatments and all d-flats as blocks from a finite affine
geometry.

Thus, combining some results described here yields the many of (u;, py - - -,
t)-resolvable BIB designs. For (g, gy, - -, 1,)-resolvable PBIB designs we may
have an argument similar to that of BIB designs. However, it is omitted here.

Finally, as an interesting example of a (s, pty, - - -, p,)-resolvable incomplete
block design, we have the following: Let A, A4,, ---, 4, be the association
matrices of an m-class association scheme with parameters v, n;, p, i, j, k =
0,1, .-.,m;and i, i, - - -, i, be distinct integers such that i, {0, 1, - .-, m} for
I=1,2,...,1(<m). Then N = [, A, ---14,]is an (Rops My = vy 1y )=
resolvable incomplete block design. The case where this design N becomes a
BIB design or a PBIB design can be seen in [7].
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