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ASYMPTOTIC EXPANSIONS FOR THE POWER
OF DISTRIBUTION FREE TESTS IN
THE ONE-SAMPLE PROBLEM!

By W. ALBERs, P. J. BICKEL® AND W. R. VAN ZWET?
University of Leiden and University of California, Berkeley

Asymptotic expansions are established for the power of distribution
free tests in the one-sample problem. These expansions are then used to
obtain deficiencies in the sense of Hodges and Lehmann (1970) for distribu-
tion free tests with respect to their parametric competitors and for the esti-
mators of location associated with these tests.

1. Introduction. Let X, - .-, X, be independent and identically distributed
random variables with a common absolutely continuous distribution. For N =
1,2, ..., consider the problem of testing the hypothesis that this distribution is
symmetric about zero against a sequence of alternatives that is contiguous to
the hypothesis as N — oco. The level a of the sequence of tests is fixed in (0, 1).
Standard tests for this problem are linear rank tests and linear permutation tests
and expressions for the limiting powers of such tests are of course well-known.
In this paper we shall be concerned with obtaining asymptotic expansions to
order N-! for the powers =, of these tests, i.e. expressions of the form z, =
¢+ ;N + ¢, yN7' + o(N7?). Of course this involves establishing similar
expansions for the distribution function of the test statistic under the hypothesis
as well as under contiguous alternatives. For simplicity we shall eventually limit
our discussion to contiguous location alternatives and in this case terms of order
N-* do not occur in the expansions.

One reason to consider these problems would be to obtain better numerical
approximations for the critical value of the test statistic and the power of the
test than can be provided by the usual normal approximation. A number of
authors have investigated this possibility, usually dealing only with the hypothesis
in order to obtain critical values and more often for the two-sample case than
for the one-sample tests we are concerned with here. For an account of this
work we refer to a review paper of Bickel (1974), which incidentally also contains
a preview of the present study. Here we merely note that, with the exception of
a recent paper of Rogers (1971), all previous work is based on formal Edgeworth
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expansions. One of the purposes of the present paper is to give a rigorous
proof of the validity of such expansions. Rogers (1971) has given such a proof
for the two-sample Wilcoxon test under the hypothesis. In a companion paper
(Bickel and van Zwet (1975)) expansions will be derived for the general two-
sample linear rank test under the hypothesis as well as under contiguous location
alternatives.

Here we shall not dwell on the numerical aspects of the expansions we obtain.
Numerical results are contained in the Ph. D. thesis of Albers (1974). We only
mention that the expansions for the power seem to behave as might be expected.
In those cases where the normal approximation already produces reasonably
good results, the expansions perform even better and often much better. On
the other hand, in cases where the normal approximation is known to be disas-
trous—the Wilcoxon test for Cauchy alternatives for instance—the expansion
is as bad or even worse.

We shall concentrate on a different aspect of the expansions for the power.
Consider two sequences of tests {T,} and {T,’} for the same hypothesis at the
same fixed level @. Let 7, (0,) and =,/(6,) denote the powers of these tests against
the same sequence of contiguous alternatives parametrized by a parameter 6.
If T, is more powerful than T’ we search for a number k, = N + d,, such that
my(0y) = 7}, (0y). Here k, and d,, are treated as continuous variables, the power
my' being defined for real N by linear interpolation between consecutive integers.
The quantity d,, was named the deficiency of {T,'} with respect to T, by Hodges
and Lehmann (1970), who introduced this concept and initiated its study. Of
course, in many cases of interest, d,, is analytically intractable and one can only
study its asymptotic behavior as N tends to infinity.

Suppose that for N — co, the ratio Njky tends to a limit e, the asymptotic
relative efficiency of {T,’} with respect to {T}. If 0 < e < 1, we have d, ~
(e7* — 1)N and further asymptotic information about d, is not particularly re-
vealing. On the other hand, if e = 1, the asymptotic behavior of d,, which may
now be anything from o (1) to o(N), does provide important additional informa-
tion. Ofspecial interest is the case where d, tends to a finite limit, the asymptotic
deficiency of {T'y’} with respect to {Ty} (cf. Hodges and Lehmann (1970)).

Of course, an asymptotic evaluation of dy is a more delicate matter than show-
ing that e = 1. What is needed is an expansion for the power of the type we
discussed above. With the aid of such expansions we arrive at the following
results. Let F be a distribution function with a density f that is symmetric about
zero and let b be a positive real number. Consider the problem of testing the
hypothesis F against the sequence of alternatives F(x — bN~?) at level a. Let
dy denote the deficiency of the locally most powerful rank test with respect to
the most powerful test for this problem. Under certain regularity conditions
on F we establish an expression for d,, with remainder o (1) and show that this
expression remains unchanged if the exact scores in the locally most powerful
rank test are replaced by the corresponding approximate scores. The asymptotic
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behavior of d,, is found to be governed by that of

(1.1) Iy = (b (%f(F—l(l ! ’)))ﬂ(l —1ydt

in the sense that d, = O(I,) as N — co. By taking F to be the normal distribu-
tion we find that the deficiency of both Fraser’s normal scores test and van der
Waerden’s test with respect to the X-test for contiguous normal alternatives
tends to co at the rate of 4 loglog N. For logistic alternatives the deficiency of
Wilcoxon’s signed rank test with respect to the most powerful parametric test
tends to a finite limit. Another typical result is that for contiguous normal
alternatives the deficiency of the permutation test based on }; X; with respect
to Student’s test tends to zero for N — oo.

Combining numerical and Monte Carlo methods, Albers (1974) has evaluated
the deficiency of the normal scores test with respect to the X-test for N =5 —
(1) — 10, 20 and 50. The results agree reasonably well with the asymptotic
expression for d.

To every linear rank test with nonnegative and nondecreasing scores, there
corresponds an estimator of location due to Hodges and Lehmann (1963). A
similar correspondence exists between the locally most powerful parametric test
and the maximum likelihood estimator. We shall exploit this correspondence
to obtain asymptotic expansions for the distribution functions of these estimators.
We shall show that, when suitably defined, the deficiency of the Hodges-Lehmann
estimator associated with the locally most powerful rank test with respect to
the maximum likelihood estimator is asymptotically equivalent to the deficiency
of the parent tests.

In Section 2 we establish an asymptotic expansion for the distribution function
of the general linear rank statistic for the one-sample problem under the hy-
pothesis as well as under alternatives. We specialize to contiguous location
alternatives in Section 3 and derive an expansion for the power of the linear
rank test. In Section 4 we deal with the important case where the scores are
exact or approximate scores generated by a smooth function J. Linear permuta-
tion tests are discussed in Section 5. The results on deficiencies of distribution
free tests are contained in Section 6. Finally, Section 7 is devoted to estimators.

Although the basic ideas underlying this i)aper aresimple, the proofs are a high-
ly technical matter. The most laborious parts are dealt with in two appendices.
We have omitted the proofs of Theorem 5.1 and Lemma 6.1 because we felt
that their inclusion would entail much repetition without essentially new ideas.
Some relevant results have been left out altogether for much the same reasons.
We are referring to a treatment of contiguous alternatives other than location
alternatives for linear rank tests, to expansions for the power of locally most
powerful parametric tests, most powerful permutation tests and randomized rank
score tests. These missing parts may all be found in the Ph. D. thesis of Albers
(1974).
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2. The basic expansion. Let X, - .., X, be independent and identically dis-
tributed (i.i.d.) random variables (rv’s) with common distribution (df) G and
density g, and let 0 < Z, < Z, < --- < Z, denote the order statistics of the

absolute values of X, ..., Xy. If [X, | = Z;, define
(2.1 V,=1 if X, >0
=0 otherwise.
We introduce a vector of scores a = (a,, - - -, ay) and define the statistic
(2.2) T=2iaaV;.

We shall be concerned with obtaining an asymptotic expansion for the distribu-
tion of T as N — co.

Our notation strongly suggests that we are considering a fixed underlying df
G and perhaps also a fixed infinite sequence of scores as N — co. However, this
is merely a matter of notational convenience and our main concern will in fact
be the case where the df depends on N and the scores form a triangular array
a;y,j=1,---,N,N=1,2,.... Since we are suppressing the index N through-
out our notation we shall formally present our results in terms of error bounds
for a fixed, but arbitrary, value of N. However, as we shall point out following
the proof of Theorem 2.2, these results are really asymptotic expansions in
disguise.

The rv T is of course the general linear rank statistic for testing the hypothesis

that g is symmetric about zero. Under this hypothesis, V;, - .., ¥ are i.i.d.
with P(V; = 1) = }. For general G, V,, - - -, ¥, are not independent. However,
one easily verifies that, conditional on Z = (Z,, ---, Zy), the rv’s V,, .-+, V

are independent with
2.3 P, =PV, =1|2) = 9(Z;) .
- ==Y =0z v o-2)

As independence allows us to obtain expansions of Edgeworth type, we shall
carry out the following program to arrive at an expansion for the distribution
of T. First we obtain an Edgeworth expansion for the distribution of }} a, W,

where W,, - .., W, are independent with p, = P(W; =1) =1 — P(W; = 0).
Having done this we substitute the random vector P = (P,, - - -, Py) defined in
(2.3) for p = (py, - - -, py) in this expansion. The expected value of the resulting

expression will then give us an expansion for the distribution of T.
In carrying out the first part of this program we shall indicate any dependence

onp = (p;, -+ -, py) in our notation. Consider the rv

(2.4) i= & (W; — pj) ,
«(p)

where

(2.5) ?(p) = Diapil — pyaj
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denotes the variance of Y] a; W;. Obviously (2.4) has expectation 0 and variance
1; its third and fourth cumulants, multiplied by N* and N respectively, are

2.6 — _nt 2Pl = p)2p; — V)at
(2.6) k(p) s
2.7 — NPl —p)1 —6p; + 6pat
(2.7) £4(p) “(p)
Let R and p denote the df and the characteristic function (ch.f.) of (2.4), thus
(2.8) R(x, p) = p(w_f_—_l’ﬁ < x),
=(p)

@9) o) =T presp (it = p) ) + (= poexp{—ips 5} |.

A formal Edgeworth expansion to order N-* for the df R is given by (Cramér
(1946), page 229)

(2.10) R(x, p) = ®(x) + $(x)}N2Qu(x, p) + N7'Qy(x, p)} ,

where @ and ¢ denote the df and the density of the standard normal distribution,
and

(2.11) 0y(x,p) = _ﬁé_}';)(xz —1,
0y(x, p) = _%%)(xs — 3x) — % (x* — 10x° + 15x) .
Let #(x, p) be the derivative of R(x, p) with respect to x. In what follows we

shall need an expression for the Fourier transform §(t, p) = § exp (itx)F(x, p) dx
of 7 and one easily verifies that

/ 4 2 6
2.12 5(t, p) = et {1 _ ry(p)it® 3ep)tt — &l (p)t }L .
(2.12) p(t,p) =e ent~ T AN
To justify a formal Edgeworth expansion like (2.10), i.e. to show that |[R — R|
is indeed o (N-"), one usually invokes the following result (Feller (1966), page 512).

LEMMA 2.1. Let R be a df with vanishing expectation and ch.f. p. Suppose that
R — R vanishes at + oo and that R has a derivative F such that |F| < m. Finally,
suppose that ¥ has a continuously differentiable Fourier transform p such that $(0) = 1
and p'(0) = 0. Then for all x and T > 0,

(2.13) IRG) — R)| < — §7s

o) — p(1)| 4, . 24m
t ‘dt+ T

To prove that |R — R| = o(N?), it therefore suffices to show that e.g. for
T = bN?%, the integral in (2.13) is o(N-*). For the case we are considering this
may be done in the standard manner (Feller (1966), Chapter 16) with one impor-
tant modification at the point where it is shown that |o(¢, p)/| is sufficiently small
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when |¢| is of the order z(p) or larger. Here one usually makes what Feller
calls the extravagantly luxurious assumption that the ch.f.’s of all summands
are uniformly bounded away from 1 in absolute value outside every neighborhood
of 0. Obviously this condition is not satisfied in our case where the summands
a; W, are lattice rv’s. Weaker sufficient conditions of this type are known, but
all seem to imply at the very least that the sum itself is nonlattice. In our case
this would exclude for instance both the sign test and the Wilcoxon test.

Although the assumptions mentioned above may be unnecessarily strong, it
is clear that one has to exclude cases where the sum (2.4) can only assume rela-
tively few different values. As R is continuous, one can not allow R to have
jumps of order N~ or larger. Thus the sign test where jumps of order N-* occur,
will certainly have to be excluded. However, it is exactly the simple lattice
character of this statistic that makes it easily amenable to other methods of ex-
pansion (see for instance Albers (1974)). For the Wilcoxon statistic on the other
hand, all jumps are O(N-%) and the assumptions we shall make will not rule out
this case.

For 0 < ¢ < § and { > 0 consider the set of those a; for which the corre-
sponding p, satisfies ¢ < p; < 1 — ¢, and let (¢, {, p) denote the Lebesgue meas-
ure 2 of the {-neighborhood of this set, thus

(2.14) e Gp) = Ax|3x —af<Ce<p,<1—4.
LEMMA 2.2. Suppose that positive numbers ¢, C, 0 and ¢ exist such that
1 1
(2.15) N Liapil —ppafzc, N Zimaet=C,

(2.16) 7(e, &, p) = ONC for some { = N-tlogN.

Then there exist positive numbers b, B and (3 depending on N, a and p only through
¢, C, 0 and ¢, such that

Slogv+nsitisent

o, p) — p(t, p) 'dt < BN-#losv
; =

PROOF. Since (2.15) implies that |xy(p)| < (Cc~)? and |£,(p)| < Cc?,

SItlglog(N-l—l)

p(t, P)ldt S B]N—pllogN N
t =

where B,, 8, > 0 depend only on ¢ and C. Also, for all ¢,

ot = 117 {1 = 2040 = p (1 = cos T

«(p)
em senlma-nli (T
= P {_%ﬁ + 96C;§4N} ’
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For |f] < 4cC-iN? this is < exp(—¢*/3). Hence, if & = 4cC-*, there exist posi-
tive constants B, and S, such that

t Clo
$1ogv+nsi50/ 8t @ldt < B,N-PalosV,

As (s, €, p)/C is nonincreasing in {, we may assume that { < 1 in (2.16).
Because of (2.15), for any M > { the number of |a;) = M — { can be at most
CN(M — {)=*; choosing M = (8C/o)* + 1 we have CN(M — {)~* < oN/8 <
7(e, ¢, p)/8C. It follows that

Ax|Bja =M —C, x—a)| <) <2 T(E’S% P _ T(e’f’l’) .

Together with (2.16) this implies that for every real ¢

zl3 e = M-,

, _ a4t < L e<p,<1-— e} > 3|ty(e, &, p) )

«(p) «(p) 4z(p)
Take b = 0[(32M]/xct) + (16/b')]7*. Then, for every |1| e [6’N?, bN?]
{ lz] < < M sz — k| £ 206N for some integer kl»
«(p) «(p)
<2M|t1 > 406N _ ( 2M1| 7| ) 46N y(e, S p) _ |tlr(e, &, p)
~ \az(p) ©(p) T \m(eN)* = BN}/ z(p)  ON 4z(p)
and hence
Mt a;t Ll
Az|lz| £ sy e M-z — | < ,eZ<p, <1 —g
1l = Gy 3 SN R
|z — kr| > = ZCbN for every integer kl» > (e & p) |
2z(p)

As {]1] < (bN%, this implies that the number of indices j for which |(a, ¢/z(p)) —
kx| > {bN?¥[z(p) for every integer k and ¢ < p; < 1 — ¢, is at least equal to

w(p) . It & p) 5 ON
20| 21‘(]7} = 4

For such an index j we have for all |¢| € [6’N%, bN?],

{1 — 2,1 —p])<1 — cos % ’)}* < {1 —2(1 — ¢) 20N F

=(p) (zz(p))*
< exp | 81— )CO*N?
< op (= 0|
and hence, as 4r*(p) < CtNand { = N-tlog N,
oe(1 — )b*N*(? oe(1

lo(t, p) < exp {— PR b= exp {— L2 9% 1og wy} .
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This implies that for some B;, 8, > 0 depending on ¢, C, § and ¢,

ot p) ‘dt < B,N-#glogV |
t

$ontsioisont

which completes the proof. []
We now justify expansion (2.10).
THEOREM 2.1. Suppose that positive numbers c, C, 6 and ¢ exist such that (2.15)

and (2.16) are satisfied. Then there exists A > O depending on N, a and p only
through c, C, & and ¢ such that

(2.18) sup, |R(x, p) — R(x, p)| £ AN-.

Proor. For 0 <y <1 and —7/2 <z < 72, Re[yexp{i(l —y)z} + (1 —
y)exp{—iyz}] = 3, and hence we have the following Taylor expansion
(mod. 2xi)

log (ye!="* 4 (1 — y)e=™*)
(2.19) = —3y(1 — )2 + §y(1 — y)(2y — )iz
+ (1 =) — 6y + 6y°)z* + My(y, 2) ,

where |M\(y, z)| £ C,|z|° for some fixed C; > 0. If |a,;t/z(p)| < =/2 for all j, we
can apply this expansion to the logarithm of every factor in (2.9) which yields

743 4
(2.20) p(t, p) = exp {——%t” - "3—3']%’— + "‘2(3’ + M1, P)} ;
where [My(t, p)| < Ci|t/z(p)]* T |a,]"-

Condition (2.15) implies that max |a;/ < (CN)* and hence that |a;t/z(p)| <
(Cc=®iN-%|t| for all j. We have already seen that |r,(p)| < (Cc?) and |r,(p)| <
Cc~?; because max |a;| < (CN)} we also have 7%(p) 3] |a,° < (Cc?)IN-L. It
follows from these remarks that there exists ¢, > 0, depending only on ¢ and C,
such that for |¢f| < ¢, N* expansion (2.20) is valid and also

‘ _ k(p)it?

6Nt +

KA(P)t‘\ M.(t < 1p
AP 4 e, ) 5 4

Hence, for || < ¢, N, Taylor expansion of (2.20) yields
(2.21) o(t: p) = o(t, p) + Myt p) »

where ¢ is given by (2.12), [My(t, p)| = (N"? + N7% 33 |a;")|°Q(|1]) exp (—1'/4),
and Q is a polynomial with coefficients depending on ¢ and C. This implies the
existence of 4, > 0 depending on ¢ and C and such that

(2.22) ot o(t, p) 7 o P) | gr < 4Nt

As ¢, depends only on ¢ and C we may assume without loss of generality that
N is so large that log (N + 1) < ¢, N*. The theorem is now proved by combining
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(2.22) and Lemma 2.2, noting that #(x, f) = (3/dx)R(x, 1) is bounded by a number
depending only on ¢ and C and applying Lemma 2.1. []

It will be clear that by requiring that 3 |a;/° < CN in Theorem 2.1 one ob-
tains |[R — R| < AN-? which is the “natural” order of the remainder.

Before we replace p by the random vector P = (P,, - - -, Py) defined in (2.3)
and compute the unconditional distribution of T’ by taking the expected value,
we first have to change the standardization of } a; W; into one that does not
involve p. As before, let W, ..., W, be independent with P(W,; = 1) =1 —
P(W,=0)=p,, letp=(p, -, py) be a vector with 0 < p, < 1 for all j, and

consider the df R*(x, p, p) of the rv ¢=(p) 3 a,(W; — p;), thus

(2.23) R¥(x, p, p) = P<___Z a(W; — Pi) < x) .

“(P)
Here 7%(p) = X p;(1 — p;)a;* in accordance with (2.5); similarly «y(p), £.(P),
Q,(x, p), Qy(x, p) and R(x, p) are defined by replacing p by p in (2.6), (2.7), (2.11)
and (2.10).

For reasons that will become clear in the sequel we shall also at this stage
expand ¢(p)/z(p) in powers of (c*(p) — =*(p))/*(p); at the same time the numer-
ators of «,(p) and «,(p) will be expanded about the point p = p. Later on, when
p; is replaced by P;, we shall e.g. take p; = EP; thus ensuring that P; — p; is
roughly speaking a rv of order N~t. At the moment, however, we do not make
any assumptions about p — p and as a result Lemma 2.3 provides only a formal
expansion in the sense that we do not claim that the remainder term is at all
small.

The expansion for R*(x, p, p) that we shall establish is

R*(x, p, p) = R(x — u, p) — ¢(x — u) {%M (x — u)

(P)
(2.24) + % 2 (pi — Pj)(lri*(_p)@j + 6p,")a;’ [(x — uy — 1]
1L (2%P) = 2PV 1(x — uy — 3(x —
+ 3 <-——T2(}—_;)-—> [(x — u) 3(x — u)]
£5(P) T(P) = D) [(x — u}t — 6(x — u)?
gDy Dl — 0 — 6 — 31},
where R is given by (2.10) and
(2.25) §= 2 (P;-(;)Pj)aj,

LEMMA 2.3. Let p = (p,, - - -, Py) be a vector of real numbers in [0, 1] and sup-
pose that positive numbers ¢, C, 6 and ¢ exist such that (2.15) and (2.16) are satisfied
and that

1 ~ ~
(2.29) w ZomPil = paf =z c.
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Then there exists A > 0 depending on N, a, p and p only through ¢, C, d and ¢ and
such that

(2.27)  sup, |R*(x, p, p) — R*(x, p, p)|
S AN+ N3 (p; — p)lagl® + N2 (p) — (P} .
Proor. Changing the standardization in Theorem 2.1 we find

(2.28) sup, | R*(x, p, p) — R((x _ XD p)’ < AN-'.
: (p)

The assumptions of the lemma ensure that c*(p)/c%(p) = cC~%, *(p)/cX(p) = cC-H,
les(p)| < (¢72C)4, |ry(P)] < (c2C), |r(p)| < ¢°C and |k, (p)| < ¢C. It follows
that the derivatives of R((x — u)y, p) with respect to y are bounded for y* > cC-*
and all x — u, and hence

()
(2.29) = R(x — u, p) + R'(x — u, p) <_Z% — 1> (x — 1)
+ 4R"(x — u, p) (—Z% — 1>2(x —u?+ 0 ((% — 1>3> s

where R'(x, p) and R”(x, p) denote first and second derivatives of R(x, p) with
respect to x. Since (7*(p) — 7¥(p))/A(p) = —1 + cC-,

(P _ L) =), 3 () — )Y
230) - _ 17— 3 /) =@ _
T e Dt (g D)

where the remainder is of the order of the first term omitted. As £,(p) and «,( p)
are bounded, we obtain the following one and two term expansions with remain-
der for ky(p) and «,(p).

ky(p) = ['%(P)— Nt 24121 =p))2p;—1)—p,(1—p,)(2p;— 1)}"1'3:! (i]l))s

=(p) =(p)
= £y(P) + OWN|(p) — 2(P)| + N7 X |p; — Billa,)
_ 3 7(p) — 7(Pp) 2 (pi—p;)(1 —6p;+6p)a;?
2.31 = K, 1 — = A7) — A7) Nt g J J i )%
(2.31) (|1 -5 B Ee=

+ ONT*((p) — <(P))* + N7 X (p; — pi)la,f?
+ N7 (p) — (P X |p; — pillal) »
(2.32)  &(p) = £p) + ON[X(p) — (D) + N7 X |p; — Pilas?) -

In (2.29) we may now replace R, R’ and R” by explicit expressions and sub-
stitute (2.32) and appropriate versions of (2.31) and (2.30). The algebra is
straightforward and will be omitted. Combining the result with (2.28) we find
that (2.27) holds if a term

ONT X |ps = PiA(ail* + a) + NH(p) — 2(p)| X |p; — pillaf*
+ N7Tp) — ()| + N7 (p) — 2(p)))
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is added to the right-hand side. Here, as well as above, the order symbol is
uniform for fixed ¢ and C. The lemma is now proved by noting that

N3 p; — pilla’ < N7 3 lajf + N2 3 (p; — py)lasf*

N> 2 ps — pilaft S NP faiP + NV (p; — p)lal®

N7H(p) — (D) Z |ps — Billasl® = N7 35 (p; — pj)'lasf?

+ NH((p) — <(P)* X lasf*

NZ2(p) — 2P| + N7 ((p) — ()" = N1 + N77%(p) — (B’

and that }}'|a,;]* < CIN and ] |a,* < (CN)L. []
We shall now replace p by P = (P, - .-, Py) in R*(x, p, p) and take expecta-

tions. Define the vector = = (xy, - - -, my) by

(2.33) n; = EP;, j=1,.--,N;
it will play the role of p. Furthermore, for { > 0 we let y({) denote the Lebesgue
measure 4 of the {-neighborhood of the set {a,, - - -, a}, thus

(2.34) 1) = AHx[3lx —a;l <}

THEOREM 2.2, Let X, - .-, Xy, be i.i.d. with common df G and density g, and
let T, P and n be defined by (2.2), (2.3) and (2.33). Suppose that positive numbers
¢, C, 0, 0" and ¢ exist with ¢' < min (9/2, ¢’C~") and such that

(2.35) Yoetze, L nfafscC,

(2.36) 7€) = 0N{  for some (= N-*logN,

(2.37) P(e < 9(X,) <1— a> >1-4.
9(X) + 9(— X))

Then there exists A > 0 depending on N, a and G only through ¢, C, 6, 6’ and ¢, and
such that

(2.38) sup,

P (f%& < x> _ ER*(x, P, 7)

= AN 4 NPDAEP; — =)'P'1 + N T (EIP; — =,/ .

ProOF. We start by showing that a, P and = satisfy the conditions for a, p
and p in Lemma 2.3 with large probability.

The number of P; that lie in [¢, 1 — ¢] is equal to the number of g(X,)/(9(X;) +
9(—X;)) in that interval. Applying an exponential bound for binomial prob-
abilities (Okamoto (1958)) we find that for §” e (¢’, min (3/2, *C-Y)), (2.37)
implies

Ple < P; <1 —¢ foratleast (I — ¢”)N indices j) = 1 — e~2N@"'-3"%

Suppose thate < P; < 1 — ¢ for atleast (1 — §")N values of j. It then follows
from (2.36) that a and P satisfy condition (2.16) if § is replaced by 6 — 26” > 0.
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For 7 € (0, 1), suppose that a;? < 5c for exactly k indices j and let ¥’ indicate
summation over the remaining N — k indices. Because of (2.35)

k

1 _
77c+w—2’aj2§77c+N k(

LI
N —k !

and hence the number of a; > yc is at least (1 — 5)%c*C-'N. By choosing 7
sufficiently small we can ensure that (1 — 7)%*C~* > §”. This implies that
N=7%P) = ¢, where ¢ = ((1 — 7)*c®C~* — §")e(1 — ¢)yc > 0. This in turn en-
sures that N='r%(r) = N7'E7*(P) = c*, where ¢* = &(1 — exp{—2(8" — &)%) > 0.
Thus we have shown that if ¢, C, 6 and ¢ are replaced by positive numbers
¢*, C, 0 — 20" and ¢ depending only on ¢, C, §, ¢’ and ¢, then a and = satisfy
(2.26) and the second part of (2.15), whereas a and P satisfy (2.16) and the first
part of (2.15) except on a set E with P(E) < exp{—2N(8" — &)’} = O(N-1).
Hence a, P and = satisfy the assumptions of Lemma 2.3 on the complement of
E. In dealing with the set E it will suffice to note that R*(x, P, r) is bounded
since (2.26) and the second part of (2.15) ensure the boundedness of (), ,(r),
(z*(P) — ©(m))/r*(n) and ] |a,|*/z%(x). Of course R*(x, P, r), being a probability,
is also bounded.
As
P<—~—_T — 2475 < x) = ER*(x, P, n) ,
z(7)
the left-hand side of (2.38) is bounded above by
(2.39) E sup, |R*(x, P, r) — R*(x, P, m)] .
Applying Lemma 2.3 on the complement of E and using the boundedness of
|R*(x, P, &) — R*(x, P, m)| together with P(E) = O(N-%) we find that (2.39) is
O(N=% + N 3 E(P; — m;)la,® + N7E|X(P) — <X(x)[?) ,
where the order symbol is uniform for fixed ¢, C, 4, ¢’ and ¢. Now
N D EP; — 7)la;f < N L AEP; — m,)P(Z |asf)}
N=E[e(P) — ¥@) < NE[S |P; — mla/ < N[5 {E|P; — = aF
= N[ ZAEIP; — o B et
and since }; |a, < (CN)! and 3] a;* < CN, this completes the proof. []

We note that the boundedness of R*(x, P, r) on E plays an important role in
the above proof. Because 7(P) may be arbitrarily small on E, this explains why
we had to remove 7(p) from the denominator of the expansion in Lemma 2.3 by
means of (2.30).

Although Theorem 2.2 is formally stated as a result for a fixed, but arbitrary
value of N, it is of course meaningless for fixed N because we do not investigate
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the way in which 4 depends on ¢, C, 4, ¢’ and e. In fact the theorem is a purely
asymptotic result. Let us for a moment indicate dependence on N by a super-
script. Thus, for N = 1,2, ..., consider the distribution of the statistic 7%V
based on a vector of scores a® = (a,'", ..., a,™) when the underlying df is
G, Fix positive values of ¢, C, 9, ¢’ and ¢ with ¢’ < min (9/2, c’CY). The
theorem asserts that if for every N, a® and G satisfy (2.35)—(2.37) for these
fixed ¢, C, 4, &’ and ¢, then the error of the approximation ER*(x, P™, g™y is

O(N=1 + NU[E (B(P,™ — m P + N[Z (EP™ — = p)

as N — oco. Moreover, the order of the remainder is uniform for all such se-
quences ¢, G, N=1,2, ....

Assumption (2.36) may need some clarification. It is clear from the proof of
Lemma 2.2 that the role of conditions (2.16) and (2.36) in Theorems 2.1 and 2.2
is to ensure that the a; do not cluster too much around too few points. Assump-
tion (2.36) is certainly satisfied if for some k > dN/2, indices jy, jj, - - -, j, exist
such that a; ., —a; = 2N-*logNfori =1, ...,k — 1. Under condition (2.35)
this will typically be the case. Consider for instance the important case a; =
EJ(U,.y), where U,y < U,y < --+ < Uy.y are order statistics from the uniform
distribution on (0, 1) and J is a continuously differentiable, nonconstant function
on (0, 1) with § J* < co. Here both (2.35) and (2.36) are satisfied for all N with
fixed ¢, C and §. The same is true if a; = J(j/(N + 1)) provided that J is mono-
tone near 0 and 1.

For a large class of underlying df’s G, the right-hand side of (2.38) is uniformly
o(N-1). Still Theorem 2.2 does not yet provide an explicit expansion to order
N-! for the distribution of T since we are still left with the task of computing
the expected value of R*(x, P, ). This is of course a trivial matter under the
hypothesis that g is symmetric about zero and, more generally, in the case where,
for some 7 > 0, g(x)/g(—x) = nfor all x > 0. In this case P; = p(1 4 )~ with
probability 1 for all j and an expansion for the distribution of T is already con-
tained in Theorem 2.1. For fixed alternatives in general, however, the computa-
tion of ER*(x, P, ) presents a formidable problem that we shall not attempt to
solve here. It would seem that what is needed, is an expansion for the distribu-
tion of a linear combination of functions of order statistics.

In the remaining part of this paper we shall restrict attention to sequences of
alternatives that are contiguous to the hypothesis. Heuristically the situation
is now as follows. Since g(x)/(g(x) + 9(—x)) = 4 + O(N%),P; — yand 7; — §
will be O(N-%), whereas P; — =; will be O(N~?) instead of O(N~*) as before. In
the first place this allows us to simplify ER*(x, P, z) considerably as a number
of terms may now be relegated to the remainder and functions of z; may be
expanded about the point #; = 4. Much more important, however, is the fact
that U* = ¢~Y(r) 3] (P; — =,)a; will now be O(N~*) and that we may therefore
expand R*(x, P, m) in powers of U*. This means that we shall be dealing with
low moments of linear combinations of functions of order statistics rather than
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with their distributions. We need hardly point out that a heuristic argument
like this can be entirely misleading and that the actual order of the remainder
in our expansion will of course have to be investigated. The unduly complicated
form of the remainder terms in the preceeding theorem is, of course, preparatory
to such further expansion.
Define
@40 Re) = ) + (o) {2 GECL = D= 42 4P
2 af

2. a’(2r; 1) 1 > ait 3—3x},

+———3(Z i =1+ 2y « 2)2( )
where ¢(Z) denotes the variance of arv Z. Carrying out the type of computation
outlined above we arrive at the following simplified version of Theorem 2.2.

THEOREM 2.3. Theorem 2.2 continues to hold if (2.38) is replaced by

( — 2.4 Sx) K(x— 2 a;(27; — 1))‘
(Zaf)t (Za)

< AN+ T A{EQ2P; — 1)} + N ZAEIP; — =)}

Proor. The proof of this theorem becomes somewhat shorter if we use a
modification of Theorem 2.2 as a starting point rather than Theorem 2.2 itself.
We recall that Theorem 2.2 was proved by an application of Lemma 2.3 for
p = =. However, the proof clearly goes through for any other choice of p that
satisfies (2.26). Because of (2.35), we may therefore replace = in (2.38) by a
vector p with p, = } for all j. Noting that for this choice of p, ky(p) =0,
f(p) = —2N T a/(3 af), ©(P) — ©(p) = —} 5 (2P, — 1)’a’, and adding
the last two terms in R*(x, P, p) to the remainder, we obtain

P(u"_f < x>

(2.41) sup,

(X a)?
— EQ(x — U) + E¢(x — U) {12(22" e Oy — 3(x — 0)]
NI
(2.42) B (x — U)
> QP _1) o
+ 2 e - 0) 1}

+ ON=t + NHZA{EQRP; — 1)) 4 NI 3 (E[2P; — 1[}i]
+ N7E[, a/(2P; — 1] + N} 5, a/EQP, — 1)7),
where U = 3 a;(2P; — 1)/(X a,)}. All order symbols in this proof are uniform
for fixed ¢, C, 9, 6’ and e. The remainder in (2.42) may be simplified by noting that

NI ZAE@P; — 1P + N7 {E2P; — 1))
< N-t 4 S{EQP; — 1))} 4 N-' 3 E2P; — 1]°
< N4 N-1 42 3 (EQP; — 1)},
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NE[} af(2P; — 1) + N7 T aEQ2P; — 1)’
< IN-IE[Y ap(2P; — 1Y + N}
<2N*?Yaty EQP; — 1) + N
< 2C R {EQP; — 1)} 4 (2C + )N-E.

Define U= 3} a;(P;— r,;)/(5 a?)}, s0 x — U=x— ¥ a,2n; —1)/(X] a;*)}—2U.
By expanding in powers of U under the expectation sign in (2.42) we find

2T — Y a;
P(Cgan =)
(2.43) - K(x — L%%,Q) £ O(N-! + X {EQP,; — 1)} + E|U]

+ E|U|(N 4 N-' 5 ap@P; — 1 + N 5 [a, 2P, — 1]}) .

il
Now
N-t 3 |a,;Pl2P; — 1| < N* Y at + N1 3 a?2P; — 1)?,
N-E|U| £ N-% + E|U?,
N-E|U| 33 a*(2P; — 1)* < N3EU? + N-¥E[ Y a*(2P; — 1))
< N* L E|UP 4 C Y {EQP; — 1)} 4+ CN-#,

where the last inequality is based on a bound obtained earlier in this proof. It
follows that the remainder in (2.43) is of the order of the sum of its first three
terms. The proof is completed by noting that

E\UP < (eN)RE[ T |a||P; — m,| P < (eN) Y3 |a,;[{E|P; — ;PP
< (N HZ e[ X {EIP; — =, O
Theorem 2.3 provides the basic expansion for the distribution of 7 under
contiguous alternatives. In Section 3 we shall be concerned with a further

simplification of this expansion and a precise evaluation of the order of the
remainder term.

3. Contiguous location alternatives. The analysis in this section will be car-
ried out for contiguous location alternatives rather than for contiguous alterna-
tives in general. The general case can be treated in much the same way as the
location case but the conditions as well as the results become more involved.
The interested reader is referred to Albers (1974).

Let F be a df with a density f that is positive on R!, symmetric about zero
and four times differentiable with derivatives ¥, i = 1, . . ., 4. Define functions

3.1 ¢i=f;), i=1,...,4,

and suppose that positive numbers ¢ and C exist such that for
(3.2) m1:6, m2:3, m; =
Sup{so—ow |¢i(x +.y)lmlf(x)dx’ |)’| = 8} = c, i= 1, e 4

ol
-
3
o
Il
—
-
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Let X, ..., X, be i.i.d. with common df G(x) = F(x — ) where
3.3) 0<0<CNt
for some positive C. Note that (3.2) and (3.3) together imply contiguity. Let
0< Z, < Z,< -+ < Z, denote the order statistics of |Xj|, -- -, | Xy| and let T

be defined by (2.2). Probabilities, expected values and variances under G will
be denoted by P,, E, and ¢,% under F they will be indicated by P,, E, and o,’.
Define

mm=®m+¢m{ﬁ%ﬁﬁaas> 0 2 o = 1)

(3.4) 22 X aPEGXZ) — 0T a;94(Z)]x
azzyZamwmm—ﬁwamwg+%wn}

and

(3.5) _g DaEatlZ)

(X a)
We shall show that K,(x — ) is an expansion to order N-' for the df of
(2T — X a;)/(3 a;*)t. The expansion will be established in Theorem 3.1 and
an evaluation of the order of the remainder will be given in Theorem 3.2.

Let =(¢) denote the power of the one-sided level a test based on T for the
hypothesis of symmetry against the alternative G(x) = F(x — ¢). Suppose that
for some ¢ > 0,

(3.6) eSaxsl—c¢.

We prove that an expansion for z(f) is given by
(1) #O) =1 — Kl — 1) + g — 1) 20 (= 3u)
12(X2 ay
where u, = ®}(1 — a) denotes the upper a-point of the standard normal
distribution.
THEOREM 3.1. Suppose that positive numbers, c, C, 0 and ¢ exist such that (2.35),

(2.36), (3.2) and (3.3) are satisfied. Then there exists A > 0 depending on N, a, F
and 0 only through ¢, C, & and ¢ and such that

(3-8) sup, [P, (2—?2722;;’* = x> — Ky(x — 7))]
< AN + N Y AE|P(Z)) — Ecd(Z5)1) ] S
3.9) <A,
3.10) oI ZGEAZN < gy p BGEIE) < gy,
e 5 a;

(Z T ait |2 @ Ef34:(Z;5) — 64(Z)9d(Z;) + ¢ Z)]] = AN
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If, in addition, (3.6) is satisfied there exists A’ > O depending on N, a, F, 6 and «
only through ¢, C, 6 and ¢ and such that

G-I |=(0) — #(0)] = ANt + N[ T {E|G(Z,) — Esd(Z)[}F) -
PRrooF. We begin by checking assumption (2.37). One easily verifies that

if(x—ﬁ)—f(x+0)‘<l o o
90 flx — ) + fix + )| = 2O Ol AL )
Hence the symmetry of f and an application of Markov’s inequality and Fubini’s
theorem yield

P, (e < 9(X,) <1-— e)
9(X) + 9(— X))
— P0< f(Xl —0) — fX + 0) <1 — 28>
[ = 0) + fiX, + 6)1 —
= Py(§8 (19X — O] + [6:(X, + D]} dr < 2(1 — 2¢))
1

>1_ =2 § {9 Xy — O] + (X, + )]} ar

A

1 —

\%

1 _026 SUpy<o Eg|Pu(X; + 1)| -

Take ¢ < § and choose o' = 4 min (52, ¢*C'). Because of (3.3) there exists
N, > 0 depending only on ¢, C, d and ¢ such that for N > N,, 26 <ceand 4 <
(1 — 2¢)C~#d'. Then (3.2) implies that (2.37) is satisfied for N > N,. This is of
course sufficient to ensure that the conclusion of Theorem 2.3 holds.

The passage from (2.41) to (3.8) is achieved by Taylor expansion with respect
to ¢. Since this part of the proof is highly technical and laborious it will not
be given in the body of the text. Instead we refer the interested reader to Ap-
pendix 1 where the results we shall need are stated in Corollary Al.1. Using
parts (A1.27), (A1.31) and (A1.32) of Corollary Al.1 together with the inequality
2L A{E(2P; — 1)} < ¥ E,[2P; — 1* we see that the left-hand side of (3.8) is
bounded by the right-hand side of (3.8) plus a term

(3-12)  O(OHE|Z a{9Z;) — Es(Z )P + N0 (T a,;44(Z}))) -

Here, and later in this proof all order symbols are uniform for fixed ¢, C, § and
e. Now

ONE| L a9 Z;) — EsP(Z))IY + N0 (T a;94(Z,))
= 0% 4 O°E)| X ai(9(Z)) — Evdu(Z)))P
+ N7 + N0 (L a;44(Z;))
= O(N= + NIPE| T a($(Z,) — Ei(Z,))
E| 3 a($(Z)) — Ep(Z) < [T |a{Elgu(Z;) — Eou(Z,)IPT
< (CNPZAE|SA(Z;) — B Z)P)EE
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which proves (3.8). In view of (2.35) and (3.3) it is clear that (3.9) and (3.10)
are merely restating parts (A1.28)—(A1.30) of Corollary Al.1.

The one-sided level a test based on T rejects the hypothesis if (27 —
2 a,) (X a)~t = &, with possible randomization if equality occurs. Taking
6 = 0 in (3.8) we find that

L= B(E) — $(6) 5 (64 = 36) = @+ OV,
and hence because of (2.35) and (3.6),
(3.13) €, = u, — %ﬁ (u — 3u,) + O(N-1) .
The power of this test against the alternative F(x — ) is
(3.14) (@) =1 — Ky(§, — 1)
+ O(N=F + NEG[ T AEI(Z;) — B Z)PPT) -
In (3.14) we expand K,(§, — ») around 4, — 5. Noting that |§, — u,| = O(N™Y)

and using (2.35) and (3.10) we arrive at the conclusion that the left-hand side
of (3.11) is bounded by the right-hand side of (3.11) plus a term

O(N~*00 (X a;9:(Z;))) = ON~* + NE| 3 a($(Z;) — EP(Z))]°) -

As we have already shown earlier in this proof that such a term does not change
the order of the remainder in (3.11), the proof of Theorem 3.1 is completed. []

For i = 1, 2, 3, define functions ¥, on (0, 1) by

(7 ()

() Fl

o (53
“(59)
Fy{ -

(=

THEOREM 3.2. Suppose that positive numbers C and 0 exist such that (3.3) is
satisfied and that |¥/(f)| < C(t(1 — 1))~ for all 0 < t < 1. Then there exists
A" > 0 depending on N, F and 6 only through C and ¢ and such that

N[ X {E|$(Z;) — Eypu(Z;)PH]F < 4"N-.

(3.15) V(1) = ¢, (F-l <1_+_’)> -

For the highly technical proof of this result the reader is referred to Appendix
2. Theorem 3.2 follows at once from Corollary A2.1 in this appendix by taking
h="1,.

4. Exact and approximate scores. The expansions given in Section 3 can be
simplified further if we make certain smoothness assumptions about the scores
a;. Consider a continuous functionJon (0, 1) andlet U,., < U,y < --- < Uy.y
denote order statistics of a sample of size N from the uniform distribution on
0, 1). For N=1,2, ... we define the exact scores generated by J by

(41) aj:aj,NzEJ(Uj:N), j:l,...’N,
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and the approximate scores generated by J by

(4.2) aj=aj,N:J(Nil), j=1,..,N.
For almost all well-known linear rank tests the scores are of one of these two
types. The locally most powerful rank test against location alternatives of type
F is based on exact scores generated by the function —¥,, where V¥, is defined
in (3.15).

So far, we have systematically kept the order of the remainder in our expan-
sions down to O(N-%). From this point on, however, we shall be content with
a remainder that is o (N-1), because otherwise we would have to impose rather
restrictive conditions. In the previous sections we have also consistently stressed
the fact that the remainder depends on @ and F only through certain constants
occurring in our conditions, thus in effect indicating classes of scores and dis-
tributions for which the expansion holds uniformly. As the number of these
constants is becoming rather large, we prefer to formulate our results from here
on for a fixed score function J and a fixed df F. The reader can easily construct
uniformity classes for himself by using the results of Section 3 and tracing the
development of Appendix 2.

DEerFINITION 4.1. _Z is the class of functions J on (0, 1) that are twice con-
tinuously differentiable and nonconstant on (0, 1), and satisfy

@3) §3050) di < oo
(4.4) tim supeo,; (1 — t)ljl'l((tt))} <t

# is the class of df’'s F on R' with positive densities f that are symmetric
about zero, four times differentiable and such that, for ¢, = SOl W) =
Q(F (1 + 9/2)), m; =6, m, = 3, m;=4,m =1,

(4.5) limsup, o {=., [¢y(x + y)|"f(x)dx < 00, i=1,...,4,
. _ IIflII(t) 3
(4.6) lim sup, ., «(1 - t)}ml <3.
ForJe _# and Fe .7, let
_ - SadX(n) ar s _
Ry(x) = O(x) + ¢(x) {N o i i 3
_ N-tg PO (D) dr _ o*
@ Y sGrwayr © T T g
X [§5 (WA (r) d — §8 §3I() W (s)I(t) W (1)(s At — st)dsdi]x

Nigs

(530 diyt o J(B3Y() — 6W () Ty(r) + Wy(1)] dtl» ,
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48) K%)= By(x) + (x) -0 {J(t)‘Ifl(f) di

2(§s JA () doyt U (3 J(¢) dt
— 2 5, Cov (J(Uy), EU)}

N-t¢ { §2 J() W, (1) dt
2($sJX(r)y dnt U 5 (0 dt

10*(J(U;:x))

(4.9)  Kpux) = Ky(x) + ¢(x) WY ()1 — ) dt

— 2§ OO - D

ROV AGY.

(+10) 3 doy

Gl
Il

{0 J4(¢) dt

@11 m(0) =1 = Koufta = 1) & $lte — DN 000

(us® — 3u,),
fori = 1,2. Then, in the notation of Section 3, we have for contiguous location
alternatives and exact scores

THEOREM 4.1. Let Fe %, Je _/, a; = EJU, ) forj=1, ..., N, and let
0< 0 < CN?t e<a<1—c¢forpositive C and . Then, for every fixed J, F, C

and ¢, there exist positive numbers A, 0,, 0,, - - - such that lim,__, 6, = 0 and for
every N
2T — ; ~

(4.12) sup, | Py (_(_Z_‘%:);z_f b x) — Ky (x — 77)] < 0yN71,

— > a; ) . -
(4.13)  sup, Pa( Gam =% Ky o(x — 1)

< Oy N7 4 AN (I O] + (¥ (@O — o)t dr,

(4.14) [7(0) — my(0)] < Oy N7

(4.15)  [=(0) — mo(0)|
< O N+ ANTE GO (O] + [ (@D — )t dt.

Proor. For fixed Je _JZ, positive constants ¢, C and ¢ exist for which (2.35)
and (2.36) hold for all N (cf. one of the remarks following the proof of Theorem
2.2). Similarly, for fixed F e &, (3.2) is satisfied and it follows that the con-
clusions of Theorem 3.1 hold with 4 and 4’ depending only on F, J, C and e.
Also (4.5) ensures that ¥,° is summable and together with (4.6) and the second
part of Corollary A2.1, this implies that the conclusion of Theorem 3.2 holds
with 4" depending only on F and C.

To complete the proof we now apply the results collected in Corollary A2.2
to the expansions K,(x — 5) and #(#) in Theorem 3.1 and then expand these
functions of 7 around the point » = 7, while noting that y — 7 = o(N~%) by
(A2.22) and (A2.23). []

In general, the expansions given in Theorem 4.1 will not hold if the exact
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scores are replaced by approximate scores a; = J(j/(N + 1)), because  — 7 will
then give rise to a different term of order N~ If J = —W,, however, it is clear
from Corollary A2.2 and the proof of Theorem 4.1 that expansions (4.13) and
(4.15) are valid for approximate as well as exact scores. Also forJ = -V,
these expansions may be simplified because Fe.&# implies that by partial
integration

53 6 W) W/ (W)W ()(s A ¢ — sty dsdr = § [ WA(0) de — 3(§ Wi dn)’
s TV ()W) — Wo(n)] dr = 1P G W) dr + § Wi'(r) dt .
It follows that in this case 7, K, ,(x — 7) and z,(6) reduce to

(4.16) ¥ = Niﬂ(slo 1;["12(1‘) dt)i s
_ % P(x — 7%)
Ly(x) = (x — n*) + TN
(W) di
(L W.30) di?
12 3 UX0 s o s
Gy | T OTETT)

§ 363 (O = 0de )
s WA(0) dr

(4.17) X { [6(x* — 3x) + 67*(x* — 1) — 3y*2x — 57*7]

_|_

wH(0) = 1 — O, — %) + L= 1)

VW Ar) dr
i Ao ar
_R2RY0dt w  gpxy — o
Gy T T e )
. 36 S}/“A}/N (Tﬂ'l’(t))’t(l — t) dt}
{5 Wity dt '

[—6(u," — 1) + 39*u, + 5p*]

Finally we note that for F e &, —W¥, can not be constant on (0, 1) because the
density f(x) = 42e~** of the double exponential distribution is not differentiable
at zero. It follows that — W, ¢ . for every Fe .5 . We have proved

THEOREM 4.2. Let Fec % and let either a; = —EW(U;.y) for j=1,..-, N
ora; = —W,(j(N+ 1)) forj=1, .-+, N. Suppose that 0 < 6 < CN~tande <
a < 1 — ¢ for positive C and c. Then, for every fixed F, C and «, there exist positive

numbers A, 6, 0,, - - - such that lim,_,, 6, = O and for every N
2T — > a;
4.19)  sup,|P, (ﬂ_*__]_ < x> — Ly(x)
(X a)

< 0y NP 4 AN-F (LUY (W /(1)) (1(1 — 1)t de,
(4.20) |7(0) — 7*(0)] < 0y N~ ++ AN-F {10V (W (1)) (r(1 — )t de.
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At this point it may be useful to make some remarks concerning the assump-
tions in Theorems 4.1 and 4.2. Conditions (4.4) and (4.6) ensure that J’ and
¥’ do not oscillate too wildly near 0 and 1. They also limit the growth of these
functions near 0 and 1, but in this respect conditions (4.3) and (4.5) for i = 1
are typically much stronger. Together with (4.4) and (4.6) they imply that
J(t) = o((t(1 — 1))~ and W/ (1) = o((#(1 — 1))~*) near 0 and 1 (cf. the proof of
Corollary A2.1).

For expansions (4.13), (4.15), (4.19) and (4.20) to be meaningful rather than
just formally correct, even stronger growth conditions have to be imposed.
Consider, for example, expansion (4.20) and suppose, as is typically the case,
that ¥,/ remains bounded near 0. If ¥/(f) = o((1 — #)~!) near 1, then the right-
hand side in (4.20) is o(N~*) and the expansion makes sense. However, if ¥/(?)
is of exact order (1 — )7, the expansion reduces to

—1_ oy — 0. — %) ST (B () (1 — o) dt -1

7(0) = 1 — Ou, — 7*) -~ S O,
Finally, if ¥,/(f) ~ (1 — ¢)7*~? for t — 1 and some 0 < 6 < }, then all we have
left in (4.20) is #(0) = 1 — @(u, — 7*) + O(N-***¥). Of course, in these cases
too, more exact results can be obtained by paying careful attention to the be-
havior of the extreme order statistics.

We conclude this section with a few applications of Theorems 4.1 and 4.2.
The tedious computations will be omitted. First we consider the power 7, y(6)
and =, ,(6) of Wilcoxon’s signed rank test (W) against normal (N) and logistic
(L) location alternatives G(x) = ®(x — ) and G(x) = (1 + exp{—(x — O))~*
respectively, where 6 = O(N-t). We find

Ty (@) =1 — O, — 7) — 17_?("_;\,_77) {236 — 2t g9y}
2(3)} . 2(3)t T\ s
4.21 4+ (189 — 2271 _ (103 _ _
( ) (w 3 )”a’/ (EO 3 9>77

4
AT 1 — 2+ 7))+ oV,

where 7 = (3N/r)}6, and

(422) w0 =1 - 0@, — ) = TP o 43l w4 )
+ o(N7Y),
where 7* = (N/3)!6.

As a second example we consider the one-sample normal scores test which is
based on the scores a; = E®*((1 + U;.,)/2). Its power myg y(0) and myg ,(6)
against the normal and logistic location alternatives described above satisfies
(423)  musn(0) = 1 — O, — 77) = LT [ gy

4 2 {ota-vam (20(x) — 1H(1 — D(x)) dx} + o(N7Y),
$(x)
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where now 7* = N*6, and
Tys,2(0) = 1 — O, — 1)

(4.24) — 200 — ) 23 — 122 + w2 + (2 — S
12N
+ (72 arctn 2} — 227 4 1)7
_6 Ss)—l(l—l/i!N) (20(x) — H(1 — D(x)) dx} + o(NY),
$(x)
where now 7 = (N/z)t. We note that Theorem 4.2 ensures that (4.23) will
also hold for van der Waerden’s one-sample test which is based on the ap-
proximate scores a; = ®}((N + j + 1)/2(N + 1)). To evaluate the integral in
(4.23) and (4.24) we write

Sg)—l(l—l/?N) (zq)(x) —_ 1)(1 - (I)(x)) dx

$(x)
(4.25) = Jloglog N + }log2 — 2 {5 log x ¢(x) dx
4 e QO0) = DL = @) = $) 40 4 o1

xp(x)
= }loglog N + }log2 + 0.05832..- + o(l),

where the final result is obtained by numerical integration.

5. Permutation tests. In this section we consider distribution free tests other
than rank tests, viz. permutation tests. We limit our discussion to linear permu-
tation tests that reject the hypothesis of symmetry if

(5.1 2L k(X)) 2 €4(2)

with possible randomization if equality occurs. Here A is a function on R!,
Z = (Z,, - - -, Zy) denotes the vector of order statistics of | X, - - -, | Xy| as before
and &, is chosen in such a way that under the hypothesis of symmetry

(5-2) P(TILh(X) 2 £42)]2) = a as.

with an obvious modification if there is randomization.

Since (5.1) is equivalent to }; {h(X;) — h(—X,)} = 26(Z) — X {M(Z;) +
h(—Z,)}, we assume without loss of generality that 4 is antisymmetric about
the origin, i.e.

(5.3) h(x) = —h(—x) for all x.

But then, under G and conditional on Z, 3 h(X;) is distributed as 2 37 a,(V; — %)
with V; asin (2.3) and a; = h(Z;). This means that we can obtain an expansion
for this conditional distribution of }; A(X;) if we can apply Theorem 2.1.
Under the hypothesis of symmetry, P; = % in (2.3) for allj. Hence in this case
Theorem 2.1 yields an expansion for the conditional df of 3} A(X;)/(X h*(Z)))}
that holds uniformly on the set of all values of Z for which the a; = h(Z,) satisfy
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(2.35) and (2.36) for fixed ¢, C and 6. If « satisfies (3.6), this immediately leads
to an expansion for £,(Z). We find (cf. (3.13))

5.4 &, LMZ) M(Z) (s — 3u O(N-1

O Wy T T Ry T O

uniformly on the set E, where, for fixed positive ¢, C and d, 3 h*(Z,) = cN,
2 hY(Z;) < CN and A{x|3,|x — k(Z;)| < {} = ON{ for some { = N-#log N.

Next we consider the contiguous location alternatives G(x) = F(x — ) of
Section 3. Under these alternatives, Theorem 2.1 yields an expansion for the
conditional df of 1{3; A(X,) — X (2P; — DA(Z,)}/{2 P,(1 — P,)k*(Z,)}! uniformly
on the set E,° where, for fixed positive ¢, C and 9, 3} P,(1 — P;)k*(Z;) = cN,
L H(Z;) < CN and Ax|3lx — Z;)| <, e<P; <1 — ¢} =0dNC for some
¢ = N-tlogN.

Since E, C E, it suffices to show that P,(E,) = O(N-1) in order to obtain an
expansion to O(N-¥) for the conditional power given Z of the permutation test.
The unconditional power is then obtained by taking the expectation. This is
done in very much the same way as in Sections 2 and 3 for linear rank tests, the
only difference being that now not only the P; but also the a; depend on Z.

This program is carried out in Albers (1974) for the special case of the locally
most powerful permutation test where & = —¢, = —f’/f. In Theorem 5.1 we
reproduce a version of this result without further proof. Of course a similar
result may be obtained for the general linear permutation test (5.1) with
h+ —¢,.

Suppose that F is a df with a density f that is positive, symmetric about zero
and five times differentiable. Define ¢, and ¥, by (3.1) and (3.15) and take
h = —¢,. Let m,(0) be the power of the permutation test (5.1) against the al-
ternative F(x — ) and define

mp*(0) = 1 — D(u, — 7%)

o, — 1) ( B R
(5.5) + T (el —6ur = 3+ 3un* 4577
120 ) dt

*3 9(1 — * *2) L
(Sgllflz(t)dt)zyi +9(1 —un* 4+ 79 )}

where n* is given by (4.16).

THEOREM 5.1. Let F satisfy (4.5) fori=1,...,5and m, =10, m, = §, m, = §,
m, = 8, my = 1 and suppose that positive numbers C and ¢ exist such that0 < 6 <
CNtande < a <1 —e. Takeh = —¢,. Then there exists A > 0 depending on
N, F, 6 and a only through F, C and ¢ and such that

|[7p(6) — 7p*(0)] = AN-E.

For F = @, we have —¢,(x) = x and Theorem 5.1 provides an expansion for
the power of the permutation test based on Y X; against normal shift alternatives
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D(x — ) with0 < 0 < CN-*ande < a < 1 — . We find that this power equals

(5.6) 1 — O, — Nig) — P4DWa = NO) | on-1y
4Nt

But (5.6) is also the power of Student’s one-sided one-sample test for @ against
®(x — 6) (cf. Hodges and Lehmann (1970)). It follows that for testing the hy-
pothesis @ against contiguous normal shift alternatives for fixed 0 < a < 1, the
powers of the permutation test based on }; X; and of Student’s test differ by
only O(N~%) as N — oo. In fact, this difference is O(N-?), since @ satisfies the
stronger regularity conditions needed to replace N~ by N~ in Theorem 5.1.

The remainder of this section will be devoted to a further investigation of this
rather striking phenomenon. Roughly speaking, we shall show that for testing
any given symmetric distribution against near alternatives, the permutation test
(5.1) is almost equivalent to Student’s test applied to a(X)), - - -, A(X,) with the
correct level of significance for the given null-distribution. Our proof differs
from the one outlined above in that we do not use power expansions to establish
the near equivalence of the two tests. Instead, we show that the critical regions
of the tests are almost identical. This more direct approach has the additional
advantage of providing a simple explanation of our result.

Let F be the df of a distribution that is symmetric about zero and consider the
problem of testing the hypothesis that X;, - - ., X, have df F against the alternative
that they have another df G. For this testing problem and an arbitrary 4 satisfy-
ing (5.3) we compare the permutation test (5.1) with Student’s test applied to
h(X)), - - -, h(Xy) that rejects the hypothesis if

(5.7) T — 2, h(X)) (1 — N9 >,
[Z A(X)) — N2 H(X))]

with possible randomization if equality occurs. Here ¢, depends on a, &, F and
N and is chosen in such a way that the test (5.7) has level a.

THEOREM 5.2. Suppose there exist positive numbers ¢, C, ¢, 5, 0y, 0, - -+ with
limy_., 0y = 0 and m > 8, such that hF-! and hG~* are monotone and differentiable
on intervals I, and I; of length at least 7) where

(5.8) W)z e, L uem)|z e,

|i
dt
and such that e < a < 1 — ¢, and

(5-9) 2w [A(x)|"dF(x) = €, (2, [A(x)|"dG(x) = C,

(5.10) |§2. A*(x) dF (x) — {2, h*(x) dG(x)| < dy for k=1,2.

Then there exist A > 0 depending on N, F, G, h and « only through c, C, y and ¢,
and B > 0 depending only on m, such that the powers of the tests (5.1) and (5.7) for
F against G differ by at most AIN=# + dy)N~*.
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Proor. We denote probabilities and expected values under G(F) by Py(Py)
and E(E;). By (5.9) and (5.8) we have

(5.11) oA h(X)) < E (X)) < [Esh(X)]E < €,
(5.12) 0 (X)) 2 2 §p ety de = T,

so that these moments are bounded away from 0 and co. For positive integer
k < 4, Markov’s inequality, the Marcinkievitz—Zygmund—Chung inequality
(Chung (1951)) and (5.9) yield

Py(|Z (h*(X:) — Egh*(Xy))| = «N)

(5.13) < Eo Xl (BH(X,) — EghH(X))|™"
- (zN)y™*
< By (e*N) ™R E(R(X) — Egh*(X,)|™*
2 m/k
é Bmc<__> N-—m/2k) s
T

where B,, depends only on m. Choose

. m—8
(5.14) B = mm(m, 4—>.
Taking = N~ in (5.13) and using (5.3) we find that
(5.15) % S RH(Z,) = % THHX) = EgiH(X,) + O(N-#),  k=1,2,
1o 1 T _
(5.16) 4 DX [ DA [ = o) + O,

uniformly on a set with probability 1 — O(N-'~#) under G.
Assumption (5.3) implies that

Alx|3]x — W(Z))| < £} = $2{x|3]x — A(X)| < &},
and under G the right-hand side is distributed like
FA{x|3,x — (G (U;.0))| < &}

where U,., < --- < Uy.y are order statistics from a uniform distribution on
(0, ). Now forn =1

P(Uj+n:N - Uj:N é Z)

N! ; .
= §Vococtct,tmsss =D (=)l (N—j—n)! s34t — sy (1 — £)¥-i-dsdt

(Nz)» (N —n+ 1) it v
= (n — 1)l §Socecta =D (N=J —n) s (1 — 1) ds dt
_ (Nz)n—l

N
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Taking n = 6 and z = 2c¢"'N-%log N we see that

P<U6(k+1):1v — Ugy = 2¢'N-¥log N forall 1 <k < li%} — 1>
>1— % (2¢-'N-tlog Ny = 1 — O(N-*-+) .

Together with (5.8) this implies that for { = N-?log N
(5.17) Afx|3lx — h(Z;)| < &} = $7NC
with probability 1 — O(N-'-#) under G.

Now (5.11), (5.12), (5.15) and (5.17) ensure that expansion (5.4) holds uni-
formly except on a set E, with Py(E,) = O(N-'-#). Simplifying this expansion
by using (5.11), (5.12) and (5.15) once more, we arrive at the conclusion that
the power against G of the test (5.1) is given by

Gy p (DX o EX) o,
(5.18)  7,(G) = Pa(mg e~ TN iy (e — o)+ OV )
+ O(N-1-5)..

Here the first remainder term depends on Z but may now be taken to be uni-
formly O(N-1-#).
The inequality 3 A(X;)/(3 #(X,))* = a is algebraically equivalent with

2 h(X) > a
[ 2 A(X) — NT(Z A(X))]E — (1 — @/N)?
on the set where 3 #*(X;) — N7%( 3 h(X;))* # 0 and provided that a> < N. We
may apply this to (5.18) in view of the condition e < a < 1 — ¢, (5.11), (5.12)
and (5.16). At the same time we may replace E, by E,. in (5.18), and by (5.10)
this only involves adding O(3, N~") to the first remainder term in (5.18). In this
way we obtain

- = — E, r'(X)) 3
5.19 G)=P,(T> U — Ua _ r (A _3
(5-19)  m(G) "( =t =5y 12N(E, *(X,))* (" — 3uc)

N=% 4 oy —1-p
o) our,
where T is the statistic in (5.7).
By (5.11), (5.12) and (5.16) we have for B = 0,
sup, Po(t < T < t + BNTY(N-* + 4y))
N7t 3 KXY —1( N-

5.2 < P, = —4a vidg 2BN-Y (N-# + 4
(5.20) < sup, Py (1 = oy S 2NN N))

+ O(N-1-7) .

Now (5.8) ensures that under G the distribution of 4(X,) has an absolutely con-
tinuous part; in fact, this distribution may be written as a mixture Q = 70, +
a - p)Q2 where 0, is an absolutely continuous distribution with density ¢, <

(ey)~'. Moreover, (5.9) and Markov’s inequality imply that 0,([—C,, C,]) = 4
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where C; = max (1, (2C/p)}). It follows that Q = (7/2)Q, + (1 — 7/2)Q, where
Q.([—Cy, C,])) = 1and Q, is absolutely continuous with density ¢, < ¢, = 2(cy)".

Let p, be the ch.f. of Q,. Obviously, for any fixed # = 0, |0,(#)] < |p,(f)| where
P, is the ch.f. of the distribution with density

2km , _Cl+2k7r—|— 2&

G(y) =c¢,  for yeuz=o[—cl+ - ;

=0 elsewhere,

with n = [C|t|/=] and (n 4 1)c,2¢/|t| = 1. An easy calculation yields |g,(7)| =
(sin §)/¢; for |f| = =/C, we have § = =n/(4c,C,). It follows that there exists & > 0
depending only on 7, ¢ and C, such that the ch.f. of A(X,) under G satisfies

(5.21) |Egei| < 1 — b for || =x.

Because of (5.9), (5.12), (5.21) and Lemma 1 in Cramér (1962), page 27, the
df of 647 (h(X,))N-t 37 (A(X;) — Ezh(X;)) under G has an Edgeworth expansion;
uniformly for all G satisfying (5.8) and (5.9) for fixed ¢, C and 7, the derivative
of this expansion is bounded and its remainder term is O(N~%). Applying this
result and (5.20) to (5.19) we find

(5.22) 75(G) = Py(T = 1,) + ON-YN-* + b))
uniformly for fixed ¢, C, 5 and ¢, where

f_ (X))
5.23 i = o' —Ua _ B H(X, s 3u,).
(5.23) e T TN N, )y e T )

Let ¢, be as defined in (5.7). Since F satisfies all assumptions imposed on G,
(5.22) will hold under F as well as under G. We have z,(F) = a and hence
i, = t; where | — a| = O(N"Y(N~* + dy)) uniformly for ¢ < a < 1 — ¢, but of
course also uniformly for ¢/2 < @« < 1 — ¢/2. Because 7, is decreasing in a and
f, has a bounded derivative with respect to a for ¢/2 < a < 1 — ¢/2, it follows
that

(5.24) t, =i, + O(N"Y(N-F 4 0dy))

uniformly for ¢ < a < 1 — ¢. In view of (5.22) and the preceding part of the
proof this implies that '

(5.25) 75(G) = Po(T 2 1,) + O(N-(N-* + 3,))

uniformly for fixed ¢, C, 7 and ¢. This completes the proof. []

It may be useful to comment briefly on assumption (5.10) in Theorem 5.2.
Of course this assumption is satisfied for a sequence of alternatives G, that tends
to F in an appropriate manner. Itis easy to see, for instance, that if the sequence
Gy" is contiguous to F¥, (5.9) implies (5.10) with 6, = O(N-*). Similarly, (5.9)

will imply (5.10) for some sequence d, = o(1) if 4 is continuous and G, con-
verges weakly to F.
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6. Deficiencies of distribution free tests. Let F be a fixed df with density f
that is positive, symmetric about zero and five times differentiable. Consider
the problem of testing, on the basis of X, - - -, Xy, the hypothesis G = F against
the alternative G(x) = F(x — 6) at level a. For any particular 6, the maximum
power z*(0) is attained by the test based on the statistic }; {log f(X; — 0) —
log f(X,)}. This statistic is a sum of i.i.d. random variables and therefore its df
admits an Edgeworth expansion under the usual conditions. By expanding the
cumulants of the statistic Albers (1974) obtains an expansion for z*(¢). Define
¥, by (3.15) and take

#*(0) =1 — ®u, — 7*)

B — 1) (Bt (30,5 1) _ 3wy 4 2g
(6.1) e I i) (30 — 1) = 377+ 2]
_ 3§ WA

W ¥ —9[(u,’ — 1) — 77*”,,]} ,

where * is given by (4.16). Lemma 6.1 is a version of Albers’ result.

LEMMA 6.1. Let F satisfy (4.5) for m; = S[i, i =1, .-+, 5, and suppose that
positive numbers C and ¢ exist such that 0 < 6 < CNtande <a <1 —¢. Then
there exists A > O depending on N, F, 0 and « only through F, C and ¢ and such
that

(6.2) |7+(8) — 7+(8)] < AN .

For the same testing problem Theorem 4.2 provides an expansion for the
power r(0) of the locally most powerful rank test. Together, Theorem 4.2 and
Lemma 6.1 will enable us to find the deficiency d,, of the locally most powerful
rank test with respect to the most powerful parametric test. To ensure that F
satisfies the assumptions of both Theorem 4.2 and Lemma 6.1, we require that
Fe &, where

DEFINITION 6.1. & is the class of df’s F on R! with positive densities f that
are symmetric about zero, five times differentiable and such that (4.5) is satisfied
fori=1,...,5 with m; =6, my = 3, my = §, m, = §, my = 1, and such that
(4.6) holds.

Furthermore, define

_j{(&EﬁMLp@j_n—aﬁm—vﬂ

Y12 U(§E W (e) dry
3 Sé II'.212(0 dt *2 __ 2 _ * *2
(6.3) + W’? 3[(us — 1) — 29*u, + 7*]
S (T (0)(1 — 1) dt
+ 12 (LW (t) dt } ’

with »* as in (4.16).

THEOREM 6.1. Let dy be the deficiency of the locally most powerful rank test
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with respect to the most powerful parametric test for testing G = F against G(x) =
F(x — 0) on the basis of X,, ---, Xy and at level a. Suppose that F ¢ & | and that
cNt <0 < CN% e <a <1 — e for positive c, C and ¢. Then, for every fixed

F, ¢, C and ¢, there exist positive numbers A, 0, 0,, - -+ such that lim,__d, =0
and for every N

(6.4) ldy — dy| < Oy + ANTH SN (W(0)(H(1 — 1)) dr .

This result continues to hold if the locally most powerful rank test is replaced by the
rank test with the corresponding approximate scores a; = — W (j/(N + 1)).

ProoF. As &, C .7, the remark following Theorem 4.2 shows that
(6.5) S (/) (1 — 1)) dt = o(N*) for v=1,4.

Theorem 4.2 and Lemma 6.1 provide expansions for z(f) and z*(¢). In view of
(6.5), the boundedness of u, and the fact that ¢ < N#0 < C, it is clear from these
expansions that dy = o(N?). To find d, we replace N by N + d, and »* by
7*(1 + dyN™")} in the expansion for n(¢) and equate the result to the expansion
for z*(#). Taylor expansion with respect to dy N~! in (4.18) yields

77*¢(ua - ’7*) S% II’.14(0 dt - 2 __ * *2
_7WT—W@+@EWEJ3M 1) + 27*u, + 7+

AR OX

(66) (S(ll le(l‘) dt)2 v*z + 3(”0:2 _ 1) _ 6;7*ua + 377*2
_ 1255 (B @)1 — o) a’t}
R ROY

= o(N7") + O(N=3 {53 (Y ()yX((1 — 1))t dr)

uniformly for fixed Fe &, ¢, C ande. Asp*@(u, — 7*) is bounded away from
zero, (6.4) follows. The last assertion of the theorem is an immediate con-
sequence of Theorem 4.2. []

Obviously (6.3) and (6.4) imply that under the conditions of Theorem 6.1
(6.7) dy = O(Siw™ (T (0)yu(1 — 1) di)

for N — co. Hence d,, remains bounded as N — oo if {} (¥,(#))*(1 — ¢)dt con-
verges. Fortunately, in most cases of interest Theorem 6.1 provides more detailed
information than (6.7) and remarks similar to those following Theorem 4.2 apply.
Typically ¥/ will be bounded near 0 and the asymptotic behavior of d, will be
determined by the rate of growth of W,/ near 1. If W/(f) = o((1 — #)~") near 1,
then dy = d,, + o(1). If W/(7) is of exact order (1 — ), then

G (W) (0)'(1 — t) dt

§o Wi(r) dt

and dy will be of the order log N. Finally, if ¥/(f) ~ (1 — #)~*~? for t — 1 and

some 0 < d < §, then the expansion (6.4) reduces to d, = O(N*), which is
nothing but (6.7).

dy =

+ o(1)



138 W. ALBERS, P. J. BICKEL AND W. R. VAN ZWET

We shall give two applications of Theorem 6.1. First we consider the problem
of testing the hypothesis G = ® against the alternative G(x) = ®(x — ), where
cN-t < § < CN-%. Letd, be the deficiency of the normal scores test (or van der
Waerden’s test) with respect to the most powerful parametric test based on X.
Computations similar to those in Section 4 yield

(6.8)  dy = §(u,7 — 1) + jetamm CPE) = g;())f)‘ = @) 4y 4+ o(1)
= $loglog N + (u,> — 1) + $log2 + 0.05832.-- + o(1).

In this case dy ~ }loglog N — co for N— co. Note that there is no dependence
on ¢ in this expansion for d, and that the leading term is also independent of a.

As a second example we take the logistic df F(x) = (1 + =)~ and consider
the testing problem G = F against G(x) = F(x — bN~*), where b > 0 is fixed.
Now d,, is the deficiency of Wilcoxon’s signed rank test with respect to the most
powerful parametric test for this problem. We find

(6.9) dy = {18 + 1212 + 4(3)tbu, + b% + o(1)

and here d, tends to a finite limit for N — co.

Having shown that the deficiency of a distribution free test with respect to
the best parametric test may tend to a finite limit, we now address ourselves to
the intriguing question whether this limit can be zero. To answer this question
we first have to decide what is meant by the best parametric test. So far, we
have compared the performance of a distribution free test with that of the most
powerful parametric test for known scale against a simple location alternative,
thus in effect comparing with envelope power. Of course this comparison is not
quite fair. Computed in this way, the deficiency of a distribution free test reflects
the losses incurred by using (i) the same test against every location alternative
6 > 0; (ii) a scale invariant test; (iii) a distribution free test. Since our main
interest is the deficiency due to (iii), it is more appropriate to compare with the
uniformly most powerful scale invariant test, if such a test exists. Unfortu-
nately, invariant tests are in general rather intractable, the main exception being
Student’s test for the normal location case. We note that Hodges and Lehmann
(1970) have shown that the deficiency of Student’s test with respect to the most
powerful parametric test based on X tends to a finite but positive limit, so that
it does indeed matter whether one compares with Student’s test or with envelope
power.

We are thus led to consider the normal location case with Student’s test as
the best parametric test. To establish the existence of a distribution free test
with deficiency tending to zero, the obvious candidate is the permutation test
based on 3} X;. Theorem 6.2 is an immediate consequence of Theorem 5.1 and
the remark following it.

THEOREM 6.2. Let dy be the deficiency of the permutation test based on Y X,
with respect to Student’s test for testing G = ® against G(x) = ®(x — ) on the
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basis of X, + -+, X and at level «. Suppose that positive numbers ¢, C and ¢ exist
such that cN-t < 6 < CN-tande < o < 1 — e. Then there exists A > 0 depending
on N, 0 and a only through c, C and ¢ and such that

(6.10) dy < AN,

Hence in this case we do find that d, tends to zero for N — co. Perhaps the
most surprising thing about this example is that asymptotically one has to pay
a certain price for scale invariance, but that once this price has been paid, there
is no additional penalty for using a distribution free test. We note that the
remark following Theorem 5.1 implies that (6.10) may be replaced by d,, < AN-%.

Theorem 6.2 may of course be generalized considerably by taking Theorem
5.2 for h(x) = x as a starting point instead of Theorem 5.1. For d, as in Theo-
rem 6.2, it is clear that d, = o(1) for a much larger class of testing problems
than the normal location problem of Theorem 6.2. Although Student’s test is
generally not optimal for these problems, this shows how closely the two tests
resemble one another.

7. Expansions and deficiencies for related estimators. Let T = T(X,, - - -, X})
be given by (2.2) and suppose that the scores a; are nonnegative and nondecreas-
inginj=1, ..., N. Define the statistic M by
(7.1) M(X,, -y Xy) = Fsup{t: 2T(X, — ¢, - -+, Xy — 1) > Y a;}

+ inf{r: 2T(X, — ¢, .-, Xy — ) < Y a;} .
Suppose that X, - - -, X are i.i.d. with common df G(x) = F(x — p), where F

has a density f that is symmetric about zero. Then M is the midpoint of the
interval between the upper and lower 0.5 confidence bounds for p induced by
the statistic 7. Hodges and Lehmann (1963) proposed M as an estimator for y
and studied its connection with T. They showed that the normal approximation
to the power of the level 4 test based on T for contiguous location alternatives
could be used to establish asymptotic normality of M. We shall show that,
similarly, power expansions for level § yield expansions for the df of N¥(M — p).
We restrict attention to the case where the scores are generated by a smooth
function J.

Let # and & be given by Definition 4.1, let (¢, 1) denote the power of
the level § right-sided test based on T against the alternative F(x — ) and define
K, ; and 7 as in (4.8)—(4.10).

THEOREM 7.1. Let Fe &, Je 7, suppose that J is nonnegative and nondecreas-
ing and let a; = EJ(U;.y). Take 8 = EN-Y. Then, for every fixed J, F and C > 0,

(7.2) SUPieiso |PUNHM — 1) < &) — =(0, )| = O(N7Y),
(7.3) SUPgiso [PUNHM — 1) S €) — {1 — Ko (=7} = o(N7Y),

(7.4) Pz [PUANYM — 1) <€) — {1 — Ky (=D}
= o(N7) + O(N=F §/Y IO + [¥/(DINH(L — 1))t dr) .



140 W. ALBERS, P. J. BICKEL AND W. R. VAN ZWET

Proor. It follows from Hodges and Lehmann (1963) that M is translation
invariant and that its distribution is absolutely continuous and symmetric about
p. Thus, for § = N4,

(7.5) PANYM — p) < £) = P(M 2 0),
and, in view of (7.1),
(7.6) PRT> Y a) < PAM=0)< P2T = ¥ a;).

According to the proof of Theorem 4.1, the conclusions of Theorems 3.1 and
3.2 hold, which implies that P,(2T = ] a;) = O(N~%) uniformly for |[§] < CN~*.
This proves (7.2). The remaining part of Theorem 7.1 is now an immediate
consequence of Theorem 4.1. []

The case where J = — ¥, with ¥, as in (3.15), is of course of special interest.
Theorem 7.2 deals with this case for exact as well as approximate scores. Note
that for Fe.&, the condition that —W¥, is nonnegative and nondecreasing is
equivalent to concavity of log f, i.e. to strong unimodality of f.

THEOREM 7.2. Let Fe.%, suppose that f is strongly unimodal and let either

a; = —EW,(U;y)forj=1,.--,Nora; = —W.(j(N+ 1)) forj=1, ..., N.
Then, for every fixed F and C > 0,
(7.7) SUPe <o [PNHM — p) < §) — n(§NTH, §)| = O(NTH),
P((N {5 ¥2(t) d)} (M — p) < x)
_ x¢(x) [ o[ S WA 12 3 W) dr
(7-8) =P + 72N {x [(g;w(t) drr (W) dr)? + 9]

_I_

WA dr 36 S (HOM(L = 0 i)
(15 WiX(r) dry? Yo Wi(r) dr

+ o(N7) + O(N-} {53 (WY () (((1 — 1)t dr)
uniformly for |x| < C.

Proor. The proof of (7.7) is identical to the proof of (7.2) in Theorem 7.1.
Expansion (7.8) follows from (7.7) and Theorem 4.2. []

The estimators in Theorem 7.2 are efficient and their natural competitor is
the maximum likelihood estimator M’ which solves

(7.9) T (X, — M) =0

with ¢, as in (3.1). The performance of M’ is connected with that of the lo-
cally most powerful test for F against F(x — 6), which is based on the statistic
— X ¢y(X;). Let z’(, ) be the power of the level % right-sided test based on
— 2% ¢(X;) for F against F(x — 6).

LeEMMA 7.1. Suppose that f is positive, symmetric about zero and strongly unimodal
and that (4.5) is satisfied for m; = 5[i, i = 1, --., 5. Then, for every fixed F and
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c>o,
(7.10) SUPg <o [PUNHM' — p) < §) — o'(§N7H, 3)| = O(NY),
P (N § W (t)dy(M' — p) < x)
_ x$(x) (o] S G WH)dr 12 §3W()dr
(.11 77 {x [(g;w(z) iy~ (WK1 diy 9]
3G TNyt _
G a0 O

uniformly for |x| < C.

Proor. The estimator M’ is translation invariant and its distribution is sym-
metric about g. Thus, for § = §N-%, (7.5) holds with M replaced by M’, and
in view of (7.9),

(7.12)  Po(— 2 $:(X;) > 0) < PNYM' — p1) < §) < P(— 1 I(X;) 2 0).
Since f is everywhere positive and ¢, is everywhere differentiable, the distribu-
tion of ¢,(X;) under 6 contains a fixed absolutely continuous component for all
6 in a neighborhood of zero. Together with (4.5) for m, = 5, this ensures that
the df of 37 ¢,(X;) under 6 possesses an Edgeworth expansion with remainder
O(N-*) uniformly for |¢| < CN-1. This implies that P,(— 3] ¢,(X;) = 0) = O(N-1)
uniformly for |§] < CN-}, which proves (7.10).

The expansion for the df of )] ¢,(X;) is used in Albers (1974) to establish an
expansion for the power of the locally most powerful test under the conditions
of Lemma 6.1. Specializing to the case where « = } and using (7.10) we obtain
(7.11). [

There is no unique natural measure of scale to assess the performance of an
estimator Z admitting an expansion of the form (7.8) or (7.11). One possibility
is to consider a family of measures determined by the quantiles of 4. We can
define o(g2, 5) to be the s-quantile of (& — p) divided by u,_, = ®~Y(s). As we
are only considering estimators that are distributed symmetrically about y, o(g, s)
may serve as a measure of scale for any § < s < 1. If we fix a value of s, we
can define the deficiency D,(s) of ‘a sequence of estimators {4, ,} with respect
to an estimator f, , by equating (&, v, 5) and o(4, y, s), with the usual con-
vention that ¢ is determined by linear interpolation for nonintegral values of
N + D,. Similarly, for two sequences of level a tests, dy(a, s) will denote the
deficiency as defined in Section 1 for the case where the alternative @ is chosen
in such a way that the common power equals s.

Let & be given by Definition 6.1.

THEOREM 7.3. Let d\(3, 5) be the deficiency for level % and power s of the locally
most powerful rank test with respect to the locally most powerful test for testing F
against F(x — ). Let D(s) be the deficiency of the Hodges—Lehmann estimator as-
sociated with the locally most powerful rank test with respect to the maximum likeli-
hood estimator for estimating p in F(x — p). Suppose that F ¢ &, and that f is
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strongly unimodal. Then, for fixed F and 1 < s < 1,
(7.13) IDw(s) — dild, )| = O(NTH),

WY (W01 —0)dr 1 QW) de
7.14)  Dy(s) = " (T _ 1§y,
R ) di T @A ay

+ 14 o) + OV ™ (B (0)'(1(1 — 1))r dr) .

This result continues to hold if in the locally most powerful rank test and the asso-
ciated estimator, the exact scores are replaced by the approximate scores a; =

—V,(/(N+1)).

Proor. The conditions of Theorem 7.2 and Lemma 7.1 are satisfied. Writing
M, and M’ for M and M’, we see that for some &

(7.15) P(NYM, — p) <€) = s + O(N-),
(7.16) P (NHMyp4y — ) < &) = 5 + O(N-1) .

By the remark following Theorem 4.2 we have W/(r) = o((#(1 — 1))~%) near 0
and 1, and combining this with (7.8) and (7.11) we find that (7.15) and (7.16)
imply (7.13). The proof of (7.14) is now the same as that of Theorem 6.1. []

An interesting property of the expansion (7.14) is that it is independent of s.
Thus, to the order considered, the deficiency D,(s) is asymptotically independent
of the particular choice of the quantile used to measure the performance of the
estimators. Of course, this reflects the fact that the deficiency d,(3, s) is inde-
pendent of the power in the same asymptotic sense. Algebraically, the reason
for this phenomenon is that the term involving x%(x) is the same in (7.8) and
(7.11).

We also note that upon formal substitution of & = f{and ¢ = 0 in (6.3), the
expansion for d, in Theorem 6.1 reduces to the expansion for D(s) in Theorem
7.3. This shows that if the remainder in (7.14) is o(1), then D,(s) will tend to
a nonnegative but possibly infinite limit.

In Section 6 we have already pointed out that an expansion like (7.14) may
or may not be of interest, depending on the behavior of the remainder term.
We should stress that, even if the expansion (7.14) is useless, (7.13) still estab-
lishes the asymptotic equivalence of D,(s) and d,(}, s).

We conclude our discussion with one example of Theorem 7.3. For estimat-
ing normal location, the deficiency of either one of the Hodges-Lehmann esti-
mators associated with the normal scores test and with van der Waerden’s test
with respect to X is asymptotic to 4 log log N. The deficiency of one of these
Hodges-Lehmann estimators with respect to the other tends to zero for N — co.

APPENDIX

1. Expansions for the contiguous case. Our purpose in this appendix will be
the justification of the passage from (2.41) to (3.8) under the assumptions stated
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in Section 3. Thus we shall suppose throughout that f is positive and symmetric
about 0 and that g(x) = f(x — 0).
Begin by defining a function &(x, ¢) for x = 0, t = 0, by
(AL.D) F(&(x, 1) — t) + F(§(x, t) + t) = 2F(x) .
Introduce also two other functions of two variables, p and p, by

_ flx—1
(A1.2) p(x, ) = RN CET) )
(Al1.3) Plx, )y = pé(x, 1), ).

The basic property of the function ¢ is, of course, that the joint distribution
of (§(Z,,0), - - -, &(Zy, 0)) under F is the same as the joint distribution of (Z,, - - -,
Zy) under G. It follows that the joint distribution of (p(Z,, 0), - - -, p(Zy, 0))
under F is the same as the joint distribution of (P,, - - -, Py) under G. It is evident
therefore that our task is essentially that of expanding p(x, ) around 0 as a func-
tion of ¢ and giving suitable estimates of the remainder terms. We begin by
differentiating formally. For convenience we shall, for any function of two
variables g(x, t), write
9" ig(x, 1)

(X, 1) = 3 .

B0 = =50

Differentiating (Al.1) with respect to t we get
(Al.4) §a=2p— 1.

It is now easy though tedious to obtain p, ;(x, ) in terms of the p; ,(§(x, 1), ) by
replacing &,, by 2p — 1 after each differentiation. Thus, for example,

(ALS) Pos(%: 1) = [Pon + Pro(Zp — D]ECx 1), 1),
(AL6)  pou(x, 1) = [Pos + 2p14(20 — 1) + Poo(2p — 1)* + 2p10Pos
+ 2p1o(2p — DIEE, 1, 1) -
Calculation of the p, ; is also tedious. Again we list the first few. Define

(AL.7) 19u(x, 1) = ¢u(x — 1), 21Pu(x, 1) = Pu(x + 1),
where ¢, = f*/f as defined in (3.1), and let
(AL8)  Julx, 1) = du(6(x, 1) — 1), oPul(x, 1) = ulé(x, 1) + 1) -
Then
(A1.9) Por = —p(1 — P)lir + 2] » Pro = p(1 — )l — 2]
Poz = P(1 — P — oy — 2p - 1 Pi* + 2(1 — p)¢s’
+ 2(1 - 2P)1¢’1 * 2¢1] ’
(AL10)  piy=p(l = p)[—1fs — o + 2p o + 2(1 — pladr’] s
Pao = P(1 — P2 — o2 — 2p - 14" + 2(1 — p)y¢y’
—2(1 — 2p)i¢y - 1]
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Substituting (A1.9) and (A1.10) into (A1.5) and (A1.6) at r = 0 and employing
similar manipulations with the third order derivatives we obtain
ALIL)  p(x,0) =4,  Poa(x,0) = —34u(x),  Poa(x,0) =0,
Pos(X, 0) = —55(x) + 3Py (x)dy(x) — §4,%(x) .
Moreover, from (A1.9), (A1.10) and the boundedness of p it is easy to see that
constants b, and b, exist such that

(A1.12) |P0,1| é bl Z?:l |z¢1| ’ |P0,2| é b2 Z%=1 {lz‘ﬁ2| + i‘ﬁf} .

Similarly bounding first the p, , and expressing p, ; appropriately, and invoking
the inequality |ab| < r~'|a|” + s7'|bJ*, r~* + s = 1, we obtain for suitable b,
and b,
(A1'13) lp0,3| é b3 Z%:l {|t¢3| + lt¢;2|§ + |l¢;1|3} ’
120 = b Tiaalldil + Ll + o + 1) -
We need the following application of Taylor’s formula with Cauchy’s form
of the remainder.

LeMMA Al.1. Let q(x, t) be a function of two variables possessing derivatives of
order < k + 1 in t in a neighborhood of 0. Then if S is any rv and m = 1,

(ALY E[gS 0 = oguS 0]

< Mk+1

- |:(k + 1)!
Suppose moreover that for j = 0, - .., k, Eq, (S, 0) exists and is finite. Then

]m sup {E|‘Io,k+1(S, ut)|”": 0sv< 1} .

(AL1S)  B|{g(5. 0 = E4(S. 0) = Thea lgo,(5. 0) = Ego (5,0 1|

k+1 m
<2 [(k"'+ 1),] SUP {Elqosi(S, 0™ 0 < v < 1.

Proor. Wehave (cf. Dieudonné (1960), page 186, Titchmarsh (1939), page 368)
i
(AL16) g8 1) = D50 (S, 0) 5

tk+1 )

+ & + D) §o (k + 1)1 — v)eqy 4a(S, vi) dv

provided that the integral converges. Hence the left-hand side of (Al.14) is
bounded by

Fa - e "
|:(k + 1)!j| EISO(k + 1)(1 ) qo,k+1(S) Dt)d I .

This obviously remains true even if the integral diverges for some values of S.

An application of Ljapunov’s inequality and Fubini’s theorem complete the
proof of (Al.14) and a similar argument disposes of (A1.15). [J
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Note that by using the same device one can show that the left-hand side of
(Al.14) and (A1.15)is o(|?|™*) for t — 0 if ¢ is k times continuously differentiable
and

(A1.17) lim,_, E|g, (S, O)|™ = E|q,, (S, 0)|™
Of course (A1.17) holds if g, (S, +) is continuous at 0 and
(A1.18) sup {E]g,,x(S, )™ |t £ 0} < o0

for some ¢ > 0.
We introduce two final pieces of notation. If d,, ..., d, is a sequence of
numbers we write

(AL19) lld|] = — Z ~ildy] -

If y is a function of one variable and ¢ > 0 is fixed we define

(A1.20) llxll = sup {§2w [x(x + p)|f(x) dx: [y] < ¢} .

THEOREM Al.l. Suppose that f is four times differentiable, that E,¢y(]X,]),
E (| X))o Xy]) and E (| X,|) exist and are finite and that 0 < 20 < . Then if
r=1, rt 4 s = 1, there exists a constant B such that

ZJ 1 1(27[ - l) - "‘“621 =14; (/JI(Z)___ZJ =14; [¢3(Z])

(A1.21) — 69(Z)PAZ;) + 39:(Z))] + My,
[M,| < BNGja"|" TN 4 ™l + 1™l + [T 5

(A1.22) af2r; — 1) = —0 YV aE(Z,) + M,,

.’l =177
|M| < BN03||a3r||l/r[||¢3|| + ||¢233/2|| + ||¢3s||]1/a.
(A1.23) : =1 12E6(2P - 1)2 =0 .’l =1 72 0¢12(Z) + M

|M| < BN&®||a™ |7 []|¢°l| + [1¢™]] + (12111 5
0 (L= a,P5) = —%2(2] —18;9(Z)) + M.,

(AL.24) M| < BN0%[a*|[[|gd]] + [I44]] + [14:°1]] + BN6¥||a’l|*
XA+ 112l + NN EN Z a (¢ Z5) — Espu(Z))] -

Moreover, for m = 1 and p > O there exist B’ and B" depending only on m and on
m and p respectively, and such that

(A1.25) A E,2P; — 1™ < B'N6™||¢,™||
2By Py — my ™y ]ve
(A1.26) < O ZAE|9(Z;) — Ecl(Z;)|™Y1Ve

_I__ BIINl/p02m[||¢2m(pvl)|| + ||¢12'm(p\/l)|| + 1]1/.0 ,
where p /1 denotes the larger of p and 1.

Proor. In (Al.14) we take E = E,, ¢(Z,0) = ) a,2p(Z;,0) — 1), k = 3,



146 W. ALBERS, P. J. BICKEL AND W. R. VAN ZWET

m = 1, and find
04
M| < a sup {Eol2 X a;p0(Z;, vh)|: 0= v = 1}

N6* |, ur 1 e
< M\ sup {[ 2 EdpudZi 0 [0 <0 s 1}

by Holder’s and Ljapunov’s inequalities. Since 3} |p, (Z;, v0)|* is symmetric in
Z, .-, Zy, we have

1
N 2 Eo| pou(Z;, vO)|* = Eo| po,o(|Xal, vO)| -

Now we apply (A1.13) and use the fact that the distribution of (| X;|, »¢) under
F(x) is the same as that of ,¢,(|X}|, v0) under F(x — v6) to obtain
Ey| po. (| X, v0)]* < B2E o[ s {l:fu(1 Xl ¥0)] + |1 X, vO) !
+ @1 Xa, v0) + (X, vO)}]° -
Because s = 1 and 0 < 2v0 < ¢ for 0 < v < 1, this implies that
Ey| po. (1%, vO)* < 802LlIg]] + 11571 4 N[ + llei*II] -
which proves (A1.21).

The proof of (A1.22), (A1.23) and (A1.25) is similar. Ineach case we can apply
(A1.14), taking ¢(Z, 0) = X a}(2p(Z;, 0) — 1),k = 2, m = 1to prove (A1.22),
and ¢(Z, 0) = 3 a(2p(Z;, 0) — 1), k = 2, m = 1to prove (A1.23). In(Al.25)
the symmetry in Z,, - - -, Z, is already present from the start, so here we use
(A1.14) with g(|X|, 8) = 2p(|X,|, ) — 1, k = 0 and the value of m as in (A1.25).

A rather delicate argument is needed to deal with (Al.24). Because
Poo(x, 0) = 0,

(et — 4+ 5 6:9)
_ "72 122(1 — v)pya(x, vt do|
< 1f%{1% 8 2(1 — v)Pos(x, vi) dv* + | §53(1 — v)Po (¥, vi) dv|}}
< 8% §6 {| Poa(xs vOIP 4 | Po,o(X5 vO)|*} dv s
and similarly,

t3 $
6 §63(1 — v)Po 5(x, vi) dv

% ,
P ) — &+ 2 @) = G {Poskes v + Postes v b

By now familiar manipulations yield
02
0 (2 a; P;) — TGOZ(ZI a;9(Z;))

< 0¢ (Za {p(2:0) + 5 0:2)})

+ 0 ,Cov0 (Z a; {p(Zj, 0) + % ¢1(Zj)} » 2 aj(pl(Zj))‘
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< NIRIE{ 1K, 0) — 4 + 2 6,(XD} + Nollel | Ex| p(), 0) — 3

+ 2 00x)| [ 1BIZ atgu2) — EpzPp

< BN*0¥||@||[Ig| + N7l + 1l¢°l[] + BNO¥ ||
X [1getl] + 112°ll + LN PIEN Z ai($i(Z5) — Eapi(Z)ITE -
It remains to consider (A1.26). Since
KZ;, 0) — Ep(Z;, 0) = 0 Po,(Z;, 0) — Eopoi(Z;, 0)]
+ O S8 010s(Zs )| + Ed oo Zs, D) 121 — v) di,
and m = 1, we have
Ep|P; — m;{™ £ 27710 Eq|poi(Z;, 0) — Eopon(Z;, 0)|"

+ —0;—'" Eo SOI {lpO,Z(Z_,', Vﬁ)l + EOlPo,z(Zj, vﬁ)lm}z(l _ lJ) v

< TEINZ) - Ed(Z)l"

+ 27162 (0 Ey| Po o(Z;, v0)|"2(1 — v) dv .
Hence

2 AE|P; — =™ < 0™ FAE|P(Z;) — Eyp(Z))|™)
+ 2meNG*™[1 + sup {E,|p, (| X|, vO)|™ P : 0 < v < 1}].
Proceeding as before we prove (A1.26) and the theorem. []

CoRrOLLARY Al.l. Suppose that positive numbers c, C and ¢ exist such that (2.35),
(3.2)and (3.3) are satisfied. Let K, K, and 7 be defined by (2.40), (3.4) and (3.5). Then
there exists A > 0 depending on N, a, F and 6 only through c, C and ¢, and such that

(A1.27)  sup, lK(x — %%;Jl) — Ky(x — ﬂ))
S AN+ O¥[E| T a(9d(Z;) — Eop(Z)))I']
+ N7 (L a; $(Z;))} »

(A1.28) |3 a,"Eydy(Z,)| < AN for m=1,3,
(A1.29) |3 4 Ep(Z) < AN,

(A1.30) |2 a; Ef¢y(Z;) — 6(Z;)PZ;) + 34(Z;)]| < AN,

(A1.31) 3T E,|2P; — 1|™ < AN'*-™ for l<sm<e6,

(AL32) [T {EP; — 7P < O[T {El¢Z;) — E(Z,)IY]t + AN-Y .

PRroor. Since the corollary is trivially true for N < (2C/e)?, we may assume
that 20 < 2CN-? < ¢ and use the results in Theorem Al.1. We note that (2.35)
implies that ||a”|| < [C" max (1, N*=*)]t. In the notation of this appendix (3.2)
asserts that ||¢,™i|| < C for m, = 6, m, = 3, m; = 4 and m, = 1. All order sym-
bols in this proof are uniform for fixed ¢, C and e.
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(A1.28)—(A1.30) follow from (2.35) and (3.2) by Holder’s and Ljapunov’s
inequalities, e.g.
| a°Es$i(Z;)] = O(N 'a' () = O(N) -
(A1.31) and (A1.32) are immediate consequences of (A1.25) and (A1.26).
Taking r = 4, s = 4 in (A1.22)—(A1.24) we find

(A1.33) M, =0(1), M, =O0(N),
M, = O(N-t + NO¥[E| T a(i(Z;) — Ehu(Z))T) -

Hence, uniformly in x,

R(x) = O(x) + ¢<x>{ﬁ%w —3x) — 02{%@()«2 _1y
02

323 T aBgZ) — 0D e, (Z;)]x}

+ O(N=1 + O¥[E| T a;(¢(Z;) — Eepu(Z)I]) -
Taking r = oo, s = 1 in (Al.21) we have

(A1.34) +

Ya;2n; — 1) 0° .
(AL.35) _—(W =7 W 2 a; E[¢(Z;)

— 69 Z)9(Z;) + 395(Z)] + O(N*EY)
where the second term on the right is O(N%6°) by (A1.30). Now we substitute
x — (X a)t Y a;(2n; — 1) for x in (Al.34) and expand the right-hand side
around x — 5. It follows from (A1.35), (A1.28) for m = 3 and (A1.29) that in
this way we obtain (A1.27).

2. Asymptotic behavior of moments of functions of order statistics. Our
aim in this appendix is twofold. In the first place we provide a proof of Theorem
3.2 where the order of the remainder in expansion (3.8) is evaluated. Secondly,
we obtain asymptotic expressions for the leading terms in the expansion for the
case where exact or approximate scores are used, thus in effect proving Theorems
4.1 and 4.2.

Let U,y < Uy < -+ < Uy.y be order statistics of a sample of size N from
the uniform distribution on (0, 1).

Lemma A2.1. If2=j/(N+ 1) thenforallN =1,2,.-.,j= 1,-.-,Nandt = 0,

P( 15 = 4 (7(1_{_5)5 2 1)< 20w~ gl

Proor. The probability on the left is equal to
— D\¢
(A2.1) B(j, N,x_t«_(_lwﬁ))

+B(N_j+1,1v,1_z_z<£(1_;1))*>

where
B(j, N,p) = Zi_; ()Pl — p)**.
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For j > Np Bernstein’s inequality (cf. Hoeffding (1963) page 17) yields
. i — N, j — N,
B(j,N,p) < —J =Py (J I4 )}
(; N:p) = exp{ —5 Np
with A(s) = 3s(2s + 6)~*. Application of this result gives after some algebra

B384 = ()
[t -+ AN — P!

< exp{—-?(3 T N_l) T t(NX(l — 2))—5[2(5 + N—l) — 2] — 2N—1t2} .

Noting that 2 < N(N 4 1)7* and (NA(1 — 2)* <1 + N1, we see that
exp {—3¢%(6s + 8)~'} is an upper bound for the first term in (A2.1). By inter-
changing j and (N — j 4 1) we find that the same is true for the second term

in (A2.1) which proves the lemma. []

LeMMA A2.2. If 2 = j/(N + 1), k is a positive real number, v, is the kth absolute
moment of the standard normal distribution and I, ,, is the indicator of (a, b), then
uniformly forj =1, ..., N and y = $A(1 — 2) we have for N — co,

Ny k =1y -
(,T(—l_—])> E(/Z - U-’i=1V) 1(1—77,1)(Ui:N) = 3V, + 0((N/2(1 ,2)) i) R

N\t
(m) E(Uj:N - z)kl(x.lﬂy)(Uj:N) = %”k + 0((NX(1 - X))_é) .

ProOF. Let f be the density of Z = (N/A(1 — 2))(U;., — ). Application of
Stirling’s formula in the form log n! = (n + §)log (n + 1) — (n + 1) + }log 2z +
O(n™") followed by expansion of logarithms yields

LR Y P
(NA(1 = 2))t 2 NA(1 = 2)
ol 1
+ ((Nx(l —a F NA(1l — z)>

for z* < Nmin(4/(1 — 2), (1 — 2)/2). Hence, for |z] < (NA(1 — ) <
[Nmin (/(1 — 2), (1 — )/A)]3,

I 2| + J2° L
(A2.2) flz) = (zﬂ)ke ¢ |:1 + 0 ((NX(I — )t + NA(1 — 2)>:|

uniformly in j. Since p(N/A(1 — 2))} = H(NA(1 — 2))}, (A2.2) and Lemma A2.1
imply that

% _ 1 FNAA=ANE k p—}23 14 |z + |2°
EZ*I ;009 (Ujw) = (27)5 fgvaa=ans zke 1+0 (m)] dz

+ O($fivaa-at 274 dz) = Ju, + O(NA(1 — 2))7%),
which proves the second part of the lemma. The first part now follows by noting
that U;.y and 1 — U,_;,,., have the same distribution. []

log f(z) = —4log 2z +

REMARK. One easily verifies that Lemma A2.2 continues to hold when 7 is
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taken as small as [¢(2(1 — 2)/N)|log NA(1 — 2)|]* for any ¢ > 1. It should also
be noted that when j or (N — j + 1) remains bounded as N — co, Lemma A2.2
merely states that E|U;., — 4|* = O(N7*).

Condition R,. For real r > 0, a function 4 on (0, 1) is said to satisfy condition
R, if h is twice continuously differentiable on (0, 1) and

lim sup,_,, #(1 — ?)

h”(t)' 1 1
(1) <t

Lemma A2.3. Letr,, -+, Iy, ky, -+, k,, be positive real numbers,j = 1, ---, N,
A = j/(N + 1) and v, the kth absolute moment of the standard normal distribution.
Suppose that hy, ---, h, satisfy conditions R,l, cee, er respectively and that
>3 kyfry £ 1. Define

Al — DH\EZk (7 21 — 2) )\t
M = <(_m)_> {(Q) (VA1 — 2y T |hi'(,z)|ki} :
N N

Then, uniformly in j, we have for N — oo

E I Usn) — RA = (A=A

N
and for integer ky, - -, k,,
E It (h(Usy) — ho(2))*
= O(M) if Xk, isodd,

= <3(_1N:£).>*2'°" vgu, ITEa (B + O(M)  if Sk, is even.

Proor. For reasons of symmetry it is sufficient to consider only j < (N + 1)/2,
i.e. 2 < 1. Since 4, satisfies condition R,, there exists 0 < ¢ < &, = > 1 and
C>O0suchthatfori=1,...,m

Pk .
) vse, [T |/ (2)|* 4 O(M)

(A2.3) "i"(’)] < (1 i L) 1 for 0< 1< 3,
h!(?) rT -
(A2.4) ()| < C  for e<t<l—e,
(A2.5) M‘g(uri)a_t)—l for 1—3e<r<l.
k(1) rT

Suppose first that 4 < 2¢. Integration of (A2.3) shows that for 0 <t < 4

andi=1,...,m, .
<_t_) < MO (i)
2 K@) T ’

—zr—i?%/?[l _(%)2+1/rir]§ Mf(j—)h(—t) < rc l:(,:)l/rir 3 1:|'

It follows that
h(2) — k(1) _ 7 _ (2=
(A2.6) o =@=n+o <_7_> for

hy(2) — z(t)‘ < r.zi e f <1
\ X0 rT ) or 0 <t 34,

A

IA
IA
>

1
'Q t
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Application of Lemma A2.2 with 7 = }4 yields

h(2) — hy(Uj.x)\ee
E H:‘=1 (—l(——)‘;{%ﬂ—)) 1(0,1)(Ui:N)
)
1 /21 — 2) Tk -
(A2.7) = o (ZEZ ) ug 1 + 0Nt = )
" 2 17
+ 0 (22 @E< ) I(o,ﬁz)(Uj:N)> ’
. Uj:N
where we have made use of Y k,/r, < 1. For2 <j < #(N + 1),
A \VT ke N 1-1/¢
ZZkiE( ) I(o.m(Uj:N) = AT EUj—l:N—llw,W(Ui—lﬂv—l)
U.?':N J— 1

(A2.8) < UEMP(U,_ oy, < 32)
-0 <<£QT—'L)>”Z (a1 — z))—%)

by Lemma A2.1. For j = 1 we have

2 Lo Ui)
(A2.9) = (N + 1)—Zki—l/rN 8(1)/2(N+1) u—l/z'(l _ u)N“ du
oty = o (A=D1 (v - ).

Together, (A2.8) and (A2.9) ensure that the second remainder term in (A2.7)
may be omitted.

A similar analysis based on (A2.3)—(A2.5) shows that for 2 < 2¢ but ¢ = 4,
(A2.6) holds for 4 < ¢ < 32/2 and

M' < rth <L>2+mir for 34 <t < 3,
h/(4) - A 2 - T

XZ"iE<

J:N

= QA" (1 — £)=Vrer) for 3e<t<1.
Hence by Lemmas A2.2 and A2.1 and a change from U;. to U;,y_, as in (A2.8),

m (P(Ujy) — hy(A)\Fi
E I, <*W> :’(Z,l)(Uj:N)

= L (A=Y 1+ ot = 2]
(A2.10) + O(AZks exp {—%-(Nl)*}

+ 'z_zki_mE(l — Uj:N—I)I.-l/r](Ss,l)(Uj:N—l))

1 /21 — 2)\t2k

= 5 (FES ) 1+ ot — 2ya).
Combining (A2.7)—(A2.10) and noting that (A2.7) and (A2.10) remain valid
when absolute values are taken inside the expectation signs, we see that the
lemma is proved for 2 < 2e.
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If 2¢ < 2 < &, (A2.3)—(A2.5) imply that
hy(t) — hy(2) = B/(A)(t — 2) + O((t — 2))) for e<t<1—e¢,
|h(1) — hy(R)] = O((¢(1 — 1))~V7i7) for t<e or t>1—¢,
and the proof of the lemma for 2¢ < 2 < 4 follows by noting that 4;/(2) is
bounded and arguing as e.g. in (A2.10). [

REMARK. Although the remainder M in Lemma A2.3 consists of two terms,
only one of these plays a role for any particular value of 2. For 2¢ < AL
1 — 2¢, h() and (A(1 — 2))~* are bounded and we need only retain the first
term of M. It follows from (A2.7)—(A2.10) that for 2 < 2¢or 4 = 1 — 2¢ only
the second term of M is needed.

LEMMA A2.4. Lemma A2.3 continues to hold for central moments, i.e. if h,(2) is
replaced by Eh(U;.y) fori = 1, ..., m, provided only thatr, > 1 fori =1, ..., m.

PrROOF. Asr;, = 1, Lemma A2.3 contains as a special case

(A2.11) |ERh(U,;.y) — hi(3)| = O (1(1 — 1)N+ Ih/(l)l).

The lemma is proved by expanding the central moments in terms of moments
centered at the A,(4) and applying (A2.11), Lemma A2.3 and the remark follow-
ing it. J

We also note the following extension of a result of Hoeffding (1953).

LemMa A2.5. Let b, ---, h, be continuous functions on (0, 1), q a continuous
function on R™ and Q a convex function on R™ such that |q| < Q. Suppose that
(3 1h(0)| dt < oo fori =1, ..., mand that \§ Q(hy(t), -- -, h,(t))dt < co. Then

limNW% 2 9(ER(Ujoy)s -+ -5 Ebp(Ujy)) = S q(Bu(®), - - - hu(1)) dt -

Proor. Because %, is continuous and summable, Lemma 2.2 of Bickel (1967)
implies that for any e > 0, Ehy(U;,.y) — A(jy(N + 1)™") — 0 uniformly for
e <jyN+ 1)< 1 —cas N— oo. Since g is continuous and g(h,, - - -, h,) is
summable, the lemma is proved if we show that

. . 1 .
lim, , lim sup, N (X5 4+ Y o +oDI9(ER(Us.y)s - - -5 Eh,(U;x) =0.

It is obviously sufficient to prove this for Q instead of ¢, but as Q has the same
properties as ¢ and is moreover nonnegative, this is equivalent to showing that

lim supy ~ 20, QER(Usey)s - - Ehp(Usa)) S §3 QU(0), - -+, ha()) d .
N

As Q is convex this follows from Jensen’s inequality. ]

LemMMa A2.6. Letk,, ---,k, be positive integers and r,, - - -, r, positive real
numbers such that Y k;/r, < 1. Suppose that hy, - - -, h, are continuous functions
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on (0, 1) for which §j |h,(t)|":dt < oo fori =1, ..., m. Then
lim,_, —]1\—, 2o T (BRy(Ugp))'s = §o Ty (B(r) e dt
If, in addition, h, is monotone in neighborhoods of 0 and 1, then also

i - 523 ( () T (B = 5T (o).

Proor. The first part of the lemma is a special case of Lemma A2.5, obtained
by taking g(x,, - - -, x,,) = [[ xfiand Q(x,, - - -, x,,) = 1 + 3 |x,|"s. To establish
the second part we follow the proof of Lemma A2.5 for these choices of ¢ and
Q but with Eh(U;.,) replaced by A (j(N + 1)7%), until we arrive at the point
where it suffices to show that

. 1 j
mon 32 )

As |h|"1 is continuous and summable, its monotonicity near 0 and 1 amply
guarantees that N=* 3 |h,(j(N + 1)~Y)|"1 — {}|hy(#)|"1dt. Application of Jensen’s
inequality to the remaining terms completes the proof. []

71

+ Bt ERUp)l | S § B 0]

We now state the results needed to prove Theorems 3.2, 4.1 and 4.2 in the
form of two corollaries.

CoROLLARY A2.1. Suppose that positive numbers C and 0 exist such that |I'(f)| <
C(t(1 — #))™**? for all 0 < t < 1. Then there exists A > 0 depending on N and h
only through C and  and such that

7= {EIA(U;.n) — ER(U;.)} < AN?.
The above condition is fulfilled if h satisfies condition R, and \} h*(r) dt < oo.

Proor. Define 2 = j/(N + 1). Forall 0 < ¢ < 1, |h(f) — h(2)| is maximized
by taking #'(f) = C(t(1 — £))~*+? and for this particular choice of 4’ the function
h satisfies condition R,. Hence, by Lemma A2.3, we have in general

EW(U,.y) — h)|* = 0((?%)” (a1 — z))—k(a—w>
for 0 < k < 3. It follows that

T {EIA(Us.) — ER(U; )} = O(ZF- ANTHA(1 = 2)71))
= O(N¥ §5¥% (¢(1 — £)7¥ df) = O(NY).

Condition R, ensures that for ¢ as in (A2.3) and 0 < t < du < ¢, |h(f) — h(2¢)| =
Lu|# (u)| and hence for u — 0,
w(h'(u)® < 2% (4 (h(r) — h(2¢))°dt — 0.
In the same way one shows that |#'(4)| = o((1 — u)~%) for u — 1, which completes
the proof. []
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Fori=1,2,3,let ¢, = f@/fand ¥, (r) = ¢,(F((1 + 1)/2)) as in (3.1) and
(3.15). Let J be a function on (0, 1).

CoRrOLLARY A2.2. Suppose that (3.2) holds, that 0 < {3 J4t) dt < oo and that
both J and W, satisfy condition R,. Let either a; = a; y = EJ(U; y)forj=1,...,N
ora; =a; y =J(j/(N+ 1)) forj=1, ..., N. Then, as N — oo,

(A2.12) %[_ Y ap = LIt dt + o(l),
(A2.13) JN T aFEVS U, ) = ST ARy dr + o(1)
k=1,...,4,

(A214) WL 6 BV, ) = OO0 df + o(1),

J=1"3

(A2.15) & D4, EU(U,0) = BIOV0) de + o(l)

(A216) oD, ViU,
= § GIEIOT/ ()T /()]s At — st]dsdt + o(1) .
If a; = EJ(U;.y) forj = 1, ..., N, then also

N-# 25-14, EY(U;.5)

(T, e
_ SIOY(dr _ 1 35, Cov (J(Uy.y), Wy(U.y))
- (Wdyr N (83 J%(t) doyt

1 IO dt ey
(A2-17) TN (i B
_ IO dt 1 G (WL — 1) dt
- (WJHdnt N (33 J(t) dry?

1 SéJ(l‘)lIfl(t)dt 1-1/N (J 2 _ —1
+—2_]\7W8”N (J"(H))(1 — 1) dt 4+ o(N7Y

+ ONTE Y O O] + [F @Ot — 0)bdr) .
If ] = — V¥, andeithera; = —EW (U, y)forj =1, ---,Nora; = —W,(j/(N + 1))
forj=1, ..., N, then
N-t 2014 EV,(U;.)
(ZFay)?t

— _ (12 S (wl,(t))zt(l —nadt
(A2.18) = A o+ W 0 oy

+ o(N7Y) 4 O(N=3 §5™ (U, (0))(t(1 — 1))t dr) .

*(J(Uj.y) + o(N7)
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Proor. The assumptions imply that ¥,, ¥,, ¥, and J are continuous, that
¥e, U2, |¥,)t and J* are summable and that J is monotone near 0 and 1. Hence
(A2.12)—(A2.15) follow from Lemma A2.6.

For a; = J(j/(N + 1)) a proof of (A2.16) is essentially contained in Stigler
(1969). Our condition R, for ¥, ensures that ¥’ will satisfy Stigler’s condition
TatOand 1. Asin the proof of Corollary A2.1, one can argue that near 0 and 1
(A2.19) W) = o((e(1 — )7, J(t) = o((H(1 — 1)7).

Inspection of Stigler’s conditions for (A2.16) shows that in our case the only
missing ingredient is that ¥, is not necessarily increasing on (0, 1). However, ¥,
is monotone where it matters, that is in a neighborhood of 0 and 1.

To prove that (A2.16) remains valid for a; = EJ(U;.,) we note that by Lemma

A2.4 and (A2.19)

(B~ 1) i)

N4+ 1
<[ Z B0 = 1 (L5 ) o ivi |

= o(N[§i3/" (e(1 — D)~#dr]’) = o(NY) .
For a; = EJ(U,.;) we have

1 1
(A2.20) ~ et = G0 d— - B0 0(Us)

1
(A2.21) ~ 2N, a;EY(U;.y)
1
= S(I,J(t)llfl(t) dr — —]V Z;'v=1 Cov (J(Uj:zv)’ 11]'1(Uj:1v)) .
By Lemma A2.4, condition R, for J, and (A2.19)

1 N g2 X
NZi:l ("(UJ.'N))

= S O — 0 di - ON= 3 (1) di + N3
(A2.22) + NN ()1 — 1)t dr)
= W P — g

+ ONH 4 N4 [ (PO)((1 — 1))} di) = o(N4) .
Similarly

% Y, Cov (H(Us.), Wi(Us.)

1

(A2.23) = — IO — 1) dr

+ O(N-} 4 N-# (L0 ()W (0)|((1 — 1)} dr) = o(N-F) .
Together (A2.20)—(A2.23) are sufficient to prove (A2.17).



156 W. ALBERS, P. J. BICKEL AND W. R. VAN ZWET

If/ = —¥,and a; = —EV¥,(U,.y), then (A2.17) reduces to (A2.18). To prove
that (A2.18) also holds if a; = —W,(j/(N + 1)), it suffices to show that

W () BV

(A2.24) - [Zév:l vy (N—i—l_> - (B WI(U"‘”»ZT

= o(1) + O {7/ (W/ () ((1 — 1))t di) .

It follows from Lemma A2.3 and condition R, for ¥, that

BT = W (g )} = 00V N (B

= O(N™' + N~ {5 (B (9)((1 — )t dn),
which suffices to establish (A2.24) and complete the proof. []
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