AN IMPROVED ESTIMATOR OF THE GENERALIZED VARIANCE

BY R. W. SHORROCK AND J. V. ZIDEK

Université de Montréal and University of British Columbia

A multivariate extension is made of Stein's result (1964) on the estimation of the normal variance. Here the generalized variance $|\Sigma|$ is being estimated from a Wishart random matrix $S: p \times p \sim W(n, \Sigma)$ and an independent normal random matrix $X: p \times k \sim N(\xi, \Sigma \otimes 1_k)$ with ξ unknown. The main result is that the minimax, best affine equivariant estimator ((n+2-p)!/(n+2)!)|S| is dominated by min $\{((n+2-p)!/(n+2)!)|S|\}$ ((n+k+2-p)!/(n+k+2)!) It is obtained by a variant of Stein's method which exploits zonal polynomials.

1. Introduction and summary. Consider a multivariate normal linear model in canonical form. A minimal sufficient statistic is (X, S) where X is a normally distributed $p \times k$ matrix with independent columns $X_i \sim N(\xi_i, \Sigma)$, S is a $p \times p$ Wishart matrix with n degrees of freedom with $ES = n\Sigma$, and X and S are independent. We assume that Σ is known to be positive definite (so $|\Sigma| > 0$).

Consider the problem of estimating the determinant $|\Sigma|$ of Σ with the quadratic loss function

(1.1)
$$L\{\phi(X,S); \Sigma, \xi\} = |\Sigma|^{-2} \{\phi(X,S) - |\Sigma|\}^2.$$

Similar results will obtain for the fairly large class of "bowl-shaped" loss functions introduced in Brown (1968).

The problem is invariant under the transformations:

(1.2)
$$X \to AX + B$$
, $S \to ASA'$, $\xi \to A\xi + B$, $\xi \to A\Sigma A'$,

where A is any nonsingular $p \times p$ matrix and B is any $p \times k$ matrix. Estimators equivariant under this affine group satisfy

$$\phi(AX + B, ASA') = |A|^2 \phi(X, S)$$

and have the form $\phi(S) = c|S|$ where c is a constant. Such estimators have constant risk (expected loss) which is minimized by taking c = (n - p + 2)!/(n + 2)!. We thus obtain the best affine equivariant estimator, c|S|, which Selliah (1964) shows is minimax relative to the class of all estimators that depend on S alone. We do not know whether c|S| is admissible relative to this class but Stein (1964) shows, for the case p = 1 ($|\Sigma| = \sigma^2$), that c|S| is not admissible relative to the class of all estimators based on the sufficient statistic (X, S) and he exhibits a better estimator that uses X as well as S.

Received October 1974; revised November 1975.

AMS 1970 subject classifications. Primary 62F10; Secondary 62H99.

Key words and phrases. Equivariant, multivariate normal matrix, noncentral Wishart matrix, zonal polynomials.

In Section 3 the counterpart of Stein's result for general p is obtained by showing that the estimator

(1.3)
$$\phi(X,S) = \min\left\{\frac{(n+2-p)!}{(n+2)!}|S|, \frac{(n+k+2-p)!}{(n+k+2)!}|S+XX'|\right\}$$

has uniformly smaller risk than c|S|. The case k=1 is presented in Section 2 because the argument is much simpler.

2. A superior alternative to c|S|—one unknown mean. For the case k=1 of the problem stated in Section 1, $|\Sigma|$ is to be estimated (with loss given by equation (1.1)) from (X, S), where X and S are independent, $X \simeq N(\xi, \Sigma)$, and $S \simeq W_p(n, \Sigma)$. Among estimators equivariant for the action of the affine group displayed in equation (1.2), Selliah's solution c|S| was seen to be best.

It is shown below that a superior alternative to c|S| can be found by searching in a larger class than the affine-equivariant estimators. In creating a larger class in which to search, we are guided by the concluding remarks in Stein (1964) and, in fact, the class we create will be a p-variate analogue of that of Stein for p=1. Given a problem invariant under a large group G for which a best equivariant estimator exists, Stein suggests seeking a better estimator by looking among estimators equivariant under a nonnormal subgroup H.

We implement Stein's suggestion by considering estimators which are equivariant with respect to the subgroup H (of the affine group) whose action is described by

(2.1)
$$X \to AX$$
, $S \to ASA'$
 $\xi \to AX$, $\Sigma \to A\Sigma A'$

where A is any nonsingular $p \times p$ real matrix. The equivariant estimators are defined as those functions ϕ satisfying

(2.2)
$$\phi(AX, ASA') = |A|^2 \phi(X, S),$$

for all $p \times p$ nonsingular real matrices A. A standard argument shows that $\phi(X, S)$ is equivariant $\Leftrightarrow \phi(X, S) = \psi(X'S^{-1}X)|S + XX'|$ for some function ψ .

To facilitate the derivation of the required distribution theory write

(2.3)
$$X = AU, \qquad \xi = A\xi_0$$
$$S = AWA', \qquad \Sigma = A1A'$$

where $U \simeq N(\xi_0, 1)$ and $W \simeq W_p(n, 1)$, and $\xi_0' = (\lambda^{\frac{1}{2}}, 0, \dots, 0)$. Then the risk function of any equivariant estimator $\phi(X, S) = \phi(X'S^{-1}X)|S + XX'|$ takes the form

$$(2.4) R_{\phi}(\lambda) = E^{\lambda} \{ \phi(T) | W + UU' | -1 \}^2$$

where $T = U'W^{-1}U$. Let 0 be a random orthogonal matrix such that $\tilde{U} = 0U = ||\tilde{U}||(1, 0, \dots, 0)'$, and set $\tilde{W} = 0W0'$. Then $||\tilde{U}||$ and \tilde{W} are independent with $||\tilde{U}||^2 \simeq X_p'^2(\lambda)$ and $\tilde{W} \simeq W_p(n, 1)$ and $T = U'W^{-1}U = \tilde{U}'\tilde{W}^{-1}\tilde{U}$, i.e.

$$(2.5) T = ||\tilde{U}||^2/(\tilde{W}_{11} - \tilde{W}_{12}\tilde{W}_{22}^{-1}\tilde{W}_{21}),$$

and $|W+UU'|=|\tilde{W}+\tilde{U}\tilde{U}'|=(1+T)|\tilde{W}|=(1+T)(\tilde{W}_{11}-\tilde{W}_{12}\tilde{W}_{22}^{-1}\tilde{W}_{21})|\tilde{W}_{22}|$, where \tilde{W} is partitioned as

$$\tilde{W} = \begin{bmatrix} \tilde{W}_{11} & \tilde{W}_{12} \\ \tilde{W}_{21} & \tilde{W}_{22} \end{bmatrix}$$

and \tilde{W}_{11} is a 1 imes 1 matrix. Then standard distribution theory says

(2.7)
$$\begin{aligned} u &= ||\tilde{U}||^2 \simeq \chi_{p+2\kappa}^2 \\ v &= \tilde{W}_{11} - \tilde{W}_{12} \tilde{W}_{21}^{-1} \tilde{W}_{21} \simeq \chi_{n-p+1}^2 , \\ w &= |\tilde{W}_{22}| \simeq \prod_{i=1}^{p-1} \chi_{n-i+1}^2 \end{aligned}$$
 and

where κ follows a Poisson law with $E\kappa = \lambda/2$ and the χ^2 random variables above are all conditionally independent given κ . Writing

(2.8)
$$R_{\phi}(\lambda) = E^{\lambda} E^{(u/v,\kappa)} \{ \phi(u/v)(u+v)w - 1 \}^2$$

it may be seen that the inner conditional expectation is minimized by taking $\psi = \psi_{\kappa}$ where

(2.9)
$$\psi_{\kappa}(u/v) = (n-p+3)!/[(n+2)!(n+3+2\kappa)]$$

$$\leq (n-p+3)!/(n+3)! .$$

It follows that for any estimator of the form $\phi(X, S) = \psi(X'S^{-1}X)|S + XX'|$, the estimator $\phi^*(X, S) = \min \{\phi(X, S), (n-p+3)! |S + XX'|/(n+3)!\}$ is as good as ϕ and strictly better than ϕ unless $\phi = \phi^*$ with probability one. For Selliah's estimator c|S| a strictly better estimator is thus

(2.10)
$$\phi^*(X,S) = \min\left\{\frac{(n-p+2)!}{(n+2)!}|S|, \frac{(n-p+3)!}{(n+3)!}|S+XX'|\right\}.$$

3. A superior alternative to c|S|—the general case. We proceed as in Section 2 and first derive a class of equivariant estimators in which to search for an alternative to c|S|.

In Section 1 c|S| is derived as the best affine-equivariant estimator. However, in order to follow Stein's suggestion in the general case we have found it convenient to choose a larger group, with respect to which c|S| is also best equivariant, and then choose a subgroup of that larger group. To be precise, the problem outlined in Section 1, where

(3.1)
$$X \sim N(\xi, \Sigma \bar{\otimes} 1), \qquad S \sim W_p(n, \Sigma),$$

$$X \text{ and } S \text{ are independent,}$$

$$L(\phi; \Sigma, \xi) = |\Sigma|^{-2} (\phi - |\Sigma|)^2, \quad n \geq p,$$

is invariant under the direct product \mathcal{C} of an affine group on the sample space of X and the orthogonal group on \mathbb{R}^k which acts on the problem as follows:

(3.2)
$$X \rightarrow (AX + B)0', \quad S \rightarrow ASA',$$

 $\xi \rightarrow (A\xi + B)0', \quad \Sigma \rightarrow A\Sigma A',$

where A is nonsingular $p \times p$, 0 is orthogonal $k \times k$ and B is any $p \times k$ matrix. The subgroup \mathscr{H} of \mathscr{G} obtained by setting B = 0 in (3.2) is a nonnormal subgroup of \mathscr{G} .

The groups \mathscr{G} and \mathscr{H} are p-variate analogues of those considered by Stein (1964) and by analogy we consider estimators $\phi(X, S)$ of $|\Sigma|$ that satisfy

(3.3)
$$\phi(AX0', ASA') = |A|^2 \phi(X, S)$$

for all X, S, A, O. Setting A = 1 we see that $\phi(XO', S) = \phi(X, S)$ for all orthogonal O so that $\phi(X, S) = \phi(XX', S)$ depends on X only through XX'. Also,

$$\phi(AX, ASA') = |A|^2 \phi(X, S) \Leftrightarrow \psi(AXX'A', ASA') = |A|^2 \psi(XX', S),$$

and by choosing A such that A(S + XX')A' = 1 and AXX'A' = T where T is a diagonal matrix with nonnegative diagonal elements $t_1 \ge t_2 \ge \cdots \ge t_p$ we conclude that

$$\phi(X, S) = \phi(XX', S)$$

$$= \phi(T, 1 - T)|S + XX'|$$

$$= \phi(T)|S + XX'|;$$

conversely, every estimator of this form is *H*-equivariant as is easily seen.

We remark that the diagonal elements of T are the roots of the determinantal equation |XX'-t(S+XX')|=0 and the preceding argument essentially shows that T is a maximal invariant for the operation of $\mathscr H$ on the space of (X,S). Also, since the ratio of any two nonzero functions ϕ and ϕ_0 satisfying (3.3) is constant on orbits of $\mathscr H$ and so is a function of T alone, we always have $\phi(X,S)=\phi_0(T)\phi_0(X,S)$ for some function ϕ_0 . The choice $\phi_0(X,S)=|S+XX'|$ to represent the class of $\mathscr H$ -equivariant estimators seems most convenient for our analysis.

Since we are restricting our considerations to the class of \mathscr{H} -equivariant estimators, we need only compare the risk functions of such estimators and invariance allows us to reduce the problem as follows. Write

(3.4)
$$S = AWA', \qquad \Sigma = AA'$$
$$X = AU0', \qquad \xi = A\xi_0 0'$$

where $\xi_0 \xi_0' = \Lambda$ is a diagonal matrix with diagonal elements $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_p$ = the roots of the determinantal equations

$$|\xi\xi' - \lambda\Sigma| = 0 \Leftrightarrow |\xi_0\xi_0' - \lambda 1| = 0$$
.

Then Λ is a maximal invariant for the operation of $\mathscr H$ on the parameter space and for any $\mathscr H$ -equivariant estimator $\phi(X,S)=\phi(T)|S+XX'|$ we have

(3.5)
$$\begin{split} R_{\phi}(\Sigma, \xi) &= E\{\phi(X, S) - |\Sigma|\}^{2} |\Sigma|^{-2} \\ &= E\{\phi(T)|W + UU'| - 1\}^{2} = R_{\phi}(\Lambda) \;, \end{split}$$

where T is a diagonal matrix with diagonal elements = the roots of the equation

$$|UU' - t(UU' + W)| = 0$$
 and

$$(3.6) W \sim W_p(n, 1_p), U \sim N(\xi_0, 1_p \otimes 1_k), and \Lambda = \xi_0 \xi_0'.$$

The problem of comparing \mathscr{H} -equivariant estimators $\phi(X,S)$ of $|\Sigma|$ on the basis of their risk functions $R_{\phi}(\Sigma,\xi)$ is thus equivalent to comparing functions $\psi(T)$ on the basis of $R_{\phi}(\Lambda)$.

We shall show, by a multidimensional analogue of the device of conditioning on an auxiliary Poisson variable κ used in Section 2 for one unknown mean, that for any ψ , ψ^* defined by

(3.7)
$$\psi^*(T) = \min \{ \psi(T), \, \psi_0(T) \}$$

satisfies $R_{\phi^*}(\Lambda) \leq R_{\phi}(\Lambda)$ for all Λ , the inequality being strict provided $\phi^*(T) \neq \phi(T)$ with positive probability.

Let V be a diagonal matrix with diagonal elements = the latent roots of W + UU'. Then from (3.5) we have

$$R_{\phi}(\Lambda) = E\{\phi(T)|V| - 1\}^2$$

for any ψ . To express R_{ψ} in a convenient form we first derive a representation for the noncentral $(\Lambda \neq 0)$ law of (T, V) as a mixture of central (i.e., parameter free) laws. Following James (1964) we let $\kappa = \{\kappa_1 \geq \kappa_2 \geq \cdots \geq \kappa_p\}$ range over all ordered sequences of p nonnegative integers and consider the zonal polynomials $C_{\kappa}(\Omega)$ normalized so that for all $k = 0, 1, 2, \cdots$

(3.8)
$$(\operatorname{tr} \Omega)^k = \sum_{\{\kappa: ||\kappa|| = k\}} C_{\kappa}(\Omega) ,$$
$$||\kappa|| = \sum_{i=1}^p \kappa_i , \quad \operatorname{tr} = \operatorname{trace}.$$

The $C_{\kappa}(\Omega)$ are homogeneous symmetric polynomials in the latent roots of the $p \times p$ matrix Ω and have the property, essential for our main result, of being nonnegative on the space of nonnegative definite matrices [see James (1968)].

Let L = L(T, V) be any (measurable) function of T = T(U, W), V = V(U, W), and let E^{Λ} denote expectation assuming (3.6) with E^{0} in the special case $\Lambda = 0 \Leftrightarrow \xi_{0} = 0$. Then L, as a function of (U, W) is invariant under the transformations

$$U \rightarrow 0U\hat{0}$$
, $W \rightarrow 0W0'$

where 0 is $p \times p$ orthogonal and $\hat{0}$ is $k \times k$ orthogonal, and we have

(3.9)
$$E^{\Lambda}L = \exp(-\frac{1}{2}\operatorname{tr}\Lambda)E_{\cdot}^{0}\{L\exp(\operatorname{tr}\xi_{0}'U)\}$$

$$= \exp(-\frac{1}{2}\operatorname{tr}\Lambda)\sum_{\kappa}E^{0}\{LC_{\kappa}(\Lambda \cdot UU')\}\alpha_{\kappa}$$

$$= \exp(-\frac{1}{2}\operatorname{tr}\Lambda)\sum_{\kappa}\frac{C_{\kappa}(\frac{1}{2}\Lambda)}{||\kappa||!}\frac{E^{0}\{LC_{\kappa}(UU')\}}{E^{0}\{C_{\kappa}(UU')\}}$$

where α_k is a coefficient whose precise form may be found in James (1964). The first equality follows at once from the forms of the central $(\xi_0 = 0)$ and noncentral $(\xi_0 \neq 0)$ densities of U. The second follows from the invariance of L by letting $U \to U\hat{0}$ and integrating with respect to the invariant probability measure $\hat{\lambda}$ on the group of $k \times k$ orthogonal matrices $\hat{0}$, using the formula

[James (1964)]

(3.10)
$$\int \exp\{\operatorname{tr} \xi' U \hat{0}\} d\hat{\lambda}(\hat{0}) = \sum_{\kappa} \alpha_{\kappa} C_{\kappa}(\xi \xi' U U').$$

The third equality follows by letting $W \to 0W0'$ and $U \to 0U$ and using the formula [James (1964)]

$$(3.11) \qquad \int C_{\kappa}(\Omega_1 0 \Omega_2 0') d\lambda(0) = C_{\kappa}(\Omega_1) C_{\kappa}(\Omega_2) / C_{\kappa}(1_{\nu}),$$

where λ is the invariant probability measure on the group of $p \times p$ orthogonal matrices, together with the relation

(3.12)
$$E^{0}C_{\kappa}(UU') = C_{\kappa}(\frac{1}{2}1_{n})/(\alpha_{\kappa}||\kappa||!)$$

which follows by comparing equations (24) and (27) in James (1964).

Equation (3.9) is a representation of the noncentral law of (T, V) as a mixture but is inconvenient because of the presence of UU'. To obtain a representation directly in terms of (T, V) we first observe that if we make the transformation

(3.13)
$$\tilde{U} = (W + UU')^{-\frac{1}{2}}U, \qquad U = \tilde{W}^{\frac{1}{2}}\tilde{U}
\tilde{W} = W + UU' \qquad W = \tilde{W}^{\frac{1}{2}}(1 - \tilde{U}\tilde{U}')^{\frac{1}{2}}\tilde{W}^{\frac{1}{2}}$$

then \tilde{U} and \tilde{W} are independent when $\xi_0=0$, and $\tilde{W} \sim W_p(n+k,1_p)$. This can be seen by checking that the joint density of (\tilde{U},\tilde{W}) factors into the $W_p(n+k,1_p)$ density over the space $\{\tilde{W}\colon \tilde{W} \geq 0\}$ and a density of the form $c|1-\tilde{U}\tilde{U}'|^{\frac{1}{2}(n-p-1)}$ with respect to Lebesgue measure on the space $\{\tilde{U}\colon 0\leq \tilde{U}\tilde{U}'\leq 1_p\}$; the Jacobian $\partial(U,W)/\partial(\tilde{U},\tilde{V})$ is seen to be $|\tilde{W}|^{\frac{1}{2}k}$ by considering the sequence of mappings

$$\begin{bmatrix} U \\ W \end{bmatrix} \rightarrow \begin{bmatrix} U \\ W + UU' \end{bmatrix} \rightarrow \begin{bmatrix} (W + UU')^{-\frac{1}{2}}U \\ W + UU' \end{bmatrix},$$

the first of which has Jacobian = 1.

Since the diagonal elements of T are the latent roots of the matrix $\tilde{U}\tilde{U}'$ and the diagonal elements of V are the roots of \tilde{W} , we see that T and V are also independent when $\xi_0 = 0$ and that L = L(T, V) can also be thought of as a function of (\tilde{U}, \tilde{W}) that is invariant under maps $\tilde{W} \to 0\tilde{W}0'$ where 0 is $p \times p$ orthogonal. Such maps also leave the law of \tilde{W} invariant, so we can write, using equation (3.11)

$$(3.15) E^{0}\{LC_{\kappa}(UU')\} = E^{0}\{LC_{\kappa}(\widetilde{W}^{\frac{1}{2}}\widetilde{U}\widetilde{U}'\widetilde{W}^{\frac{1}{2}})\}$$

$$= E^{0}\{LC_{\kappa}(\widetilde{U}\widetilde{U}'\widetilde{W})\} = E^{0}\{LC_{\kappa}(\widetilde{U}\widetilde{U}'0\widetilde{W}0')\}$$

$$= E^{0}\{LC_{\kappa}(\widetilde{U}\widetilde{U}')C_{\kappa}(\widetilde{W})\}/C_{\kappa}(1_{p})$$

$$= E^{0}\{LC_{\kappa}(T)C_{\kappa}(V)\}/C_{\kappa}(1_{p}) ,$$

where 0 is a random orthogonal $p \times p$ matrix distributed according to the invariant probability measure λ of equation (3.11) and independent of (\tilde{U}, \tilde{W}) . From equations (3.9) and (3.15) (and in particular, with (3.15) applied to the case $L \equiv 1$), and from the independence of T and V when $\xi_0 = 0$, we have

(3.16)
$$E^{\Lambda}\{L(T, V)\} = \sum_{\kappa} \pi\{\kappa\} \frac{E^{0}\{L(T, V)C_{\kappa}(T)C_{\kappa}(V)\}}{E^{0}\{C_{\kappa}(T)\}E^{0}\{C_{\kappa}(V)\}}, \quad \text{where}$$

$$\pi\{\kappa\} = \exp\left(-\frac{1}{2}\operatorname{tr} \Lambda\right)C_{\kappa}(\frac{1}{2}\Lambda)/||\kappa||!.$$

Using equation (3.8) it is easy to show that $\sum_{\kappa} \pi\{\kappa\} = 1$ where the summation is over all ordered sequences $\kappa = \{\kappa_1 \ge \cdots \ge \kappa_p\}$. This, together with the fact that $\Omega \ge 0 \Rightarrow C_{\kappa}(\Omega) \ge 0$, allows us to describe the noncentral law of (T, V) as follows: T and V are conditionally independent given κ with

(3.17)
$$E^{\kappa}\{L(T)\} = E^{0}\{L(T)C_{\kappa}(T)\}/E^{0}\{C_{\kappa}(T)\},$$
$$E^{\kappa}\{L(V)\} = E^{0}\{L(V)C_{\kappa}(V)\}/E^{0}\{C_{\kappa}(V)\};$$

here E^0 denotes expectation with respect to the corresponding central law when $\xi_0 = 0 \Leftrightarrow \Lambda = 0 \Leftrightarrow \kappa = 0$. The law π of κ can be thought of as a random partitioning of a Poisson variable $||\kappa||$ into p parts $\{\kappa_1 \geq \cdots \geq \kappa_p\}$; it follows easily from equation (3.8) that $||\kappa||$ follows a Poisson law with $E\{||\kappa||\} = \frac{1}{2} \operatorname{tr} \Lambda$.

We are now able to imitate the method of Section 2, using κ as the analogue of the Poisson variable used there. Writing

(3.18)
$$R_{\phi}(\Lambda) = E\{\phi(T)|V|-1\}^2$$
$$= EE^{(\kappa,T)}\{\phi(T)|V|-1\}^2,$$

we see that the inner conditional expectation is minimized by taking $\psi=\psi_{\kappa}$ where

(3.19)
$$\begin{aligned} \psi_{\kappa} &= E^{(\kappa,T)}\{|V|\}/E^{(\kappa,T)}\{|V|\}^2 \\ &= E^{\kappa}\{|V|\}/E^{\kappa}\{|V|^2\} \\ &= E^0\{|V|C_{\kappa}(V)\}/E^0\{|V|^2C_{\kappa}(V)\} \;. \end{aligned}$$

The second equality follows from conditional independence of V and T given κ , and the third from equation (3.17). Now we can express the expectations occurring in the last line of equation (3.19) in terms of expectations of the form $E\{C_{\kappa}(S)\}$ where S has central Wishart laws $W_p(n+k+2, 1_p)$ and $W_p(n+k+4, 1_p)$ for the numerator and denominator respectively. Then a simple calculation using equation (3.12) and the known form of the normalizing constants for the central Wishart densities yields

(3.20)
$$\phi_{\kappa} = \prod_{i=1}^{p} (n+k+3-i+\kappa_{i})^{-1}$$

$$\leq \prod_{i=1}^{p} (n+k+3-i)^{-1}$$

$$= \phi_{0} = (n+k+2-p)!/(n+k+2)! .$$

We thus conclude that for any ϕ , if we define $\phi^*(T) = \min{\{\phi(T), \phi_0\}}$, then $R_{\phi^*}(\Lambda) \leq R_{\phi}(\Lambda)$ for all Λ and the inequality is strict provided $\phi^*(T) \neq \phi(T)$ with positive probability. In terms of the original problem this says that for any estimator $\phi(X, S) = \phi(T)|S + XX'|$, the estimator $\phi^*(X, S) = \phi^*(T)|S + XX'|$ satisfies

$$(3.21) E^{(\xi,\Sigma)} \{ \phi^*(X,S) - |\Sigma| \}^2 \le E^{(\xi,\Sigma)} \{ \phi(X,S) - |\Sigma| \}^2$$

for all (ξ, Σ) and the inequality is strict as long as $\phi^*(X, S) \neq \phi(X, S)$ with positive probability.

For the special case $\phi(X, S) = c|S|$ we have $\psi(T) = c|S|/|S + XX'|$, and the

improved estimator is

$$\phi^*(X, S) = \min \left\{ \frac{c|S|}{|S + XX'|}, \, \phi_0 \right\} |S + XX'|$$

$$= \min \left\{ c|S|, \, \phi_0 |S + XX'| \right\}$$

$$= \min \left\{ \frac{(n+2-p)!}{(n+2)!} |S|, \, \frac{(n+k+2-p)!}{(n+k+2)!} |S + XX'| \right\}.$$

In this case $\phi^*(X,S) \neq \phi(X,S) \Leftrightarrow c|S|/|S+XX'| > \psi_0 \Leftrightarrow |T| > \psi_0/c$ and this occurs with positive probability because $\psi_0/c < 1$. So the estimator in equation (3.22) has expected squared error strictly smaller than has c|S| for all parameter values. It is the minimum of two Selliah estimators, $\psi_0|S+XX'|$ being the analogue of c|S| when $\xi=EX=0$, and it chooses c|S| or $\psi_0|S+XX'|$ on the basis of a preliminary likelihood ratio test of the hypothesis $\xi=0$, with |T| as the test criterion. Intuitively we expect $\psi_0|S+XX'|$ to overestimate $|\Sigma|$ when $\xi\neq 0$ and so prefer c|S|, unless the "overestimator" actually gives a smaller value so does not appear to be overestimating in our sample.

4. Discussion. The work in Section 3 generalizes the result of Stein (1964) which treats the case $p=1 \Leftrightarrow$ estimating the error variance σ^2 in a univariate linear model with normal errors. For this problem Brewster (1972) [see also Brewster and Zidek (1974)] has produced a smooth formal Bayes estimator of σ^2 that is, like Stein's, uniformly better than the usual estimator, and unlike Stein's, is for k=1 admissible among all scale-invariant estimators. In Section 2 the case k=1 (but general p) of estimating $|\Sigma|$ was reduced to a problem that is formally almost identical to that treated by Stein and by Brewster.

The works cited above and the present paper all use a technical device of conditioning which can be described as follows. The parametric statistical problem $\{P_{\theta} \colon \theta \in 0\}$, may be visualized as a Markov transition $\Theta \to \mathscr{X}$ from the parameter space Θ to the space of a sufficient statistic X. We then factor this transition through a third space \mathscr{T} , thereby obtaining the two stage Markov representation $\Theta \to \mathscr{T} \to \mathscr{X}$, $\theta \to \tau \to X$. Given a loss function L, the risk function of a nonrandomized decision rule ϕ can be written

$$R_{\phi}(\theta) = E^{\theta}E^{\tau}L(\phi(X), X, \theta)$$

and the symmetries of the problem may then allow us to find a function $\hat{L}(\phi(X), X, \tau)$ such that

$$R_{\phi}(\theta) = E^{\theta}E^{\tau}\hat{L}(\phi(X), X, \tau)$$

for all estimators ψ under consideration. The original problem is thereby represented as a mixture of inference problems based on $\mathcal{T} \to \mathscr{X}$ with \mathcal{T} as parameter space and loss function \hat{L} , and for these problems $(\mathcal{T} \to \mathscr{X}, \hat{L})$ it may be easier to see what is a good procedure. In particular it is seen that a given procedure is definitely unreasonable when viewed as a procedure for $(\mathcal{T} \to \mathscr{X}, \hat{L})$.

The work in Section 2 fits into this framework with $\mathcal{T} =$ the space of the

hypothetical Poisson variable κ . The argument essentially says that the estimator c|S|, when viewed in terms of the dilated problem $\lambda \to \kappa \to X'S^{-1}X$, produces an estimator of κ which with positive probability lies outside the convex hull of the space $\{0, 1, 2, \dots\}$ of κ . An analogous interpretation holds in the k-means case treated in Section 3.

Another problem that can be viewed in this way is that of estimating a multivariate normal mean with quadratic loss. Suppose $x \sim N_p(\xi, 1)$ where $p \geq 3$ and we seek estimators of the form $\hat{\psi}(x) = \psi(||x||^2)x$ where ψ is a real-valued function, with loss function $L(\psi, \xi) = ||\hat{\psi} - \xi||^2$. Then, setting $\lambda = ||\xi||^2$ and taking $\kappa \simeq P_0(\lambda/2)$ so that $||x||^2 \simeq \chi^2_{p+2\kappa}$, we have

$$\begin{split} R_{\phi}(\lambda) &= E^{\lambda} ||\phi(||x||^2) x - \xi||^2 \\ &= E^{\lambda} \{\phi^2(||x||^2) ||x||^2 - 2\xi' x \phi(||x||^2) + ||\xi||^2\} \\ &= E^{\lambda} E^{\kappa} \{\phi^2(||x||^2) ||x||^2 - 4\kappa \phi(||x||^2) + 2\kappa\} \\ &= E^{\lambda} E^{\kappa} \hat{L}(\phi(||x||^2), ||x||^2, \kappa) \;. \end{split}$$

The third equality follows from the relation

$$E\{\xi'x\psi(||x||^2)\} = E\{2\kappa\psi(||x||^2)\},$$

which is proved in James and Stein (1960) and can also be seen from the formula

$$E\{2\kappa\}E\{\psi(||x||^2)x\} = E\{\kappa\psi(||x||^2)\}\xi$$
,

which can be proved using essentially the method Baranchik (1973) used for the special case $\psi(||x||^2) = 1/||x||^2$. Define $\psi(t) = t^{-1}\phi(t)$ and

$$\tilde{L}(\phi, 2\kappa) = \frac{2(\phi - 2\kappa)^2}{p - 2 + 2\kappa} + \frac{2\kappa(p - 2)}{p - 2 + 2\kappa} \; .$$

Then a straightforward calculation shows

$$E^{\kappa}\tilde{L}\{\phi(\tilde{T}), 2\kappa\} = E^{\kappa}\tilde{L}\{\phi(||x||^2), ||x||^2, \kappa\}$$

where $\tilde{T} \simeq \chi^2_{p-2+2\kappa}$ and $\kappa = 0, 1, 2, \cdots$. The original problem is thus equivalent to a mixture of problems of estimating 2κ from $\tilde{T} \simeq \chi^2_{p-2+2}$ with quadratic loss \tilde{L} . If we choose $\phi(\tilde{T}) = \tilde{T}$ we get $\hat{\phi}(x) = x$, the usual estimator, but if we choose $\phi(\tilde{T}) = \{\tilde{T} - (p-2)\}^+$, we get the James-Stein (1960) estimator

$$\hat{\psi}(x) = \left\{1 - \frac{p_c - 2}{||x||^2}\right\}^+ x.$$

The usual estimator $\hat{\psi}(x) = x \Leftrightarrow \phi(\tilde{T}) = \tilde{T}$ is evidently inadmissible because \tilde{T} can substantially overestimate $2\kappa : E\tilde{T} = p - 2 + 2\kappa$, and the James-Stein estimator seems to be a natural improvement.

REFERENCES

 BARANCHIK, A. J. (1973). Inadmissibility of maximum likelihood estimators in some multiple regression problems with three or more independent variables. Ann. Statist. 1 312-321.

- [2] Brewster, J. F. (1972). On the admissibility of scale and quantile estimators. Ph.D. dissertation, Univ. of British Columbia.
- [3] Brewster, J. F. and Zidek, J. V. (1974). Improving on equivariant estimators. *Ann. Statist.* 2 21-38.
- [4] Brown, L. (1968). Inadmissibility of the usual estimators of scale parameters in problems with unknown location and scale parameters. *Ann. Math. Statist.* 39 29-48.
- [5] JAMES, A. T. (1964). Distributions of matrix variates and latent roots derived from normal samples. *Ann. Math. Statist.* 35 475-501.
- [6] James, A. T. (1968). Calculation of zonal polynomial coefficients by the use of the Laplace Beltrami operator. *Ann. Math. Statist.* 39 1711-1718.
- [7] JAMES, W. and Stein, C. (1960). Estimation with quadratic loss. *Proc. Fourth Berkeley Symp. Math. Statist. Prob.* 1 361-379. Univ. of California Press.
- [8] Selliah, J. B. (1964). Estimation and testing problems in a Wishart distribution. Stanford Univ. Technical Report No. 10, Dept. of Statist.
- [9] STEIN, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. *Proc. Third Berkeley Symp. Math. Statist. Prob.* 1 197-206. Univ. of California Press.
- 10] Stein, C. (1964). Inadmissibility of the usual estimator for the variance of a normal distribution with unknown mean. *Ann. Inst. Statist. Math.* 16 155-160.

Centre de Recherches Mathématiques Université de Montréal Montréal, PQ Canada DEPARTMENT OF MATHEMATICS
UNIVERSITY OF BRITISH COLUMBIA
2075 WESTBROOK PLACE
VANCOUVER, B. C.
CANADA V6T 1W5