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CONFIDENCE INTERVALS FOR LINEAR FUNCTIONS
OF THE NORMAL PARAMETERS

By V. M. JosH1
University of California, Berkeley

Uniformly most accurate level 1 — « confidence procedures for a linear
function g + 202 with known 2 for the parameters of a normal distribution
defined by Land were previously shown for both the one-sided and two-
sided procedures to be always intervals for v = 2, v being the number of
degrees of freedom for estimating o2. These results are shown in this paper
to hold also in the case v = 1. During the course of the argument a new
inequality is obtained relating to the modified Bessel functions which is of
independent interest.

1. Introduction. Uniformly most accurate unbiased level 1 — a confidence
procedures for linear functions of the mean ¢ and variance ¢* of a normal dis-
tribution have been defined [2] in terms of the uniformly most powerful unbiased
level « tests of null hypotheses of the form H,: # + 2¢* = m against the usual
one- and two-sided alternatives. It is shown ([2] and [3] respectively) that the
confidence sets defined by these procedures are respectively one- and two-sided
intervals provided that v > 2, v being the number of degrees of freedom for
estimating ¢?. In this note these results are shown to hold also in the case v = 1,
which had remained open.

In the course of the argument a new inequality relating to the modified Bessel
functions is proved (Lemma 3.4) which appears to be of independent interest.

2. The problem. Y is distributed normally with mean z and variance ¢’/
where 7y is known; S?/¢* is distributed y* independently of ¥ with v degrees of
freedom; 2 is a known constant. The null hypothesis is Hy: # + Ao* = m. The
two-sided alternative is H,: ¢ 4 A0® = m. The one-sided alternative is H,: y¢ 4
26 < m. The uniformly most accurate, unbiased level 1 — a confidence sets
for m in the sense of Lehmann [4, page 177] for a given data point (y, s*) have
been derived [2] from the UMP tests of H, vs H, and H, vs H,. The confidence
sets for any given values ¢/, 2’ of y and 2 and the data point (y, s*) are identical
with the confidence sets for y = 1, 2 = A’y’ and the data point (y, s*/y’). Hence
to simplify the formulae we put y = 1 w.l.g. The confidence sets for m for the
data point (y, s*) derived from the tests of H, vs H, and H, vs H, are then re-
spectively given by

(1) ¢+ 1) =2 =" < v+ b,
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and

(2) (v + Dy = L=

Here z, g,, ¢,, g, satisfy

3) z=[s"+ (@ —mP/+ 1),
4) ¥ h(v)ydv = (1 — a) {1, A(v)dv,
®) §e2vh(v)dv = (1 — a) {1, vh(v)dv,
(6) P h(v)dv = (1 — a) §1, (V) dv

in which a(v) = (1 — v?)**texp(lv), { =fz, = —Av+ 1), —1<v= 1.
The problem is to show that these confidence sets are always intervals (the in-
tervals being one-sided for the set defined by (2)). In equations (4) to (6), g,
fori = 0, 1, 2, are for given «a, functions of z. Let p,(z) = z¢,, i = 0, 1, 2. The
conditions that |p,(z)] < 1 for i = 1, 2, and for i = 0 are respectively sufficient
for the confidence sets defined by (1) and (2) to be intervals and they are satisfied
provided v > 2 ([3], [2]). But for v = 1 this argument fails as the conditions in
question are not always satisfied. (A proof of this assertion for the one-sided
case is in Section 6 of [2].) The argument in this note consists of (i) obtaining
a weaker condition which for v > 1 is sufficient for the confidence sets in ques-
tion to be intervals and (ii) verifying that it is satisfied for v=1. The verification
requires protracted computations which are outlined. (The weaker sufficient
condition is also satisfied when v = 2 as may easily be verified.)

3. Main result.

PROPOSITION 3.1. For v = 1, the confidence sets defined by (1) are intervals and
those defined by (2) are one-sided intervals open at the lower end.

Proor. We shall deal only with the general case and exclude trivial special
cases by specifying that « == 0 or 1 and 2 = 0. Hence § + 0. The cases § > 0
and § < 0 being symmetrical it suffices to prove the result for 8 > 0. Let for
i=0,1,2

O] fil@) =& — 47,

where ¢, = ¢,({) are the functions of {, defined for fixed a, 0 < a < 1, for
i = 1,2 by (4) and (5) and for i = 0 by (6), and { varies in (0, co) by (3) since
B > 0. For convenience of presentation the following argument is divided into
independent lemmas.

LemMmaA 3.1. Forv = 1, (i) if the functions f({) in (7), i = 1, 2, increase strictly
with { for { € (0, oo), then the confidence set for m defined by (1) is an interval, (ii)
if f(€) increases strictly with { for { € (0, oo0), the confidence set defined by (2) is a
one-sided interval open at the lower end.

Proor. Consider the set of values of m which satisfy the first inequality
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in (1):
— m
®) v+ e = 2=

At the boundary point of this set (v 4+ 1)¢, = (y — m)/z and hence f,({) = K
where

) K = sp(v + 1),

From equations (4) to (6), it can be shown that for i = 1, 2 and 0, as { — oo,
1 — g,(€) = 0(1/{); hence as { increases in (0, oo) f;({) increases strictly from 0
to co. In particular, for any nonnegative K, f,({) = K has a unique solution,
¢ say. Let ¢, = ¢,({,’). The boundary value m,’ of the set in (8) is given by

(10 (4 gt = 2= ™
V4

Let m’ denote any value of m such that m’ &= m’, and let z’ and ¢," denote the
corresponding values for given y, s* of z and ¢, respectively. The following
argument shows that the set defined by (8) is identical with the set m < m’.
Consider points m’ < m°. Either (i) [y — m'| > |y — m’| or (ii) |y — m'| <
|y — m;®|. If (i) holds then ' > {,° by (3), hence since f,({) is strictly increasing
(1 — ¢/ > %1 — ¢”) = K and hence by (9), ¢/’ < (1 — K/ = (y —
m’)/z - 1/(v + 1) as alternative (i) with m’ < m," implies that y — m’ > 0. If (ii)
holds, then {’ < {°. Alternative (ii) with m’ < m° implies that y — m," < 0
and hence by (10) ¢,° < 0. As by (4) and (5), ¢,() increases strictly with ¢,
g < ¢, < 0. Hence the strict increasing of f,({) yields that {*(1 — ¢,”*) <
%1 — ¢,) = K which as ¢ < 0, yields ¢’ < —(1 — K/t < (y — m')[z" X
1/(v + 1) in which at most one of the two equality signs holds. Thus whether
the alternative (i) holds or (ii), all points m’ < m,° belong to the set in (8). By
the converse argument no m’ > m,° belongs to the set, thus proving that the set
is given by m < m,".

The set defined by the second inequality in (1) is similarly shown to be the set
m = m,’ where

0
(11) (v + g’ = =M ) 9" = g,(&) »

z

¢,* being the unique value of { satisfying f,({) = K where K is given by (9). Since
for each ¢, ¢,({) < ¢x(%), fi(§) > fu«({) which implies {° < {,° and hence ¢,° =
7(8) < 4,(£,°) < gu(&°) = ¢°. It follows by (10) and (11) that m," < m,°. Thus
the confidence set defined by (1) is the interval m,’ < m < m.

The proof of (ii) of the lemma follows from the above argument.

LemMMA 3.2. For v = 1, fi(§) in (7) for i = 1, 2 increase strictly with {, for
€ > 0 if the following inequality always holds:

(12) (1 — ¢.)(g,) — g:(1 — ¢,")h(g,) <O
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Proor. Differentiating both sides of (4) with respect to { and using (5) gives
q,'h(q,) = q,'h(g,) where the dash indicates the derivative with respect to {. Using
this result and (4) after differentiating (5) yields ¢/ = [(¢, — ¢.)7(g:)] {12 (1 —
v)h(v) dv — (1 — a) {1, (1 — v?)h(v) dv} which by partial integration in the
right-hand side taking the antiderivative of exp({v) yields after some reduction

(13) 9 = %[(fh — k(g1 — ¢:)h(q.) — (I — g)h(9)}

for i = 1,2. Since /() = 2¢(1 — g¢,4,") by (7), substituting for ¢,’ by (13) yields
after some reduction that f;/({) > 0 for { > 0 if (12) holds, which proves the
lemma.

NoTE 3.1. The argument up to this point holds for v > 1. The further argu-
ment is restricted to the case of interest v = 1. (But the results can be shown
to hold for v > 2 also.)

LEMMA 3.3. For v = 1, the inequality (12) holds for all £ > 0.

Proor. (12) obviously holds if ¢, < 0. For ¢, > 0, ¢, > 0. Hence, dividing
(12) by g¢,¢,, it suffices to prove that for g, > 0,

(14) L= ghig) — L (1 = ghig) < 0

2 1
in which A(v) = (1 — v*)~*exp({v). In (4) and (5) g, for i = 1, 2 were treated
so far as functions of { for given a. In the following ¢, and { are treated as
independent variates, ¢, and « being their functions defined by (4) and (5). Let
F(g,, €) denote the left-hand side of (14). Partial integration of § (1/v)(1 —
v%)? exp (L) dv by taking the antiderivative of exp({v) yields

1
(13) Flg» ©) = §it S [8v — ) — 1]A(v) dv.
Since v — v® < 2(3)~%, F(g,, {) < 0 if { < 4(3)}. The proof is completed by
showing that 9F/o{ < 0 for { > $(3)!. Let
(16) AK) = (L, vh(v)dv = §1, h(v) do .

By standard formulae 4({) = (O)/1,(L), where I, and I, are the modified Bessel
functions of orders 0 and 1. Eliminating a between (4) and (5) gives

(17) {2 (v — A)h(v)dv = 0.
Since 0 < a < 1, (17) implies
(18) 1< <40 < <1,

Partial differentiation of (17), with respect to { for fixed ¢,, yields on using (18)

(19) (s = () 5 = 535 (4 A — ) do
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Differentiating (15) with respect to { for fixed ¢,, substituting for dg,/a by (19)

and using that ¢,"%(g, — 4)7[Lg — ¢,") — 1] = —C + ¢.7(g — A)7[Cqu(1 —
Ag,) — 1], yields after some reduction

(20) %’C’_ = [C(1 — 4 — Ay — A] {2 h(v) dv

+ ¢27(q2 — A)7[Cq(l — Ag) — 1] §32 (A" + A" — v))h(v) dv .

Since {2 v’A(v) dv < (1 — a) {1, v*h(v) dv (cf. Lemma in [3]), in the second term
in the right-hand side of (20), by (4) and (16)

Sgg (A + A — v¥HA)dv > (1 — a) §L, (A2 4 A" — v)h(v) dv
(1o _ _
=1 ) 5 L, (4 — v)h(v)dv = 0.

For given A4, (1 — Ar) decreases as ¢ increases for + > 1/24. From the tables
of the modified Bessel functions (Table 9.8, [1]) for { = 2.5, A({) = .765 >
1/24(%). Also A({) is an increasing function of { and ¢, > A({) by (18). Hence
for { = 2.5, {g,(1 — Ag,) < {A(1 — 4%) < 1 by Lemma 3.4. Thus the second
- term in the right-hand side of (20) is negative, and its first term vanishes by
Lemma 3.5. Hence 0F/0C < 0 for { > 2.5. As 2.5 < £(3)? this proves the
lemma.

LemMmaA 3.4, A(L) = L(£)/1,(C), where I, and I, are the modified Bessel functions
of orders 0 and 1, satisfies for all {, (A(1 — A%) < 1 where A = A(L).

Proor. Let ¢() = {A(1 — A%). By the asymptotic formulae for /; and 7, (For-
mulae 9.7.1, [1]), ¢(§) = 1 — 1/2|¢] + O(1/¢* < 1for large |{|. Since ¢(0) = 1,
#(€) = 1 for some { iff it has a local maximum > 1. Let ¢, be a local maxi-
mum of ¢ attained for { = {,. Let[4({,)] = 4,. Since ¢'({,) = 0, differentiation
of log¢({) at =¢, gives L A4'({) = 4(1 — 4334, — 1)~*.  Substituting
[Co(1 — A°) — Ay] for £, A'(,) by Lemma 3.5, and multiplying both sides by A,
gives ¢, = 24,'(34, — 1)~*. The quadratic in 42 24, — 34 + 1 = 0 has the
roots 7 and 1. Hence if § < 47 < 1, ¢, < 1. By (16) 4,({) < 1. If A2 < 4,
A, < 765 = A(2.5), so that |{| < 2.5 < £(3)%. Since 4, — 4} < 2(3)7}, ¢, < 1
for 43 < % also. Thus for all {,, ¢, < 1 which proves the lemma.

LemMA 3.5. The function A({) in Lemma 3.4 satisfies {(1 — 4> — A') = A4
where A’ is the derivative of A(().

Proor. Differentiation of A({) yields 1 — 4> — 4’ = {1, vh(v) dv/\L, h(v) dv.
Partial integration in the numerator by taking the antiderivative of exp({v)
proves the result.

LeMMA 3.6. Forv =1 and { > 0, fy() in (7) increases strictly with ¢ if the
following inequality always holds:

(21) (1 — 45")* exp(89s) — o€ §5y (v — A)h(v) dv > 0.



418 V. M. JOSHI

Proor. Differentiation of (6) gives ¢,'4(q,) = §; (v — A)h(v) dv. Using this,
[/ (€) = left-hand side of (21), multiplied by 2{[A(g,)]~* which proves the result.

LeMMA 3.7. For v = 1, (21) holds for all { > 0.
Proor. In (21)
(22) §5, (v — Ah(v) dv > 0

as the integral in (22) is greater than (g, — A) {} h(v) dv if g, > 4 and than
(L, (v — Ah(v)dv = 0 if g, < A. Thus (21) holds if g, < 0. For ¢, > 0, (21)
is equivalent to

(23) ;0% [1 — C(v — Av)]h(v)dv > 0.

(23) is obtained by partial integration of {} (1 — v*)*/v exp(Lv)dv, by taking
the antiderivative of exp({v) and making some reduction. Treating ¢, and { as
independent variates in (6), let F(g,, {) denote the left-hand side of (23). Since
v — Av* < 1/44, (23) holds for { < {, where {, = 1/44({;). The proof is com-
pleted by showing that 0F/6{ > 0. By (23), 0F/0{ = A §} h(v)dv + L §} (4" —
1 + Av) dv, which on substituting in the first term {(1 — 4* — A4’) for 4 by
Lemma 3.5 reduces to §{*, (v — A)k(v) dv > 0 by (22), thus proving the result.

And Lemmas 3.1 to 3.7 combined prove the Proposition 3.1.
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