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AN IMPROVED ESTIMATOR OF THE GENERALIZED VARIANCE

By R. W. SHORROCK AND J. V. ZIDEK
Université de Montréal and University of British Columbia

A multivariate extension is made of Stein’s result (1964) on the estima-
tion of the normal variance. Here the generalized variance |Z| is being
estimated from a Wishart random matrix S: p X p ~ W(n, £) and an inde-
pendent normal random matrix X: p X k ~ N(§, Z® 1) with £ unknown.
The main result is that the minimax, best affine equivariant estimator
((n 42— p)/(n+ 2)H|S| is dominated by min {((n + 2 — p)!/(n + 2)!)|S],
(n+k+2—pYn+k+2)HS + XX’|]}. It is obtained by a variant of
Stein’s method which exploits zonal polynomials.

1. Introduction and summary. Consider a multivariate normal linear model
in canonical form. A minimal sufficient statistic is (X, S) where X is a normally
distributed p X k matrix with independent columns X, ~ N(§,, Z), Sisa p X p
Wishart matrix with n degrees of freedom with ES = nZ, and X and S are in-
dependent. We assume that X is known to be positive definite (so |Z| > 0).

Consider the problem of estimating the determinant |X| of £ with the quadratic
loss function

(1.1) L{g(X, S); Z, &} = |Z|7p(X, S) — |Z|}*.
Similar results will obtain for the fairly large class of “bowl-shaped” loss func-

tions introduced in Brown (1968).
The problem is invariant under the transformations:

(1.2) X AX L B, S— ASA,
£ AE+ B, £ AZA,

where A4 is any nonsingular p X p matrix and Bis any p X k matrix. Estimators
equivariant under this affine group satisfy

P(AX + B, ASA') = |A]'$(X, S)

and have the form ¢(S) = c|S| where c is a constant. Such estimators have con-
stant risk (expected loss) which is minimized by taking ¢ = (n — p + 2)!/(n 4 2)!.
We thus obtain the best affine equivariant estimator, c|S|, which Selliah (1964)
shows is minimax relative to the class of all estimators that depend on S alone.
We do not know whether c|S| is admissible relative to this class but Stein (1964)
shows, for the case p = 1 (|Z] = ¢7), that ¢|S] is not admissible relative to the
class of all estimators based on the sufficient statistic (X, S) and he exhibits a
better estimator that uses X as well as S.
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In Section 3 the counterpart of Stein’s result for general p is obtained by
showing that the estimator

(1.3)  $(X,S) = min {(” t2-plg, ttk+2—ptig, XX’|}

(n + 2)! (n+ k + 2!
has uniformly smaller risk than c|S|. The case k = 1 is presented in Section 2
because the argument is much simpler.

2. A superior alternative to c|S|—one unknown mean. For the case k = 1 of
the problem stated in Section 1, |Z| is to be estimated (with loss given by equa-
tion (1.1)) from (X, §), where X and S are independent, X ~ N(§, X), and S ~
W,(n, Z). Among estimators equivariant for the action of the affine group dis-
played in equation (1.2), Selliah’s solution c|S| was seen to be best.

It is shown below that a superior alternative to ¢|S| can be found by searching
in a larger class than the affine-equivariant estimators. In creating a larger class
in which to search, we are guided by the concluding remarks in Stein (1964)
and, in fact, the class we create will be a p-variate analogue of that of Stein for
p = 1. Given a problem invariant under a large group G for which a best equi-
variant estimator exists, Stein suggests seeking a better estimator by looking
among estimators equivariant under a nonnormal subgroup H.

We implement Stein’s suggestion by considering estimators which are equi-
variant with respect to the subgroup H (of the affine group) whose action is
described by

2.1 X AX, S ASA
£ AX, I AZA

where A is any nonsingular p X p real matrix. The equivariant estimators are
defined as those functions ¢ satisfying

(2.2) G(AX, ASA) = |A]P(X, S) ,
for all p X p nonsingular real matrices 4. A standard argument shows that
$(X, S) is equivariant = ¢(X, S) = ¢(X'S7'X)|S + XX'| for some function ¢.

To facilitate the derivation of the required distribution theory write
(2.3) X =AU, £ = Af,

S = AWA, Z = AlA4A

where U =~ N(§,, 1) and W ~ W (n, 1), and &/ = (2}, 0, ..., 0). Then the risk
function of any equivariant estimator ¢(X, §) = ¢(X'S7'X)|S + XX'| takes the
form
2.4 Ry(2) = E{(T)|W + UU'| — 1f
where T'= U'W-'U. Let 0 be a random orthogonal matrix such that U = 0U =

I10]|(1, 0, - -+, 0), and set W = OW0’. Then ||U|| and W are independent with
|0]]? = X,”*(A) and W ~ W(n, 1) and T = U'W-'U = U'"W-U, i.e.

(2.5) T = ||O|)(Wy, — Wy Wi W,),
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and |W + UU'| = |W + O0'| = (1 4+ T)|W| = (1 + T)(W,, — Wy Wt Wy)| W,
where W is partitioned as

(2.6) W — |:V:V11 VI:/H]
W21 sz

and W, isa 1 x 1 matrix. Then standard distribution theory says

u= U] = 2
(2'7) V= Wu — Wy W2_21W21 = Xzz-—p+1 s and
w = IW22| ~ 1125 i

where « follows a Poisson law with Er = 4/2 and the y* random variables above
are all conditionally independent given . Writing
(2.8) R,(2) = E*E™R{p(ulv)(u + v)w — 1}
it may be seen that the inner conditional expectation is minimized by taking
¢ = ¢, where
(2.9) $u(ufv) = (n — p+ H(n + 2)! (n + 3 + 21)]

< (n—p+ IY(n+ 3!
It follows that for any estimator of the form ¢(X, S) = ¢(X'S'X)|S + XX'|, the
estimator ¢*(X, §) = min {¢(X, S), (n — p + 3)! |S + XX'|/(n 4 3)!} is as good

as ¢ and strictly better than ¢ unless ¢ = ¢* with probability one. For Selliah’s
estimator c|S| a strictly better estimator is thus

. — 2)! (n—p -+ 3) ,
2.10 “(X, S :mm{.(’i~P+ s, (n=r s+ xx}.
(210)  §(X, ) 1S RIS - X
3. Asuperior alternative to c|S|—the general case. We proceed as in Section

2 and first derive a class of equivariant estimators in which to search for an
alternative to c|S|.

In Section 1 ¢|S| is derived as the best affine-equivariant estimator. However,
in order to follow Stein’s suggestion in the general case we have found it con-
venient to choose a larger group, with respect to which ¢|S] is also best equi-
variant, and then choose a subgroup of that larger group. To be precise, the
problem outlined in Section 1, where /

(3.1) X~NEZRL), S~W,nZI),
X and S are independent,
L(¢; Z,6) = |Z]7%(¢ — |Z)*, n=p,
is invariant under the direct product & of an affine group on the sample space
of X and the orthogonal group on R* which acts on the problem as follows:
(3.2) X (AX + B0, S ASA’,
§ — (4§ + B)0', X AXA,
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where A is nonsingular p X p, 0 is orthogonal k X k and Bisany p X k matrix.
The subgroup 57" of & obtained by setting B = 0 in (3.2) is a nonnormal sub-
group of Z.

The groups & and 57 are p-variate analogues of those considered by Stein
(1964) and by analogy we consider estimators ¢(X, S) of |Z| that satisfy

(3.3) P(AXV', ASA') = |AP'p(X, S)

forall X, S, 4, 0. Setting 4 = 1 we see that ¢(X0, S) = ¢(X, S) for all orthogo-
nal 0 so that ¢(X, S) = ¢(XX’, S) depends on X only through XX’. Also,

$(AX, ASA') = |APP(X, S) = J(AXX'A', ASA') = |APH(XX", S)

and by choosing A4 such that A(S + XX")4’ = 1 and AXX’A' = T where T isa
diagonal matrix with nonnegative diagonal elements t, > 7, > ... > t, we con-
clude that

P(X, S) = $(XX', S)
= (T, 1 — T)|S + XX/|
= ¢(T)IS + XX'|;

conversely, every estimator of this form is SZZequivariant as is easily seen.

We remark that the diagonal elements of T are the roots of the determinantal
equation | XX" — #(§ 4 XX")| = 0 and the preceding argument essentially shows
that 7' is a maximal invariant for the operation of 5 on the space of (X, S).
Also, since the ratio of any two nonzero functions ¢ and ¢, satisfying (3.3) is
constant on orbits of 5% and so is a function of T alone, we always have
P(X, S) = ¢(T)Po(X, S) for some function ¢,. The choice ¢,(X, S) = | + XX'|
to represent the class of S#~equivariant estimators seems most convenient for
our analysis.

Since we are restricting our considerations to the class of S#equivariant esti-
mators, we need only compare the risk functions of such estimators and in-
variance allows us to reduce the problem as follows. Write

(3.4) S=AWA, = A4
X = AU0 , £ = AE,0
where §,§ = A is a diagonal matrix with diagonal elements 4, > 2, > ... >

2, = the roots of the determinantal equations
6§ — 2Z]| = 0= |6, — 21| =0.

Then A is a maximal invariant for the operation of 57 on the parameter space
and for any JZ~equivariant estimator ¢(X, S) = ¢(T)|S + XX’| we have
(3.5) Ry(Z, §) = E{¢(X, S) — |Z[}Z|?

= E{¢(T)|W 4+ UU'| — 1}* = R,(A),

where T is a diagonal matrix with diagonal elements = the roots of the equation
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|UU" — ((UU’ + W)| = 0 and
(3.6) W~W,(n1,), U~NE&,1,®1,), and A =§%&/ .

The problem of comparing S#-equivariant estimators ¢(X, S) of |Z| on the basis
of their risk functions R,(Z, ) is thus equivalent to comparing functions ¢(T)
on the basis of R,(A).

We shall show, by a multidimensional analogue of the device of conditioning
on an auxiliary Poisson variable x used in Section 2 for one unknown mean,
that for any ¢, ¢* defined by

37 ¢*(T) = min {¢(T), $(T))
satisfies R;(A) < R,(A) for all A, the inequality being strict provided ¢*(T) +
¢(T) with positive probability.

Let V' be a diagonal matrix with diagonal elements — the latent roots of
W + UU’. Then from (3.5) we have

Ry(A) = E{p(D)IV| — 1)°
for any ¢. To express R, in a convenient form we first derive a representation
for the noncentral (A = 0) law of (T, V) as a mixture of central (i.e., parameter
free) laws. Following James (1964) we let £ = {k;, = £, = --- = «,} range over

all ordered sequences of p nonnegative integers and consider the zonal polyno-
mials C () normalized so that for all k =0, 1, 2, ...

(3-8) (tr Q)F = Ziiiei=r C(Q)
llg]| = 2P ks, tr = trace.

The C, () are homogeneous symmetric polynomials in the latent roots of the
p X p matrix Q and have the property, essential for our main result, of being
nonnegative on the space of nonnegative definite matrices [see James (1968)].

Let L = L(T, V) be any (measurable) functionof T = T(U, W), V = V(U, W),
and let E* denote expectation assuming (3.6) with E° in the special case A = 0 <
§, = 0. Then L, as a function of (U, W) is invariant under the transformations

U—0Ub, w—owo
where 0 is p X p orthogonal and Oisk x k orthogonal, and we have
EML = exp(—3 tr A)E*{L exp(tr £/U)}
(3.9) = exp(—4tr A) Y, E{LC (A - UU)}a,

o CL(A) ELC,(UUY)
= (=3t ) LTl e, o)

where a, is a coefficient whose precise form may be found in James (1964).
The first equality follows at once from the forms of the central (¢, = 0) and
noncentral (£, # 0) densities of U. The second follows from the invariance of
L by lettmg U — U0 and integrating with respect to the invariant probability
measure 4 on the group of k X k orthogonal matrices 0, using the formula
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[James (1964)]
(3.10) { exp{tr &'U0} dA(0) = X1, a, C.(£6'UU) .
The third equality follows by letting W — 0W0’ and U — OU and using the for-
mula [James (1964)]
(3.11) § C.(Q,00,0") d2(0) = C,(Q)C,(Q)/C.(1,),
where 4 is the invariant probability measure on the group of p X p orthogonal
matrices, together with the relation
(3.12) ECUY') = Cu(1,)/(al €]
which follows by comparing equations (24) and (27) in James (1964).
Equation (3.9) is a representation of the noncentral law of (T, V') as a mixture

but is inconvenient because of the presence of UU’. To obtain a representation
directly in terms of (T, V) we first observe that if we make the transformation

(3.13) U= W+ UU)U, U= W0

W=Ww4+ UU W = Wil — UU")tW?
then U and W are independent when &, = 0, and W ~ W, (n + k, 1,). This can
be seen by checking that the joint density of (U, W) factors into the W,(n+k, 1,)
density over the space {W: W = 0} and a density of the form c|1 — UU"|n-»-D
with respect to Lebesgue measure on the space {U 10 uU <1 ,}; the Jacobian
a(U, W)[a(U, V) is seen to be ||t by considering the sequence of mappings
(3.14) [U]_»[ v ]HDW*“UU'“U],

w w4 UU’ W + uuv’

the first of which has Jacobian = 1.

Since the diagonal elements of T are the latent roots of the matrix UU’ and
the diagonal elements of ¥ are the roots of W, we see that T and V are also
independent when &, = 0 and that L = L(T, V) can also be thought of as a
function of (U, W) that is invariant under maps W — OW0’ where 0 is p X p
orthogonal. Such maps also leave the law of W invariant, so we can write,
using equation (3.11)

E{LC(UU')} = E{LC (W*UU' Wt))

(3.15) = E{LC(UU'W)} = E{LC(UU'0OW0')}

= E{LC(UU")C(W)}/CL(1,)

= ELC(T)C()/C.(1,),
where 0 is a random orthogonal p x p matrix distributed according to the in-
variant probability measure 2 of equation (3.11) and independent of (U, ).
From equations (3.9) and (3.15) (and in particular, with (3.15) applied to the
case L = 1), and from the independence of T and V when £, = 0, we have
EY(L(T, V)C(T)C (V)

E(C(T)EY(C,(V))
m{k} = exp (= tr A)C,(FA)/||]]! .

(3.16) EML(T, V)} = ¥, n{r) , where
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Using equation (3.8) it is easy to show that 3}, 7{x} = 1 where the summation
is over all ordered sequences £ = {r, = --- = «,}. This, together with the fact
that Q > 0 = C,(Q) = 0, allows us to describe the noncentral law of (T, V) as
follows: T and V are conditionally independent given £ with

(3.17) ESL(T)} = E{L(T)C(T)}/E{CL(T)},
ESL(V)} = EX{L(V)C(V)}E{C(V)} 5

here E° denotes expectation with respect to the corresponding central law when
§&,=0—= A =0=r=0. The law 7 of £ can be thought of as a random par-
titioning of a Poisson variable ||¢|| into p parts {s, = --- = «,}; it follows easily
from equation (3.8) that ||¢|| follows a Poisson law with E{||x||} = & tr A.

We are now able to imitate the method of Section 2, using « as the analogue
of the Poisson variable used there. Writing

(3.18) Ry(8) = E@(T)|V| — 13
= EE=D{g(N)|V] = 1F,

we see that the inner conditional expectation is minimized by taking ¢ = ¢,
where

9. = E=T{|V/EDV]
(3-19) = E{[VI}/E-{|V]}

= E[VIC(V)YEVICV)} -

The second equality follows from conditional independence of ¥ and T given
&, and the third from equation (3.17). Now we can express the expectations
occurring in the last line of equation (3.19) in terms of expectations of the form
E{C(S)} where S has central Wishart laws W (n+k+2,1,) and W (n+k+4,1,)
for the numerator and denominator respectively. Then a simple calculation
using equation (3.12) and the known form of the normalizing constants for the
central Wishart densities yields

e =T+ k + 3 —i 4 £)7"
(3.20) SIIa(m4k+3 -0
=¢y=Mm+k+2—p)/n+k42)!.

We thus conclude that for any ¢, if we define ¢*(T) = min {¢(T), ¢,}, then
R%*(A) < Ry(A) for all A and the inequality is strict provided ¢*(T) = ¢(T)
with positive probability. In terms of the original problem this says that for
any estimator ¢(X, S) = ¢(T)|S + XX’|, the estimator ¢*(X, S) = ¢*(T)|S + XX'|
satisfies
(3.21) E©R{G(X, ) — 2} = EC{g(X, ) — 2|}
for all (§, 2) and the inequality is strict as long as ¢*(X, S) # ¢(X, S) with posi-
tive probability.

For the special case ¢(X, S) = c|S| we have ¢(T) = ¢|S|/|S + XX’|, and the
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improved estimator is

$*(X, S) = min{ <|S| g ¢0} IS + XX'|

IS + XX’
(3.22) = min {c|S], ¢S + XX'|}
— min{(n +2—p)! S|, (n+k+2—p! IS + XXIl} )

(n + 2)! (n+ k 4+ 2)!
In this case ¢*(X, S) # ¢(X, S) = ¢|S|/|S 4+ XX'| > ¢y = |T| > ¢,/c and this
occurs with positive probability because ¢,/c < 1. So the estimator in equation
(3.22) has expected squared error strictly smaller than has c|S| for all parameter
values. It is the minimum of two Selliah estimators, ¢,|S 4 XX’| being the
analogue of ¢|S| when § = EX = 0, and it chooses ¢|S| or ¢,|S + XX’| on the
basis of a preliminary likelihood ratio test of the hypothesis & = 0, with |T) as
the test criterion. Intuitively we expect ¢,|S 4- XX’| to overestimate |Z| when
& #+ 0 and so prefer c|S|, unless the ‘“overestimator” actually gives a smaller
value so does not appear to be overestimating in our sample.

4. Discussion. The work in Section 3 generalizes the result of Stein (1964)
which treats the case p = 1 < estimating the error variance ¢ in a univariate
linear model with normal errors. For this problem Brewster (1972) [see also
Brewster and Zidek (1974)] has produced a smooth formal Bayes estimator of
o’ that is, like Stein’s, uniformly better than the usual estimator, and unlike
Stein’s, is for k = 1 admissible among all scale-invariant estimators. In Section 2
the case k = 1 (but general p) of estimating |Z| was reduced to a problem that
is formally almost identical to that treated by Stein and by Brewster.

The works cited above and the present paper all use a technical device of
conditioning which can be described as follows. The parametric statistical prob-
lem {P,: 0 €0}, may be visualized as a Markov transition ©® — .2 from the
parameter space O to the space of a sufficient statistic X. We then factor this
transition through a third space .77, thereby obtaining the two stage Markov
representation ©® — 7 — 2, § - — X. Given a loss function L, the risk
function of a nonrandomized decision rule ¢ can be written

R,(0) = E’ETL(¢(X), X, 6)

and the symmetries of the problem may then allow us to find a function
L(¢(X), X, 7) such that

R,(0) = E°E*L(¢(X), X, 7)

for all estimators ¢ under consideration. The original problem is thereby rep-
resented as a mixture of inference problems based on .9~ — 2°with .~ as pa-
rameter space and loss function £, and for these problems (7~ — .2, L) it may
be easier to see what is a good procedure. In particular it is seen that a given pro-
cedure is definitely unreasonable when viewed as a procedure for (9~ — 2, L).

The work in Section 2 fits into this framework with .9 = the space of the
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hypothetical Poisson variable £. The argument essentially says that the estimator
c|S|, when viewed in terms of the dilated problem 4 — x — X'S-1X, produces
an estimator of # which with positive probability lies outside the convex hull of
the space {0, 1,2, ...} of x. An analogous interpretation holds in the k-means
case treated in Section 3.

Another problem that can be viewed in this way is that of estimating a mul-
tivariate normal mean with quadratic loss. Suppose x ~ N, (€, 1) where p > 3
and we seek estimators of the form ¢(x) = ¢(||x|*)x where ¢ is a real-valued
function, with loss function L(¢, §) = ||¢p — £||>. Then, setting 2 = ||¢||* and
taking x ~ Py(4/2) so that ||x||? ~ X3 10> We have

Ry(2) = E*|[g(l|xI[)x — €

= E{P(IXIP) X — 28 xp(IIxI[*) + [1€]7)

= BAE{X(|IXIP)Ix|[* — xd(lxI[) + 24)

= EAEL(g(||xIP), ||, ) -
The third equality follows from the relation

E{&"xd(|x[[)} = E{2ep(|IXI)} »

which is proved in James and Stein (1960) and can also be seen from the formula

EQeYE((||xI1)x} = E{eg(|x][)}
which can be proved using essentially the method Baranchik (1973) used for the
special case ¢(||x|*) = 1/||x||*. Define ¢(r) = t'¢(¢) and

' 2p — 207 | 26(p— 2)
Lig. 2r) = —2—|—2/c+p—2+2/c‘

Then a straightforward calculation shows
EL{¢(T), 2c} = E-L{g(||x|]*), ||x|]% «}

where T'~ 42 ,,,,andk =0, 1,2, .... The original problem is thus equivalent
to a mixture of problems of estlmatmg 2k from T ~ »3_,,, with quadratic loss
L. If we choose ¢(T) = T we get ¢(x) = x, the usual estimator, but if we choose
#(T) = (T — (p — 2)}*, we get the James—Stein (1960) estimator

g = {1 —2=2)"

[l

The usual estimator (x) = x = ¢(T) = T is evidently inadmissible because T
can substantially overestimate 2x: ET' = p — 2 + 2, and the James—Stein esti-
mator seems to be a natural improvement.
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