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We consider generalized sequential probability ratio tests (GSPRT’s),
which are not necessarily based on independent or identically distributed
observations, to distinguish between probability measures P and Q. It is
shown that if T is any test in a wide class of GSPRT’s, including all
SPRT’s, and 7" is any rival test possessing error probabilities and sample
sizes no greater than those of T, then 77 must be equivalent to 7. This
notion of optimality of T is weaker than that of Kiefer and Weiss but the
results are stronger than theirs. It is also shown that, if an SPRT 77 has
at least one error probability strictly less than that of another SPRT T with
the other error probability no larger, T requires strictly more observations
than T some of the time, under both P and Q, and never fewer observa-
tions. This assertion generalizes Wijsman’s conclusions. The methods
used in this paper are quite general, and are different from those of the
earlier authors.

1. Introduction. There now exist many important examples of sequential
probability ratio tests (SPRT’s) for which the classical i.i.d. model is inappro-
priate. These include a number of invariant sequential tests, such as the sequen-
tial ¢, £, y*, F, T* and rank tests (cf., Hall, Wijsman and Ghosh (1965), and B. K.
Ghosh (1970)). More recently, Robbins and Siegmund (1974) have introduced
a family of SPRT’s in a sequential design context. Even though all of these
examples arise in the presence of random samples, the i.i.d. model (defined
explicitly below) is inappropriate because the likelihood ratios, employed in
these tests, are not defined directly from random samples. For the most part,
the properties of these tests have been investigated individually. In contrast,
the objective of this paper is to examine what can and cannot be said about
SPRT’s in general, when all assumptions about how the data is generated and
utilized are dropped. Most of the results are more generally described for gener-
alized sequential probability ratio tests (GSPRT’s), which are defined formally
in Section 2. Such generality should be of some interest because there are a
number of GSPRT’s recommended in the literature (e.g., Armitage (1957) and
Anderson (1960)) including at least one for which the i.i.d. model is unsuitable
(Meyers, Schneiderman and Armitage (1966)).

Specifically, the phrase “i.i.d. model” (“independent model”) will be used to
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describe the situation in which the potential data is i.i.d. (independent) under
each of two probability measures P and Q, and, for each n > 1, the nth likeli-
hood ratio is the likelihood ratio of the first n observations of the potential data,
as opposed to being the likelihood ratio of some convenient statistic (e.g., a
maximal invariant) of the first n observations. The phrase “general model,”
whose full generality is described in Section 2, includes the i.i.d. and inde-
pendent models within its purview as well as situations in which the potential
data has arbitrary specified distributions under P and Q.

The Wald-Wolfowitz (1948) optimality property holds for any SPRT under
the i.i.d. model, but not in general under the other two models. It says that
one cannot reduce either error probability of an SPRT without resorting to a
test of larger expected sample size (under both hypotheses). B. K. Ghosh (1970)
has described a weaker form of optimality which holds for any SPRT under the
general model. His optimality states that for any given SPRT there is no other
SPRT with smaller error probabilities and a smaller expected sample size.
Simons (1974) refines Ghosh’s results and circumvents an error in his proof
(cf., page 88, line 12). This paper includes and extends Simons’ result (Corol-
lary 3.2) and simplifies his proof.

Following Kiefer and Weiss (1957), a sequential test for deciding between P
and Q, whose stopping variable is N and whose error probabilities are « and B,
will be called inadmissible if there exists an alternative test 77, with stopping
variable N’ and error probabilities a’ and §’, such that

«=a, p=p, PN >n=PN>n),
ON'>n < QIN>n), n=1,2,..,

with at least one of these inequalities strict. T is admissible if no such 7" exists.
Weiss (1953) and Le Cam (1954) show that, under this notion of admissibility,
the family of closed GSPRT’s is an essentially complete class for the independent
model when none of the likelihood ratios assumes a single value (including 0 or
o) with positive (P or Q) probability. The result is more generally true if the
family of GSPRT’s is expanded by the introduction of a mild form of random-
ization (cf., Le Cam (1954)). Their restriction to closed tests (tests which stop
with probability one under both measures) can be removed. Their result can-
not be extended to the general model, as our Counterexample 1 shows. Such
an extension would appear to be ruled out by the fact that the sequence of like-
lihood ratios, which is always transitive under the independent model, need
not be transitive under the general model. (For a definition and discussion of
transitivity, see Bahadur (1954).) When transitivity fails to hold, it is not even
clear that one should restrict one’s attention to stopping rules which depend
only on the values in the sequence of likelihood ratios. However, since transi-
tivity holds in Counterexample 1, there is no hope that the Weiss-Le Cam result
could hold even for a “transitive model.”

A test T will be called strongly inadmissible if there exists an alternative test
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T’ which not only improves upon T in the sense of admissibility (i.e., it renders
T inadmissible) but stops no later than 7 does under P and Q. T is weakly ad-
missible if no such T” exists. While Counterexample 1 shows that not every
SPRT is admissible, Corollary 2.1 below shows that every SPRT is weakly
admissible.

Not every GSPRT is weakly admissible. However, a GSPRT is weakly ad-
missible under the general model if 0 < 4,,, < 4, < B, £ B,,;, < oo for each
n, where the A4,’s (B,’s) are the lower (upper) boundaries of the test.

Kiefer and Weiss (1957) demonstrate conclusively that no simple character-
ization of admissibility is possible under the i.i.d. model. We suspect that the
situation is no better for weak admissibility under the general model. Counter-
example 1 demonstrates that, in at least one respect, the situation is worse. One
must be concerned with weakly admissible tests which are not GSPRT’s (or
even nearly so). This means, of course, that the sufficient conditions for weak
admissibility mentioned in the previous paragraph are not necessary. However,
Theorem 4 states that, for a GSPRT to be weakly admissible, it must be equiv-
alent to a GSPRT for which sup 4, < inf B,, where sup 4, is the supremum of
the lower boundaries of the GSPRT and inf B, is the infimum of the upper
boundaries. This same condition is shown by Kiefer and Weiss to be necessary
for admissibility under the i.i.d. model. Their result follows from Theorem 4.

The condition sup 4, < inf B, occurs as well in Theorem 1, which essentially
states that c(a’ — a) + (8’ — B) = 0 for each real ¢ € [sup 4,, inf B,] (and some-
what more), where « and § are the error probabilities of the GSPRT, and o'
and g’ are the error probabilities of any competing test which stops no later
than the GSPRT. This result generalizes in several directions Theorem 2 of
Wijsman (1960) and shows that the competing test can improve upon one of
the GSPRT’s error probabilities only at the expense of the other. Actually,
Wijsman’s theorem claims, but his proof does not support (cf., Wijsman (1975)),
strict inequalities. The possibility of equality is demonstrated in our Counter-
example 2. Wijsman (1963) leaves open this possibility in a subsequent paper
(Theorem 3), but in a more general context.

Ifsupd, < infB,, < aand §' < B, then & = a, §’ = S and the two tests
make the same decision (or “indecision” when sampling continues forever). This
is described in Theorem 2. '

It should be pointed out that J. K. Ghosh (1960) is probably the first one to
study GSPRT’s under the general model. He shows that every GSPRT is an
unbiased test. Lemma 2 generalizes his result.

It seems appropriate to announce a simple but useful result, which is in the
spirit of this paper, concerning the question of closure. For any GSPRT, under
the general model, the following system of inequalities holds:

(1) A,P(N>n) < Q(N > n) < B,P(N > n), n=1.

These inequalities imply (when inf 4, > 0 and sup B, < o) that either a GSPRT



240 BENNETT EISENBERG, B. K. GHOSH AND GORDON SIMONS

stops with probability one under both probability measures or under neither
one. Similar implications follow concerning the finiteness of the moments of
N. Results of this type will be the subject of another paper.

2. Preliminaries. Let P and Q be fixed probability measures on a measurable
space (2, % ). Usually at this point, one introduces a sequence of random

variables X, X,, - - -, representing potential data, and defines a sequence of
likelihood ratios 2, = ¢,(X;, - - -, X,)/p.(X}, - -+, X,), n = 1, where p, and ¢, are
densities for X, .- -, X,, with respect to a common measure, under P and Q

respectively. However, this model is too restrictive since it does not (naturally)
allow for likelihood ratios based on maximal invariants (as with invariant sequen-
tial tests) nor allow for sequentially designed experiments (as with Robbins and
Siegmund (1974)). Savage and Savage (1965) have solved this problem in a
particular instance by working with “data” of increasing dimensionality. A
general solution is obtained by introducing the following “general model”: Let
£ c&c-.-Cc&,cC 7 beanested sequence of g-fields where &, represents
the “information” available, or to be used, at the nth stage of an experiment.
The likelihood ratio 4, associated with the nth stage of an experiment is defined
directly in terms of &,: An extended nonnegative random variable 1 will be
called a likelihood ratio for a g-field & — .5 if it is &-measurable and

@) Q(E, 2 # o0) = {,AdP,  P(E,A+0)={,41d0, Eec&,

where 27! = 0 when 2 = oo. It is easy to verify that 2, which is little more
than a Radon-Nikodym derivative, always exists and is unique up to a P and
Q equivalence. Moreover, if & is generated by a random mapping X, then 2
becomes the likelihood ratio of X in the usual ratio of densities sense.

A stopping variable N is an extended random variable taking values in the set
{1,2, ..., oo} such that the event [N =n]e&, for each n=1,2, ..., .
Denote by &, the o-field of events up to time N, that is of events E such that
E n [N =n]e&, for each n. It easily follows that the extended random vari-
able 4,, which agrees with 4, on [N = n], is in fact the likelihood ratio of &.

A decision D is a random mapping taking values in the “action space” {P, Q, A}
such that the event [D = a] e &, for each action @, and such that [D = A] =
[N = oo]. The occurrence of the event [D = P] ([D = Q]) will be interpreted
to mean that the null (alternative) hypothesis, that P(Q) is the true probability
measure, has been accepted. The occurrence of the event [D = A] simply means
that neither hypothesis is accepted.

A test T is a pair (N, D). The error probabilities for T are defined by a =
P(D=Q)and 8 = Q(D = P). TwotestsT = (N, D)and T’ = (N’, D’) are said
to be equivalent if PN = N', D = D'y = Q(N = N', D = D') = 1.

A generalized sequential probability ratio test (GSPRT) is a test T = (N, D) of
the form:

N=first n>=1 suchthat 2,6¢(4,, B,),

= oo ifnosuch n exists,
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D=P on [N< oo,y < A4,], and
=0 on [N<oo,iy= By,

where 4, and B,, 0 < 4, < B, < oo, are fixed constants for n = 1,2, .... D
is defined as P if 4y = Ay = By =0andas Qif 3, = 4, = By = c0. If0 <
Ay = Ay = By < o0, D can be defined as P or Q in an arbitrary manner, or by
randomization. (The restriction [D = a] € &, is no barrier to randomization.)
This test will be denoted as §(4,, B,) for short. If each 4, = A and each B, = B,
with 4 < B, the test T = S(A4, B) is the sequential probability ratio test (SPRT).

For the remainder of this paper T = (N, D) denotes a GSPRT, unless other-
wise stated, and, when relevant, 7" = (N’, D’), with error probabilities a’ and
g, denotes a competing test.

3. Theory. There is a wealth of information contained in (2). For instance,
if T = (N, D) is the GSPRT S(4,, B,), then 4, < 4, < B, when N > n, and (1)
is immediately obtainable upon setting & = &, and E = [N > n]in (2). Alter-
natively, if T is the SPRT S(A4, B) and one sets & = & and E = [D = P], then
Ay £ A on E and the well-known inequality 8 < A(1 — «) directly follows. The
related inequality « < B~'(1 — g) is similarly derivable. In fact, it is possible to
derive the celebrated “fundamental identity” of sequential analysis from (2) (cf.,
Bahadur (1958)). The identities of (2) are at the heart of the following lemma.

LeMMA 1. Let T = (N, D) be the GSPRT S(A,, B,). Then for each event
Eec &y,

4 Q(E N [D = Q] N [4y # o]) = (inf B,)P(E n [D = Q])
and
%) PEN[D=PIn[iy#0]) = (sup4,)'QEN[D=P)).

REMARK. With this lemma and the theory which follows, the product co - ¢
will be interpreted as co for ¢ > 0, as 0 for ¢ = 0 and —oo for ¢ < 0. For
instance, if each B, = co, (4) implies « = P(D = Q) = 0.

Proor. Let & = &, in (2). Then En [D = Q] e & and
Q(E n[bD= Q] n [ZN +* oo]) = SEn[D:Q] Ay dP
> (inf B,)P(E n [D = Q]).
The proof of (5).is similar. []

THEOREM 1. Let T = (N, D) be the GSPRT S(A4,, B,) and T' = (N', D’) be any
other test for which N' < N a.s. under P and Q. Further, suppose sup A, < inf B,.
Then for every c € [sup 4,, inf B,],

(62) (@ —a—p)+ (P —p—g0

and

(6b) @ —a—p+c(F—-p-9=z0,
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where
p:P(D:A,D':Q)—l—P(D:P,]N:(),D':Q),
q:Q(D:A,D’:P)—|—Q(D:Q,2N:OO,D’:P).
REMARK. Because of the convention described in the previous remark, the
two inequalities (6a) and (6b) are not always equivalent. Inequality (6b) is

more informative than (6a) when ¢ = 0 (so that ¢! = o0), and (6a) is the more
informative when ¢ = oo (so that ¢! = 0).

PROOF. a = PD =Q)=P(D=D'=Q)+ P(D=Q + D')and o« = P(D' =
Q)=P(D=D = Q)+ P(D+ Q= D). Since NN < N, D' + A when D = Q.
Thus

(7) 0(’—a’:P(D:P,D':Q)+P(D:A,D’:Q)—P(D:Q,D':P)
and
8) o —a—p=PD=P,Ay+0,D=Q0)—PD=Q,D =P).
Likewise
9) F—p=0D=0,D=P)+QD=A,P =P)—QD=P,D =Q)
and
(100 F—f—g=0D =0,y +00, ) =P)— QD =P, D' =0Q).
Set E=[D' = P]in (4) and E = [D’ = Q] in (5). Then (4) and (5) yield
B —B—9 +QD=P,D =Q)= (infB,)P(D = Q,D =P)

and

(@ —a—p)+P(D=0,D =P)= (sup4,)7Q(D =P, D' = Q),
from which (6a) easily follows for 0 < ¢ < o0, and (6b) follows for 0 < ¢ = oo.
Now suppose ¢ = oo. Then necessarily inf B, = oo, « = 0 and from (8) &’ —
a—p=PD=P,2,+0,D=0)=0. But when o’ — a — p > 0, (6a) is
obvious (for ¢ = o). On the other hand, if «’ — a« — p =0, then P(D = P,
Ay # 0, D' = Q) = 0 and, using (2) for & = &,

Q(D =P, D = Q) = Q(D =P, D =0, ZN ES OO) = S[D:P,D':Q] lNdP =0.
Consequently, (10) becomes ' — 8 — ¢ = QD = Q, 4y # o0, D' = P) =0,
and, again, (6a) follows. A similar proof establishes (6b) when ¢ = 0. []

Theorem 1 has the following two simple but important corollaries:

CoroLLARY 1.1. Under the assumptions of Theorem 1, if o’ < a and p' < B,
then o/ = a and ' = §.

CoroLLARY 1.2. [If, in addition to the assumptions of Theorem 1,sup 4, < 1 <
inf B,, then

(11) o+ Fzatp.
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It is pointed out in the introduction that Theorem 1 substantially generalizes
a theorem of Wijsman’s (1960). In addition, it is a close analog, in a more
general setting, of Simons’ (1974) Proposition 1. Corollary 1.1 can be used to
circumvent the error, previously referred to, in B. K. Ghosh’s (1970) proof.
(Alternatively, his proof can be patched up with the use of somewhat stronger
assumptions.) Corollary 3.2 below generalizes his theorem. Corollary 1.1
means, among other things, that, under the stated assumptions,

d <la=pF >4 and < pf=a>a.
Counterexample 3 shows that these implications need not hold if the assumption
sup 4, < inf B, is dropped. Note that, if (N = n) = Q(N = n) = 1, Corollary
1.1 reduces to the Neyman-Pearson lemma.

The assertions of Corollary 1.1 do not imply that the competing test 7’ can-
not be superior to the GSPRT T. It is possible thata’ = a, §’ = f,and N' < N
with (P and Q) probability one. (See Counterexample 4.) Furthermore, the
equalities o’ = @ and 8’ = 8 (and even N’ = N) do not imply that T’ makes
the same decision as T. (See Counterexample 5.) Theorem 2 below addresses
itself to the latter issue, and its corollary addresses itself to the former. A lemma
is needed first.

LemMMA 2. Let T = (N, D) be a GSPRT. Then for each integer m = 1 and any
event E¢ [N =z m]&,,

(12) Q(E n [D = QDP(E) = P(E 0 [D = QQ(E)
and
(13) P(E n [D = P))Q(E) = Q(E n [D = P])P(E) .

RemMARK. This lemma generalizes J. K. Ghosh’s (1960) Theorem 1. If
P(E) > 0 and Q(E) > 0, then the conclusions in (12) and (13) can also be ex-
pressed in terms of conditional probabilities, i.e., Q(D = Q|E) = P(D = Q| E)
and P(D = P|E) = Q(D = P|E).

Proor. It suffices to show for n = m that

7o =P(EN[D=P,N<n)QE)— QEN[D=P,N< n)PE) = 0
and '

3,=QEN[D=Q,N<n))P(E)y — P(En[D=Q,N<n))Q(E) = 0.
In turn, it suffices to show for n > m that
(14 nQENINz ) 270 QEN{INzn] - C)) +0,,0EnC,)
and
(15) 0, P(EN[NZn) = 0, PEN{IN=n] = D} + 1. P(EN D),

where C,=[D=P,N=n], D,=[D=Q,N=n] and (since Ec[N =
m)& ) m—1 = Om-y = 0. Because, if Q(E n [N = n]) > 0, then the inequalities
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Tae1= 0, 0,0, =0 and (14) imply 7, = 0; and if Q(E n [N = n]) = 0, then
7Tn=PEN[D =P, NZn)QE)—QEN[D=P,N<n—1)PE)=7,,= 0.
In either case, the inequalities 7,_, > 0 and J,_, > 0 imply 7, = 0. Similarly,
they imply 9, > 0. Now by direct computation,
T'n = Tu1 = P(E N C)Q(E) — Q(E n C,)P(E)

and

Opy — Tuos = P(EN [N = n])Q(E) — Q(E 0 [N = n])P(E) .
It follows that (14) is equivalent to

(16)  Q(En {[N=n] — C)HP(E n C,)Q(E)
= P(E 0 {[N = n] — C,HQ(E n C,)Q(E) .

But on C,, 4, < 4, (the lower boundary of the GSPRT at sample size n), and
on[N = n] - C,, 4, = 4,. Using these facts, (16) follows upon two applications
of (2) with & = & :

Q(E N {[N = n] — CHP(En C,)
= SEn{[Ngn]—Cn) Zn dap . P(E n Cn)

= A4,P(E 0 {[N = n] — C)P(En C,)

= P(ENA{INzn] —C}) znc, 4, dP

= PEN{[Nzn]— CHOENC,).
The derivation of inequality (15) is similar. [J

THEOREM 2. Let T = (N, D) be the GSPRT S(A,, B,) and T' = (N', D') be any
other test for which N' < N a.s. under P and Q. Further, suppose 0 < sup 4, <
infB, < co. If’ < aand ' < fthen P(D' = D) = Q(D' = D) = 1.

Proor. It will be shown that (a) P(D # D' = A) = Q(D # D’ = A) = 0, (b)
PD+D =Q) =QD+D =P)=0,and(c)P(D+ D =P) = QD+ D =
Q) = 0. Now (a) is an immediate consequence of the fact that N’ < N a.s.
under P and Q.

To show (b): From (7) and (9), it is seen that P(D =D’ = Q) < P(D = Q,
D=P)and QD+ D =P)< QD =P, D = Q) since @’ < a and ' < f.
Consequently, (inf B,)Q(D # D’ = P) < (inf B,)Q(D = P, D' = Q) (which by
Lemma 1) < (inf B,)(sup 4,)P(D = P, D''= Q) < (inf B,)(sup 4,)P(D = Q, D' = P)
(which by Lemma 1) < (sup 4,)Q(D = Q, D' = P) < (sup 4,)Q(D # D' = P).
Since sup 4, < inf B,, Q(D +#+ D' = P) =0. A similar proof shows that
P(D + D' = Q) = 0.

To show (c): To show Q(D # D' = Q) = 0, it suffices to show that

(7) QD =D =Q,N=m=QD =Q,N=m), m=1,2,....
Now the event £ = [D' = Q, N' = m] ¢ [N = m]&,,. Thus, by Lemma 2,
(18) QD =D =Q,N =mP(D = Q, N = m)

>PD =D =Q,N =mQD =Q,N =m).
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But, by part (b), (D = D' = Q, N' = m) = P(D' = Q, N' = m). Consequently,
(18) implies (17) for any m for which P(D’ = Q, N' = m) > 0. Furthermore,
(2) (with & = &) implies (17) for any m for which P(D’ = Q, N’ = m) = 0:
Q(D:D':Q,N’:m)

> QD' = Q, 2, = co, N' = m)

— QD' =Q,N =m) — QD' = Q, 4, # oo, N' = m)

= Q' = O, N' = 1) — $(preg.rem) A AP

:Q(D’:Q,N’:m).

This shows Q(D #+ D' = Q) = 0. The relation P(D = D’ = P) = 0 is shown
similarly. []

CoRrOLLARY 2.1. If, in addition to the assumptions of Theorem 2, the sequence
A, is nonincreasing and the sequence B, is nondecreasing, then the test T' is equiva-
lent to T.

Proor. In view of Theorem 2, it suffices to show (a) P(D' = P, N > N') = 0,
(b) QD' =P, N>N')=0, and (c) (D' =0, N> N)=Q(D' =Q, N> N') =0.
The proof of (c) is similar to the proofs of (a) and (b). Also, it is a simple con-
sequence of Lemma 3 below that (a) and (b) are equivalent. Consequently, only
(a) will be shown. Theorem 2 will be used in several places and (2) will be used
twice, once with & = &, and once with & = & :

O:Q(D’:P)—Q(D:P)g Q(D’:P,ZN,i oo)—Q(D:P,2N¢ o)
= S[D’:P] 'ZN’ dpP — S[D:P] 'zzv dP = S[D=D’=P,N>N’] (RN’ - ZN) dp.

Buton [D =D =P,N> N, 4y > Ay = Ay = 4, because of the monotoni-
city of the 4, sequence. Consequently, P(D' = P,N > N')=P(D =D' =P,

Corollary 2.1 shows that a GSPRT S(4,, B,) is weakly admissible if 0 < A,,, <
A, < B, < B,.; < oo forn = 1. Inparticular, every SPRT is weakly admissible.
On the other hand, a fixed-sample likelihood ratio test, treated as a GSPRT,
does not satisfy the boundary conditions of Corollary 2.1, and, in fact, it is easily
shown that not every fixed-sample likelihood ratio test is weakly admissible.’

A stopping variable N will be called regular if, for each n = 1, N > n implies
4, # 0 or co. Every GSPRT has a regular stopping variable, as does every
sensible test.

LemMMA 3. Let N be a regular stopping variable and N' be any other stopping vari-
able. Then, for any event E € [N' < N]&,, P(E) = 0 if, and only if, Q(E) = 0.

Proor. From (2), it easily follows that P(E) = 0 implies Q(E) = 0 for
! For example, suppose a coin is tossed twice and one is testing p (= probability of a head) = }

versus p = 4. The test which rejects p = § if both tosses are heads is a strongly inadmissible
likelihood ratio test; if the first toss is a tail the second toss is unnecessary.
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Ee[4 # o0]&, and that Q(E) = 0 implies P(E) = 0 for Ee[1 # 0]#. Thus,
it suffices to observe that [N’ < N]is a subevent of [1y, # 0 or co] when N is
regular. []

Theorems 1 and 2 discuss a GSPRT T' = (N, D) = $(4,, B,) and a competing
test 7" which must stop by the time T does. A different kind of competitor will
now be considered. For purposes of introduction, suppose 7/ = (N’, D’) is a
second GSPRT S(4,’, B,’) with boundaries “above” those of T, that is, with
A, = A, and B,’ = B, for each n. Then, by geometrical considerations,

(19) D=P=D =P and N’éN,
(20) D=Q=D=Q and NS N.
(The special case N=N', Ay = Ay = By = Ay’ = B,’, D =P, D' = Q must

be excluded.) The next theorem discusses competitors 7 = (N’, D'), not neces-
sarily GSPRT’s, which satisfy (19) and (20).

THEOREM 3. Let T = (N, D) be the GSPRT S(A,, B,) and T' = (N', D) be any

other test which satisfies (19) and (20). Then
(i) a—a" =PD+D)—PD=A,D =P)=PD #+D=0Q)

(i) P—pB=0D+D)—QD=0Q0,D=A7A)=QD +D =P)

(111) If‘@'Z‘B, thena——a’:P(DiD’ =P(D:Q,N’:OO)—|—P(D:Q,
D' =P, N<N).

(iv) If B = p and the sequence A, is nonincreasing, then P(N' = N) =
QN = N) = 1.

Proor. Statements (i) and (ii) follow directly from (19) and (20).

To show (iii): Inview of (i) and (ii), it suffices to show that (D D' = P) =0
implies P(D ++ D' = P, N = N’) = 0 or, what is equivalent,
P(D=D =P,N=N =m)
=PD'=P,N=N =m), m=1,2,....
With the aid of (13) of Lemma 2, this can be deduced in the same way the
conditions in (c), appearing in the proof of Theorem 2, are deduced.
To show (iv): This follows from the conditions in (a), (b) and (c), appearing
in the proof of Corollary 2.1. Step (c) follows immediately from (20), and the

equivalence of (a) and (b) follows from Lemma 3. The remaining step (a) is
shown as in the proof of Corollary 2.1 with minor modifications. Because of (19),

S[D':P] ZN' P — S[D:P] RN ar ; S[D:D':P,N>N’] (RN' - RN) ar.
Also, the equation P(D' = P, N > N') = P(D = D' = P, N > N'), appearing in
that proof, is a consequence of (iii). []

Counterexample 6 demonstrates that the condition Q(D # D’ = P) = 0 does
not imply P(D # D' = P) = 0. It shows that the last probability in (iii) is not
superfluous. It can be positive.
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Notice that (iii) above says, among other things, that
a=a and p=p =PD=D)=1.

However, the implication Q(D = D’) =1 is not warranted in general. See
Counterexample 7. But if 77 is a GSPRT S(4,’, B,’) which satisfies (19) and
(20), then the implication Q(D = D’) = 1 is warranted. This can be seen by
interchanging the roles of T'and 7", and of P and Q, in Theorem 3. Moreover,
if, in addition, the sequence B,’ is nondecreasing, then P(N' < N) = Q(N' =<
N) = 1. Consequently, we have:

CoRrOLLARY 3.1. Let T = (N, D) be a GSPRT S(4,, B,) and T' = (N', D') be
another GSPRT S(4,’, B,’) which is above T (i.e., which satisfies (19) and (20)).
Ifa =a and § =, then P(D = D'y = Q(D =D') = 1. If, in addition, the
sequence A, is nonincreasing and the sequence B,' is nondecreasing, then T and T’
are equivalent tests.

CoROLLARY 3.2. Suppose T = (N, D) and T' = (N', D) are SPRT’s for which
o L aand f < B. Then:

(i) PANEN)=Q(NEN)=1,PIN=N',D#D)=Q(N=N',D=+D")=0.
(i) If ’ = aand ' = B, then T and T' are equivalent.
(iii) If o’ < aor B’ < B, then P(N < N') and Q(N < N') are both positive.

Proor. If the boundaries of T’ are between those of T, then T and T’ are
equivalent tests according to Corollary 2.1. Alternatively, if the boundaries 4’
and B’ of T" are “above” the boundaries 4 and Bof T (i.e., A = A and B’ = B),
then, by (ii) of Theorem 3, 8’ = . If, in addition, &’ = «, then Corollary 3.1
implies the conclusion in (ii). On the other hand, if & < a, then (iii) of Theo-
rem 3 implies P(N < N’) > 0. Likewise, Q(N < N’) > 0, as a consequence of
Lemma 3 (with the roles of Nand N’ reversed). Thus (iii) holds. To see that (i)
holds, observe that P(N < N') = Q(N < N’) = 1 according to (iv) of Theorem
3, and that P(N = N’, D + D’) = 0 according to (iii) of the same theorem. Like-
wise, O(N = N, D == D’) = O since [N = N', D =+ D’] is a subevent of [4, = 0
or oo]. (See the proof of Lemma 3.) Alternatively, if the boundaries of T are
above those of 77, a similar argument applies. The remaining alternative to
consider is that the boundaries of T are between those of 7’. Then (i) is obvious
on geometrical grounds, and (ii) is a consequence of Corollary 2.1. Now
P(N < N’y and Q(N < N') are positive together or zero together according to
Lemma 3. Assume, for purposes of contradiction, that P(N < N') = Q(N <
N’) = 0. Then (i) implies that P(N = N’) = Q(N = N’) = 1 and, in turn, that
P(D + D'y = Q(D #+ D') = 0. Consequently, ' = a« and §’' = 5. This estab-
lishes (iii). []

In the remainder of this section, it is shown that only a certain class of
GSPRT’s can be weakly admissible. The approach is based upon the Neyman-
Pearson fundamental lemma and is quite elementary. Kiefer and Weiss (1957)
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use a more sophisticated approach, utilizing the theory of sequential optimiza-
tion, to establish a related result for admissible GSPRT’s. We see no way to
prove our more general result using their approach.

Let N be any stopping variable. For each point k € [0, o] and 7 € [0, 1],
define a randomized test T'(k, y) = (N, D(k, 1)), where

Dk,7)=P if N<oo and 2,<k,
=Q if N<oo and 2, >k,
= P with probability y if N< oo and 1, =k,
= Q with probability (1 —7) if N< oo and 2, =k,
=A if N=o.
Let a(k, r) and B(k, r) denote the error probabilities of T'(k, y). Finally, for ease

of exposition, linearly order the points (k, y) in the rectangle [0, co] X [0, 1]
lexicographically. Then

(i) a(k, )(B(k, 7)) is a nonincreasing (nondecreasing) function of (k, ) and
assumes every value in the interval [0, P(N < o0)]([0, Q(N < o0)]).
(ify For a given value a € [0, P(N < o0)], the equation a(k, 7) = a holds for a
least value (k, 71,).
(iii) T'(k,, 7o) is @ most powerful test of size a among all tests whose stopping
variable is N.

This last result is a version of the Neyman-Pearson fundamental lemma. It
follows from (2). In particular, if T = (N, D) is a test with error probabilities
a and $, then: when k, < oo,

QL) = Blko 1)) = § (Ay — k)(I(D = P) — I(D(ky, 1) = P))dP = 0
(where I(E) = 1 if the event E occurs, and = 0 otherwise), and when k, = oo,
a(ke, 1) = @ = 7, = 0 and

Blko 10) = QN < 00, Ay # 00) = (e Ay dP = §1p_py 2y dP < B

If T is weakly admissible and k, < oo, the integrand in (21) must be zero
almost surely (P), and it follows that

(22) P(Qy > ky D =P) =Py <kyD=0)=0.

This holds as well for k, = co. Suppose, further, that T is a GSPRT S(4,, B,).
Define 7" = (N', D') = S(4,', B,’) where 4,’ = min (4,, k), B,' = max (B,, k)
and D' = D if 4y = Ay = By = k,. Clearly N’ = N. Since the event [N’ > N]
is contained in the union of the two P-null events described in (22), P(N =
N’y = 1. It follows from Lemma 3 that Q(N = Ny = 1 as well. Thus, we have
demonstrated:

THEOREM 4. Every weakly admissible GSPRT is equivalent to a GSPRT S(4,, B,)
for which sup 4, < inf B,.
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4. Counterexamples. The counterexamples below are referred to by number
in previous sections. These points of reference explain their relevance. Only
needed information is given. Thus, only the random variables X, and X, are
described in several counterexamples where N and N’ are no larger than two.
Everywhere T = (N, D) is a GSPRT S(A4,, B,), sometimes an SPRT. 7T’ =
(N', D') is a competing test.

CoUNTEREXAMPLE 1. T = §(.98, 1.05)

X, X, P Q A 2
-1 =1 .33 0 970 0
—1 1 0 .32 .970 oo
0 -1 .18 .16 1.000 .889
1 .16 .18 1.000 1.125

0
1 -1 .33 0 1.030 0
1 1 0 .34 1.030 o)

(Here, the third and fourth columns give the Pand Q probabilities of the various
X, X, pairs. The values of 4, and 4, are computed from these to three decimal
places.)

a=PD=0)=.16, a =PD =Q)=0, B=QWD=P)= .48,

B =QW =P)=.34, P(N = 1) = .33, P(N' =1) = .34,

QN=1)=.32, ON'=1) = .34.

REMARKS.

l. Sincea’ < a,f < B, AN'=1) > P(N =1)and Q(N' = 1) > O(N = 1),
T’ is better than T in essentially every respect and T is an inadmissible SPRT.

2. lItis easily shown that 7" is admissible and, consequently, weakly admissible.

3. T’ is not equivalent to any GSPRT.

4. Since 2, determines X; and (4,, 4,) determines (X,, X,), transitivity holds if,
for instance, X, = 0 for n > 3.

=
<

S R S N
QWO ~vw~w~x T
DR = =N
CQ~xN~YT~NRQ ™

COoUNTEREXAMPLE 2. Let X, X, ... be i.i.d. Bernoulli variables with mean
4 under P and mean 2 under Q. For T = S(%,2), a =2 and B = i. For 7" =
$(3,2), @ = =4 Then2(a’ — a) + (B — B8) = 0.

COUNTEREXAMPLE 3. 4, =1,B, =2, 4, =0, B, = 1.

X, X, P Q A A N=N D D
-1 —1 %+ 0 0 o0 1 P P
0 —1 4 1 13 2 Q P
0 L3 & 13 3 2 e ¢
1 1 o+ 1 1 1 P Q

= <j=aand ff=4<1=4 max(4,4)=1>%=min (B, B,).
Thus sup 4, > inf B,. There exist more complicated examples of this type within
the independent model.
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CoUNTEREXAMPLE 4. Let X, be a Bernoulli variable with mean § under P and
mean 2 under Q, and let X, =0. Then 4, =4, =}if X, =0and 4, = 2, = 2
if X, = 1. Let 4, = %, B, = 4, A, = %, B, =2, and let T’ = S(%, 2) Then
a:a’:,@:ﬁ’:%, P(D=D’)=Q(D:D’):landmax(A,,Az)—_—.%<2:
min (B, By). But N’ =1and N = 2.

COUNTEREXAMPLE 5. A, =1, B, =2, 4, =0, B, = 1.

X, X, P Q 4 4 N=N D D
1 -1 3 0 0 0 1 P P
0 —1 1 1 13 1 2 0 P
o 1 1 1 1% 2 2 0 0
1 1 1 11 1 P 0

Here, a =o' =4, =8 =%, N= N and max (4,, 4,) = min (B, B,) = 1.
But P(D #+ D’) and Q(D + D') are both positive.

COUNTEREXAMPLE 6. Let X, (X)) be a Bernoulli variable with mean 1 (zero)
under P and mean % (one) under Q. Further, let T = S(%, 2) and T’ = S(3, 3),
so that T’ is “above” T. Then Q(D # D' = P) =0. But P(D# D' = P) =
P(D# D' =P,N<N')=PX, =1) =4. As the proof of Theorem 3 asserts,
P(D+D =P,N=N)=0.

COUNTEREXAMPLE 7. Let X, X, ... be i.i.d. Bernoulli variables with mean
% under P and mean % under Q. Let T = S(}, 2) and define N’ = inf{n > 1:
L,Z1L,[D=P]l=[X,=0],[D=Q]=[X;=1,4, =1 forsomen > 2] and
[D)=A] =[N = o] =[4,>1,n=1]. Then (19) and (20) are satisfied, @ =
a=8=p :%andP(D:D’): 1. Bth(quD'):Q(D:Q,D':A):%.
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