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ASYMPTOTIC LINEARITY OF WILCOXON
SIGNED-RANK STATISTICS!

By ANDRE ANTILLE
University of California, Berkeley

As a ‘“‘robust” alternative to the least squares estimates for a regression
parameter, Koul (1969) proposed new estimates based on signed-rank sta-
tistics. To find out their asymptotic distribution Koul proved that under
quite general assumptions, the signed-rank statistics of Wilcoxon type are
asymptotically linear in the sense that they are uniformly approximable by
linear forms in the regression parameter. More general results have been
obtained by Van Eeden (1972) in a paper which is an analog to JureCkova’s
paper (1969) dealing with linear rank statistics.

In 1972 the author proved that the statistic used to define the Hodges-
Lehmann estimate for a location parameter is asymptotically linear in a
stronger sense, the result being to Koul’s theorem what the central limit
theorem is to the weak law of large numbers.

For the general linear regression model with one parameter the signed-
rank statistics are proved to be linear in a strong sense, that is, the differ-
ences between the statistics and the linear forms mentioned above, properly
normalized, converge weakly to linear processes. Results in this direction
for linear rank statistics have been obtained by Jureckova (1973). As an
application of the theorems presented here, one can construct new estimates
for the squared L;-norm of the underlying density, and this in much the
same way as in Antille (1974). It is also possible to get more information
about the asymptotic behavior of the linearized versions, proposed by Kraft
and Van Eeden (1972).

0. Introduction. Let x,, x,, - - -, x, be independent real random variables with
continuous distribution functions F(y — b,,7),i =1, 2, - . ., n, where the numbers
biw» i=1,2, ..., n are known and ¢ is unknown. Consider the problem of
estimating ¢ in the case where F(y) has a density f(y), symmetric around the
origin. The usual least square estimates are very sensitive to large deviations.
A “robust” alternative to this method was proposed by Koul (1969). His esti-
mates are derived from linear signed-rank statistics. To study the asymptotic
behavior of such estimates Koul proved that under quite general assumptions
the signed-rank statistics of Wilcoxon type are asymptotically linear in the
parameter, that is, the statistics differ from a linear function by an amount
which tends to zero in probability as the number of observations increases. A
similar result about linearity in the two-sample situation is due to JureCkova
(1969). In 1972 the author proved that in the case of a location parameter the
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rank statistic used to define the Hodges-Lehmann estimate is not only linear
in the sense mentioned above, but if the difference between the statistic and
the linear form is multiplied by a suitable constant (usually n*) one obtains a
stochastic process which converges weakly (in the “Skorohod” topology) to a
linear process.

Such a property is shown to hold for more general processes in the case of
linear regression with one parameter. However, this paper deals with Wilcoxon
signed-rank statistics only, i.e. statistics with linear score generating function.
Similar results were proved by JureCkova (1973) for linear rank statistics of
Wilcoxon type.

The results presented here enable us to get more precise information about
the asymptotic behavior of the linearized versions proposed by Kraft and Van
Eeden (1972), as well as new estimates of the squared L,-norm of the underlying
density. This can be done in much the same way as in Antille (1974).

The paper is divided in three sections and an appendix. In Section 1 we state
the general assumptions and the main theorems. We also set up some notation
which will be used throughout the paper. Section 2 contains the proof of the
weak convergence of the finite dimensional distributions, while the “tightness”
property is considered in Part 1 of Section 3. A proof of Theorem 2 is given
in Part 2. Two propositions and two lemmas constitute the Appendix.

1. Notation, assumptions, theorems.

1.1. Notation. If an integral extends over (—oo, 4 oco) then write {. The
indicator function of a set A4 is denoted by /(4). Symbols of the form ¥},
mean that the summation extends over all 1 < i, Jj = n with j = i. Denote by
E(X|Y) the conditional expectation of X given Y. Let ||f||, be the L,-norm of
f- For every real, bounded function x, defined on [0, 1], let

w(x, 8) = sup {|x(f) — x(s)|: 2, s [0, 1], |t — 5| < d}.

1.2, Assumptions and definitions. Let X, X,, - - - be i.i.d. real random variables
with symmetric density f(x). Let b, and ¢,,, 1 <i<n, n=1,2,..., be
constants satisfying:

(@) SUPigizn [Oin] + SUPicic, [€in] < M for all n,
(b) [Supléién (bf’ﬂczn)][zr b%nczn]_l - O as n — 0,
(C) (ZZL bincin)n_l - k :ré O as n — oo,
(d) for all n, either:

1. ¢,b,=0 for all i,

(el = l€;al)([bia] — [ba]) 20 forall 4,j,

N

or
1. ¢,06,<0 for all i,

2. (Icwl - lcml)(lbml - Ibml) % 0 for all i’j :
Set d,, = n7tb,. Let R!, be the rank of |X, — td,,| among |X, — td,,),
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k=1,2,...,n Letsign(X;)=1 for X; >0, = —1 for X, <0. Without
confusion R}, ¢;, d; will be used instead of R, c,,, d;,-
Define:
S.(f) = (n+ 1)~ v ¢, sign (X; — d, )R},
T.(t) = S, () — S.(0),
Y,(1) = To(t) — E[T,(0)].

1.3 Theorems.

THEOREM 1. Assume that [ is continuous except for a finite number of jump
discontinuities. Suppose further that § f*(x)dx < oo. Let ¢* = 4[{ f3(x)dx —

(§ f2(x) dx)?) and
Ay =[St eld? + 3(T5 e, dyn + )7

Then the process (A, Y ,(1));c10,11 COnverges weakly to a process of the form (tZ), 10115
where Z is a real random variable with normal distribution N(0, c?).

THEOREM 2. Suppose that f satisfies the assumptions of Theorem 1 and

(i) lim, o A= §§%, [f(x — y) — f(x)] dydx = 0.

Let B, = 2(3 v c,d)||f|ls*- If in the definition of Y ,(t) the quantity E[T,(f)] is
replaced by —1tB, then the conclusion of Theorem 1 holds.

RemARk. Condition (i) of Theorem 2 is satisfied if, for example,

(1) f is such that |f(x + ) — f(x)| < |f|*h(x), with a >} and h(x)e
Ly(—o0, +00),
or

(2) fis absolutely continuous and f’ € L,(—oco, 4 o).

1.4 Preliminaries. In order to prove Theorem 1 it is enough to show (see
Billingsley (1968), Theorem 15.1) that

(A) the finite dimensional distributions of 4, Y,(f) converge weakly to the
corresponding distributions of ¢Z,
(B) the sequence {4,7Y,} is tight.

To prove relations (A) and (B) two successive approximations of the process
Y, () = T,(t) — E[T,(¢)] are used. First T () is written as a sum of two pro-
cesses U,(r) and V,(f) (say), the last one being asymptotically negligible. Then
the process U, (f) — E[U,(t)] is approximated by its projection (in the sense of
Hajek (1968)). At this point the main problem consists in finding a bound for
the variance of the difference. Such a bound is given in Proposition 1 of the
Appendix.

2. The finite dimensional distributions. Consider the process T,(¢) of Section
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1.2 and define the following processes:
Un(t) = (n + )7 2% jp el X; — 1d,| < X, — td))
—I(1X;] < X)) + 1(|X)| < —X,) — [(|X; — td;| < —X, + 1))},
V() = 2(n + 1) X% e[ 1(X; > td;) — I(X; > 0)],
Xo(1) = Un(r) — E[UL(] -
Then with probability one, T,(r) = U,(f) + V,(f) and
Yo (1) = X,(t) + V.(0) — E[V(1)] -
We first show that the process V,(f) is asymptotically negligible.
LeMMA 2.1. Under the assumptions of Theorem 1,
E[sup{|V,.(9)|:te[0,1]}]] -0 as n— oo .
PRroor. Since |d;7] < Mn~%, for all i and all € [0, 1],

(X, > td) — I(X, > 0)| < I(—Mn~ < X, < Mn~¥).
Hence
sup{|V.(0)]:te[0, 1]} < 2M(n + D v I(—Mn~t < X, < Mn™Y).
Therefore,
Efsup {[V. ()] : 1€ [0, 1]}] = 2M {¥};,%4 f(x) dx .
By assumption, § f*(x) dx < co and the lemma follows.

Denote by X,(t) the projection of X,(#), and for simplicity of notation let
ni; = d; + d;, 1:; =d; —d;. Since X,(t) is centered at expectation, X,(f) =
2.1 E(X,(#)| X;) and it is a matter of easy computation to show that

X0 = U0 — ELU.(0)],
where
U(t) = (n + 1) T2 g €[F(X, — 1755) — F(— X, + t75) + F(— X)) — F(X)]
+ (n+ D)7 28w ¢lF(1 X — )| — td;) — F(|X; — td| + td;)].
According to Proposition 1 of the Appendix, E(X,(f) — X.,(f))* < Cltjn—*.

Since 4, is bounded, the last inequality implies that 4,|X,(r) — X,(f)] —» 0
as n— oo, for every te[0, 1]. Thus according to Lemma 2.1 the process
A,Y (1) satisfies Relation (A) of Section 1.4 if the process 4, X, () does.

That A4, X,(t) satisfies (A) is shown next. For this, let

Wo= —2(n+ 1)7' 2% s c:di[ (X)) — (I f11:"]
— 2(n + )7 Tt i F(X) — (I £11°]
W.(t) = tW, .
The variable 4, W, converges weakly to a variable Z which is normally
distributed N(0, ¢*) with ¢® = 4[§ f*(x)dx — (§ f*(x) dx)?]. This follows from
Assumptions (a)—(c) of Section 1.2. Consequently the finite dimensional dis-
tributions of 4, W,(¢) converge weakly to those of the process tZ. The same is
true for the process A4, X,() because of the following.
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LEMMA 2.2. Under the assumptions of Theorem 1,
E(W,(t) — X, (1)) >0 as n—oco, forevery tecl0,1].
Proor. Recalling the definition of »,; and r,; we have:
Wa(t) = —t(n + )7 X% s €iti F(X) — [If11]
—1n + 1) 28 s i S(X) — I f11°]
—26(n + 1)7 T2 i ;L f(X) — (1117 -
Since the X, are independent the following inequality can be easily proved:
E(W, () — X, (1))
< 3(n + )7 X3 . GCEF(X — tryy) — F(X) + 1145 f(X)T
+ 3(n + 1) 1% 0 SCE[F(— X, + 1) — F(—X,) — ;5 f(X)I
+ 3(n + 1) X% e ¢E[F(1X, — 1| — td;) — F(X; — | + 1d))
+ 2td; (X)) -
Since |¢;| < M, for all i, the last expression is smaller than
3M¥(n + 1)7 330 § [§0749 (f(x — ) — f(x) YTf(x) dx
+ 3M(n 4 1)~ 35255 V[§079 f(—x + ) — f(—=x)) dyJf(x) dx
+ 6M(n + )7 2755 {§ [$825 (f(—x + y) — f(—x) dyTfi(x) dx
+ § 87 (f(x — ») — f(x) dyTf(x) dx} .
Now let ¢ > 0 be an arbitrary number. By hypothesis,
SUPigi,jzn [1735] 4 SUPiy ju |f755] < 4Mn~%,
for all ¢ [0, 1]. Hence we can apply Lemma 2 of the Appendix and for n large
enough: E(W,(f) — X,(f))* < ¢ 120M*. ¢ being arbitrary, Lemma 2.2 follows.
3. The tightness of the sequence {4,Y,}. Since 4,Y,(0) = 0, according to
Theorem 15.5 of Billingsley, the family {4, Y,} is tight if
(C) lim,_, limsup, P{w(4,Y,, m™') > ¢} = 0, for every ¢ > 0.
Letting X, X,, V, as defined before, A4,Y,(f) can be written as A,[X,() —
X,(0] + 4. X)) + A[V.(f) — EV,(¢)]. For simplicity write Z,(f) for X,(r) —
X,.(9). .
n](B))( Lemma 2.1 and since 4, is bounded, in order to prove relation (C) it is
enough to show that

(D) lim,,_., lim sup, P{w(X,, m™") > ¢} = 0, for every ¢ > 0,
and
(E) lim,,_, lim sup, P{w(Z,, m~*) > ¢} = 0, for every ¢ > 0.

Consider first relation (D). According to Proposition 2 of the Appendix,
EX, (1) — X.(s))* < D(t — s)*, for ¢, se[0,1].
As it is proved in Billingsley (Theorem 12.3), this implies relation (D).
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PrOOF OF RELATION (E). Let e, be the smallest integer greater or equal to nt.
Forj=0,1,...,m—1,i=0,1, ..., e,, define

iy =m7(j + e, ), I; = [tojs toian] > Jii = [tijs tasns] -
By the triangle inequality, relation (E) holds if
(F) maxyg;gpm_isup {|Z,(1) — Zy(ty;)|: 1€} —50
as n — oo, and then m — oo.
Assumption (d) of Section 1.2 is now used to prove (F). Van Eeden has
shown that under this assumption, the process T,(f) is with probability one a

monotone step function. Then writing down Z, in terms of the processes T,
V,, U, and X, the following inequality can be easily proved:

sup {|Z,(1) — Z,(toy)| : t € 1}
< 2max {|Z,(t;) — Z.(t)|: 1 i e}
+ 2sup {|V.(0)|: te [0, 1]} + w(X,, m™)
+ maxyg,g, 1 SUP {|E[U,(f) — U (9)][: 1 s€ 5}

We already know that the second and third terms converge to zero in probability
as n — oo and then m — oco. So in order to prove (F) it is enough to show that,
as n — oo and then m — oo,

(G) max,g;gn max {|Z,(t;;) — Zu(ty)|: 1 S i < e} =50,
and
(K) max,g;<, _105i5m-1SUP {|E[UL(1) — U, (9)]|: 1, s€J;;} — 0.

PROOF OF RELATION (G). Let C be the constant appearing in Proposition 1
of the Appendix. Apply Lemma II.7 in Antille (1972). For this, replace there
R, by Z (t,,)) — Z,(t;_y;) and u; by Cn~tm=le,"', i = 1,2, ..., e,, to get:

Efmax {|S;|:i=1,2, ..., e, }] < (log,4e,)’Cn~tm~".

The conclusion is justified by Proposition 1 of the Appendix. ButS, = »1{_ | R, =
Z,(t;;) — Z,(ty;). Therefore using Markov inequality,

P{max,g e, max {|Z,(t;;) — Z,(t;)|: 1 £ i < e,} > ¢} < ¢7?Cn~¥(log, 4e,)*.
This proves relation (G).

Proor of RELATION (K). Lett, se[t;;, t,,,;]andlet U, U2, P,; be as defined
in the proof of Proposition 1 of the Appendix. Then U,(f) — U,(s) = U, + U,
In terms of P, U,' can be written as (n + 1)~ 37 .., ¢,P;;. For all i,c, is
bounded by M. Hence |E(U,Y)| < (n+ 1)7*M X7.,, E(|P;]). According to
Lemma 4.1 (Appendix), E(P;;)’ < 4M||f||,’|t — s|n%, for all i,j. Since P, is a
difference of two indicator functions, the same bound applies to E(|P,;|) and
therefore |E(U,Y)| < 4M7||f]|,'n %t — s|. But |t — 5| < m~'e,™ for ¢, se(t,;,
tisn;]- This implies |E(U,Y)| < 4M?||f||;m™*. The same is true for U,’ and
relation (K) is proved.
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4. Proof of Theorem 2. Let A4,, B, be as defined in Theorems 1 and 2. In
view of Lemma 2.1 it is sufficient to show that

sup {|E[U,(1)] + tB,|: t€[0,1]} - 0 as n— co.
By easy calculation we get:
E[U.(0] = (n + 1) 17 jsi GE[F(X; — tr,;) — F(X;)]
+ (n + )7 2850 G E[F(—X,) — F(—X, + t7,)]
= E\() + Ex(t) (say).
Then B, can be written as
Hn+ D)7 2w crallflls’ + tn + )7 38 s il 1l = 1By + 1B, (say).
Now we only prove that
sup {|E\(f) + tB,,|:te[0,1]} -0 as n— oo,
the proof for E,(f) + tB,, being similar.
Let I';(r) = E[F(X; — t7,;) — F(X;) + tr,; f(X,)] and assume (without loss of
generality) that y,; > 0. Then
L] = [§ [§§7 (f(x) — fix — p)) dy]f (%) dx|
=270 §§§u [f(x — y) — f(X)F dydx.
By assumption, fy,; < 2Mn~* and therefore
T < 27§82 [f(x — y) — f(x)]dy dx,
where A, = 2Mn~t. The last inequality is valid for any 7€ [0, 1] and all i, .
Hence
[E(t) + 1By| < (n 4 1)™" 207 104 el |T35(0)]

< Mn27 §§5, [f(x — y) — f()P dydx .
for all t ¢ [0, 1].
By hypothesis (i) of Theorem 2 the last expression tends to zero and the proof
is complete.

APPENDIX
As we showed before the process Y,(f) can be written as Z,(f) + X,(r) +
[Va(t) — EV,(1)], with Z,(1) = X,(f) — X,(r) and [V, (1) — E(V,(1)] asymptoti-
cally negligible. The basic result in this section is Proposition 1, where a bound
for the variance of Z,(r) — Z,(s) is given. A similar result for the process X,
is contained in Proposition 2.

PROPOSITION 1. Let L = sup {|f(x)|: xe[—1, +1]}. Then, under the assump-
tions of Theorem 1, for any t, s [0, 1] and n large enough,

E(Z,(t) — Z(s))* < C|t — s|n~},
where C = 400M?||f]|,? + 800L*M* + 3200M* { f3(x) dx.
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PROPOSITION 2. Let L be as in Proposition 1. Then under the assumptions of
Theorem 1,

E[X, (1) — X,(5) < D(t — s)*,  forany t,s€[0,1],
where D = 80M?*[8L*M* + 32M* § f*(x) dx].
PROOF OF PROPOSITION 1. Let ¢, s be fixed. Then U,(f) — U,(s) can be written
as U,! 4+ U,?, where
= (n 4 1) D3 cll(X; — 1] < X, — 1d))
— I(|X; — sd;| < X; — sd))]
= (n 4+ D)7 D cll(X; — sdj| < —X; + sd)
—I(|X; — td;| < —X; + td))]
and U,(f) — U,(s) as U,* + U,?, where
= (1 + D)7 B Gl > @)[FX, — 17,) — F(= X, + 17,)]
— I(X; > sd)[F(X; — s7:;) — F(=X; + sm:)]}
+ (0 D)7 B0 F(X, — sdi| + sd) — F(X, — ] + 1d))],
= (n+ 1) D10 cl(X; < 1d)[F(X, — t75) — F(—X; 4 t7:)]
— I(X; < sd)[F(X; — s735) — F(=X; + s9:)]}
+ (1 4+ D)7 XL e GIF(X — 1d)| — tdy) — F(X, — sdi| — sd;)] -
Now by definition:
Z,(t) — Z.(5)
= [U} — U} — E(U,} — 0)] + [U? — U, — EQU; = 0,7)]
=Zuy+ Zy (say).
Clearly, Proposition 1 is proved if we show that
E(Z,) < ClAt —sn7t, i=1,2.
The proofs for i = 1, 2, being similar consider the case i = 1 (say).

The process U,! — EU,(U,* — EU,?) is the projection of U, — EU,(U,* —
EU,?. Therefore, E(Z,)* = Var (U,') — Var (U,5. Next we give explicit
formulas for the variances. To simplify the notation define the following new
quantities. Let

P, =I(X; —td;| < X; — td;) — I(|X; — sd;| < X; — sd;) ,
Gy; = I(X; > d)[F(X; — t7;;) — F(— X, + 19,5)]

— I(X; > sd)[F(X; — s7i;) — F(—X; + sn:5)]5
H;; = F(|X, — sd,| + sd;) — F(|X; — td;| + td;) .

In terms of these new variables,

(n+1) Zl]#l [3 17’
(l’l + 1) ZL J#i ¢ 1,_7 + (n + 1) Zz ]#1
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A direct computation shows that:

Var (U,)) = 2(n + 1) 337 1L, 1062 Cov (P, Pyy)
4 2(n 4+ 1)7 2% ji,k01 €6, COV (P, Pyy)
4 2(n 4 1)7 X% isr1ek €56, COV (Pyy, Pyy)
+ 2(n + 1) 2% 1aj ke €€ COV (Pyy, Pyj)
Var (U,Y) = 2(n + 1)2 3% .. ... c2 Cov (G Gy)
+ 2(n 4 1)72 307 5 si ks €6 Cov (G, Hy)
+2(n 4 1) X2 i1 €, Cov (Hy;, Gy)
+2(n 4+ 1) 3 ke €, Cov (Hy, Hy)
The following lemma gives bounds for the covariances appearing in the

above sum.

Lemma 1. Let Py, Gy, H;; be as defined above. Let L = sup {|f(x)|: xe[—]1,
11}. Then under the assumptions of Theorem 1:

(1) E(P) = 4M||f]|’|¢ — s|n*
(2) E(GH) = (BLM? 4 32M* § f3(x) dx)(t — s)*n~,
(3) E(H}y) = 32M*(§ f(x) dx)(t — s)'n~,
forall 1 < i, j < nand nlarge enough.
Proor. (1) Let i, be fixed and define:
a=|X; —td| + td,, B =|X; —sd| + sd;, =\t —sjniM.
Then

E(P};) = E[l(a < X;) — I(B < X,)]" £ E[I(min {a, 8} < X, < max {a, 8]
S Ella <X, <a4+p]+ EIB< X <B+1)].
Therefore,
E(PYy) = E[F(a +7) — F(@)] + E[F(f + 1) — F(B)] .
Now
E[F(« + 1) — F(a)] = E[I(X; < 1d,)(F(a + 7) — F(a))]
+ E[I(X; = wd))(F(a + 1) — F(a))]
= S5 [F(=x + tny; + 1) — F(—x + t7,))]f (x) dx
+ §i, [P+ 155+ 1) — F(x + 17,)]f(x) dx
= VIS S(=x 4 19 + ) dy] f(x) dx
+ V8 SO+ tri; 4+ y) Ayl f(x) dx
Apply the Fubini theorem and the Schwarz inequality to show that the last

expression is smaller than 2y||f||,2>. The same result holds for E[F(8 + 1) —
F(B)] and inequality (1) follows.

(2) Let i,j be fixed and suppose without loss of generality that 1d; < sd,.
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Then by definition,
G; =1(td, < X, < sd))[F(X;, — 1) — F(—=X; + t’?ij)]
+ 1(X; > sd)[F(X; — try;) — F(—X, + ;)
— F(X; — s7135) + F(—=X; + sm35)]
= Gj; + Gi; (say).
By the Schwarz inequality, E(G};) < 2E(G},)* + 2E(G%)’. So, it is sufficient to
give bounds for E(G!)*, k = 1, 2. We begin with G},

By assumption, the density is symmetric around the origin. Since there is
only a finite number of jump discontinuities, f must be continuous on some
symmetric interval around zero. Then on this interval, the distribution function
F is derivable with derivate f. Use this to obtain:

E(G};) < E[I(td; < X; < sd)A(X; — td))*L*], for n large enough.
The right-hand side of the inequality is smaller than 4L*s — t)’d?. Hence
E(G},)? < 4LM*(s — t)’n~, since |d;| < Mn~*foralli. Consider now the second
term G};. By the Schwarz inequality,

E(G,)* = 2E[F(X; — 1715;) — F(X, — s75))
+ 2E[F(—X, + tA;})) — F(—X, + sA, )T .
Suppose without loss of generality that 7,; > 0 and ¢ > s. Then using the
Schwarz and Holder inequalities,

E[F(X, — 17.;) — F(X, — s7.,)]
= [§4 flx — ) dyTf(x) dx
= V8275 fix — ») YIS fx — 2) dz]f(x) dx
< 9 ST9 [V fix — p)fix — 2)f(x) dx] dy dz
= 7 SRS 2 — pfx) dxPLS fi(x — 2)f(x) dx]t dy dz
= (§74 [§ f1(x — p)fx) dx]t dyy?
= (0= 97l § fi(x) ax
< 4AMA(§ f3(x) dx)(t — s)’n7t,
since by definition y,; = d;, — d,.
The same result holds for E[F(—X, + ty;) — F(—X, + s7;;)]". Hence
E(G;) < 16M°*(§ f3(x) dx)(t — s)’n~* and inequality (2) follows.
(3) Let i, fixed and define:

a=|t—s||d| + sd;, B=|t—s|ld]| + td; .
Then
E(H,;y = E[F(X, — sd| + sd,) — F(X, — td| + td,)}
< 2E[F(|X, — td| + ) — F(X, — td] + td))]
+ 2E[F(|X; — sd| + B) — F(|X; — sd,| + sd,)]* .
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The first term is smaller than
2§ [§ia; f(=x + td; + y) dyJf(x) dx + 2 § [§5, flx — td; 4 y) dyT* f(x) dx
< 16M*({ f3(x) dx)(t — s)’n~*.
(See the proof of inequality (2).)
The second term is bounded by the same quantity. Hence E(H,;) <
32M*(§ f(x) dx)(t — s)’n~* and the proof of Lemma 1 is complete.
We now return to the variance U,! — U,. This variance is equal to the differ-
ence of the variances. Use the explicit formulas we gave before to show that:
Var (U,! — U,}) < 4(n + 1) 5. ¢ Var (Py)
+ 4(n + 1) Bty led el |Cov (Pyy, P
+ 4(n + 1)7* 2% o [eil |en] |Cov (Pyy, Puy)|
+4(n + 1)7 Ziis; ¢’ Var (Py)
+ 4(” + 1)_2 Z?,i#i ciz Var (Gij)
+ 4 4 1)7* ks [ail e [Cov (Gy, Hy)
+ 4(n + 1)7* Tk [eil |en| |Cov (H,is G|
+4(n + 1)72 X% .67 Var (Hy,) .
By Schwarz’s inequality and Lemma 4.1, the last sum is smaller than
BOM?| fl°]t — s|n~* 4+ 160M*L*(t — s5)’n=" 4 800M*({ f3(x) dx)(t — sy*n~1,
and Proposition 1 follows.
PRroOF OF PRoPOSITION 2. Let ¢, s be fixed and Unl, U.? as defined in the proof
of Proposition 1. By the Schwarz inequality,
Var (U,(1) — U,(s)) < 2 Var (U,) + 2 Var (0,2 .
Use the formula we have for Var (U,?), to show that,
Var (Unl) < 2(n + )7 203 jeinss GY[E(Gy)°E(Gy) ]
+ 2(n + 1)7° 27 jsi ki |6l [ [E(Gi5)°E(H,,)*]E
4 2(n + 1)7" 2% juiae €l [€|[E(H, ) E(G))E
+ 2(n + 1) 218w |Gl |G [E(H; ;) E(H ;)]
By Lemma 4.1 the last sum is not greater than
16M?[8L*M? + 32M?* | f3(x) dx](t — s)? .
The same result holds for Var (U,? and Proposition 2 follows.
We now close the Appendix by proving a result used in the proof of Lemma 2.2.

LeMMA 2. Let ¢ > O be an arbitrary number. Then under the assumptions of
Theorem 1, there exists an 7 such that:

158 (f(x +3) — f0) Tf) dx < (A + A,
if 14| g fori=1,2.
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Proor. Consider the case where f has only one jump discontinuity at the
point x, (say). If fhas more but a finite number of such discontinuities, a similar
proof can be carried out. Suppose further (without loss of generality) that
A, > A,

Use the Fubini theorem and the Schwarz inequality to obtain:

@) SV f(x + y) — fx)) dyTf(x) dx
, = (8 — A) (2[5 (f(x + y) — f(x)S(x) dx] dy .
Since § f3(x) dx < oo there exists an N(N > |x,|) such that
(b) §2 fi(x)dx < ¢.
Given this N we can find an » > 0 (y < N) and a § > 0 such that

© 88 +y) —fOYfWdr<s for |y<y, and
(d) Supye, |f(x+9) —fOF S e for xe[—2N,x, — 0] U [x + 3, 2N].

Now write § [f(x + y) — fix)]’f(x) dx as a sum of integrals over the intervals
(—o0, —2N), (—2N, x, — 0), (X, — 0, X, + 0), (X, + 0,2N), (2N, o). Let |y| <
n. Use the Holder inequality (with p = 3, ¢ = 3) to show that the sum of the
first and fifth integrals is dominated by 8¢. By (c) the third integral is smaller
than ¢ and by (d) the sum of the second and fourth integrals is not greater than
2¢. It follows that for |A,| < », i = 1, 2, the left-hand side of inequality (a) is
smaller than (4, — A,)* 11e and Lemma 2 is proved.
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