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Spjetvoll [1967] has obtained a test associated with an unbalanced one-
way layout for Model I ANOVA. Under the assumption of normality,
his test possesses several optimum properties. Without the normality as-
sumption, the significance level is (in general) highly nonrobust. An at-
tempt to remedy this situation, using a test based on the jackknife technique,
appears in Arvesen [1969]. The present paper proposes as an alternative a
jackknifed version of Spjetvoll’s test. The new test is not sensitive to de-
partures from normality, and Monte Carlo sampling and asymptotic ef-
ficiency results suggest that it is more powerful than Arvesen’s test. The
paper also includes some general results for use of the jackknife technique
with nonidentically distributed random variables.

1. Introduction. We obtain in this paper an asymptotically robust test for
hypothesis A < Ajagainst A > A,, where A is the variance ratio in an unbalanced
one-way layout for Model II ANOVA. The test is based on an extension of
Arvesen (1969) using the jackknife. Theoretical and Monte Carlo results show
the robustness of the proposed test for nonnormal data, and that it performs
similarly to Spjgtvoll’s (1967) test if the data are normal. It is also possible to
obtain a confidence interval for A using the proposed test. Section 2 discusses
the basic model, while Section 3 digresses to discuss some general results con-
cerning use of the jackknife with nonidentically distributed random variables.
Section 4 applies the results of the previous section to the variance component
problem, while Sections 5 and 6 discuss asymptotic efficiency results and Monte
Carlo results respectively.

2. The model. The basic model assumed in an unbalanced one-way layout
for Model II ANOVA is

(2'1) Yij:lu‘*‘ai‘*‘eij’ i:l,---,n, j-'_—l,"',Ji,
where ¢ is an unknown constant, {a;} and {e;;} are all mutually independent

normal random variables with zero means and variances ¢,,* and ¢,’ respectively.
If we let A = ¢ ,%/0,%, one hypothesis of interest is

(2.2) Hy: A< Ay vs. H,:A>A,.

One reason for considering such an hypothesis is that we may be interested in
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the proportion of the total variation of the Y,; which is due to the random
effects a,. This proportion is ¢ ,*/(¢,* + ¢,%), which quantity is also the intraclass
correlation coefficient.

For a specified alternative A = A,, Spjgtvoll (1967) has obtained the most
powerful invariant similar a-level test of H,. The value A, enters into the test
statistic. He also proposes an alternate test letting A, — oo, tantamount to
achieving high power for distant alternatives. It is this test we now consider.
Letting

(2.3)  T= XA + D7 (Y — Y E D (Y — X))
where

Y, =J1 20, Y, and

Y., = (Z?=1 Ji(AOJi + 1)_1)_1 Z?=1 'I(AOJi + 1)_117@. ’

N* = Ziadss

one rejects H, at the a-level if
249 N* —m)(n — 1)7'T > Foipoy wren s

where Foir, denotes the upper a point of an F distribution with v, v, degrees
of freedom.

Note that when J, = J, the test given by (2.4) is the same as the standard
F-test given in Scheffé (1959). It is well-known (see Scheffé (1959)) that this
standard F-test is not robust if the observations are nonnormal, especially the
random effect terms. The significance levels are invalid except in the case
A, = 0. Spjgtvoll also obtains a confidence interval for A, although it is subject
to the same criticism as the test concerning its nonrobust character.

In the balanced case, a competitor based on the jackknife has been proposed
in Arvesen (1969), and its moderate sample size properties were examined by
a Monte Carlo computer simulation in Arvesen and Schmitz (1970). Also, in
the unbalanced case, a test based on the jackknife was proposed in Arvesen
(1969). This test will be further discussed in Sections 5 and 6, where -evidence
is presented suggesting that in terms of the power it is inferior to the test pro-
posed in this paper, which is based on jackknifing the logarithm of Spjgtvoll’s
statistic (2.3). The computation of the proposed test is described in Section 4.

3. The jackknife for nonidentically distributed random variables.

(a) Background. First let us describe the jackknife procedure. For a more
detailed discussion the reader is referred to Miller (1964). Let X, ---, X, be
independent identically distributed observations from the cdf F,. Partition these
N observations into n groups with k observations in each group (N = nk). Then
if 4,0 is some estimate based on all n groups of observations (all N observations),
let 9;_1, i =1, ..., ndenote the estimate obtained after deletion of the ith group
of observations.
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The jackknite estimate of @ is

(3.1) 6 =n1ry,0,,

where

(3-2) 6, =nb —(n—1)i_,, i=1..-,n.
If

3-3) s =(n— 1) T (0, — 0y,

it is interesting to conjecture that if n is held fixed,
(3.4) t = n¥ — 0))sy — o t,_, N .

Miller (1964), (1968), and Arvesen (1969) give a large class of situations where
this conjecture proves valid. In what follows, we will assume k = 1, and hence
N = n, and the convergence in (3.4) is to a standard normal distribution.

If one starts with X, - .., X, independent but not necessarily identically dis-
tributed, the situation becomes more complicated. Some results for this case
were given in Arvesen (1969), but those results required 6,° to be of a very
special restrictive form. In the notation of that paper, let f*(X,, ---, X, )
be a symmetric kernel with the same expectation E[f*(X,, ---, X, )] = for
all ay, - --, a,,. The U-statistic (see Hoeffding (1948)) for estimating 7 is

(3.5) UL = (2 Do, [*Xap - X))

where C, indicates the summation is over all combinations a;, - - -, a,, of m in-
tegers chosen from 1, ---,n. Theorems 10 and 11 of Arvesen (1969) show
that under mild regularity conditions, the conjecture of (3.4) is valid with
6,° = g(U,%, 8 = g(y). However for many purposes, including those to be dis-
cussed in Section 4 below, the requirement that the kernels have the same ex-
pectation is too restrictive.

(b) A modified jackknife estimate. To modify this restriction, let X, - .., X,
be independent (not necessarily identically distributed) random variables, and
assume

(3.6) E[f*Kapr -+ Xa )] = g £

where Nayeeay, is a known constant, and g is an unknown parameter. Also, let
7. = ()7 Do, Dagays 7 = lim,_ o 7,° (Which we assume exists, is finite and
nonzero), and 7, = ("")™ Zoi_, 0tp,¢ Where 3igi indicates the sum is
over all combinations of m integers (8, - - -, 8,‘) chosen from (1,...,i — 1,
i+ 1, ..., n). In what follows, definitions of symbols not explicitly given may
be found in Arvesen (1969).

Let

(37) éno = g(U”O/v"O) ’ é;—l = Q(Uﬁ—l/%-l) s l = 17 RN ()
0 =9(p) -
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Then following (3.1), (3.2) and (3.3), we will be interested in the statistic
ni(@ — 0)/s;, and conditions under which it is asymptotically standard normal.
We begin with two lemmas.

LEMMA 1. Let X}, - - -, X, be independent random variables, and assume for some
0< A< o that |n,.., | < A, and for some 0 < B < co, and for some 5 > 0
that E|f*(X,,, - -+ X, )*"* < B. Let

(3.8) (X)) = G2 2w ([ape oK) — Duppop_ )
where the sum is over all sets (B, - - -, B,,_,) chosen from the first n integers excluding
the integerv. Thenif {, ,—{ asn—00,0<{, <+ 00, Z, =07 31, (by; (X)) — pCs-

Proor. First note that

E(Z,) = n'G) 7 Zia D Ci;(i)pl,-~-,pm_1;rl,-~~,rm_l

where 7 ;, denotes the sum is over all combinations (8, - - -, 8,,_;) of m — 1 inte-
gers chosen form (1, -.-,i — 1,i 4+ 1, ..., n)and all combinations (r;, - -+, 7m—1)
of m — 1 integers chosen from (1, ...,i — 1,i 4+ 1, ..., n). However, since
E|f*(Xyp -+ +» X, )|*"* < B, one obtains

EZ,) = (:»_—T)(::—ll “nmt e G + 0(1) - (:t_—’il)(:t_—ll)_lcl,n -G .

From Theorem B(i), page 275 of Loeve (1963), the result now follows. (Note
that since we are dealing with a doubly indexed array, we can only obtain con-
vergence in probability).

LeEMMA 2. Let X, -- -, X, be independent random variables, and assume for some
0 > 0and some 0 < A < oo,

(3.9) 0 < aya,l < 4,

0 < E[f*(X,, -, X )™ < A forall (a, -, a,),
(3.10) Eh (X))} < 0o for v=1,.--,n, and
(3.11) lim, o, 0oy E{| o, ()P D= E{l o, (X)P] = 0.

If{, ,—Casn—o00,0< L < oo, then(n— 1) 37, (Ui — (isy/0,0) U0 —p m,.
Proor. Let
(3.12) T,=(n—1) 50, (Ui, — (950U, and since
EWU:_))=7_,#, wemayassume pg=20.
Let a; = (n,° — (n — 1)ni_))/n,°, then
T,=(n—1)2, s, — (n—a)U,0/(n — 1))
(3.13) = (n— 1) Tty (Ui — U0 + (@, — DUY(n — 1))

=@n-1) 2L U, = U+ (U0 T (@, — 1)) (n— 1)
+ X-product term.
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It will be shown that the first term of (3.13) converges in probability to m*(,,

the second term converges in probability to zero, and hence by the Cauchy-

Schwarz inequality, the cross-product term converges to zero in probability.
Recall that if 4, —, ¢, and E(4, — B,)* — 0 then B, —, c¢. Hence if

(3.14) = 17 D (mhy (X)) — (n(n — )M, — UL ),
and E(V,) — 0, this fact the Lemma 1 suffice to show that the first term of
(3.13) converges in probability to m*C;.
Let
S,=(n—1) T (Ui, = U

(3.15) = (n — D{Zi (Us) — n(U,)}

= (n — D) Ty (cn — m)

X Do ¥ Xy o5 Xa ) (X -+ -5 Xp)

as in (21) of Arvesen (1969) where }, indicates that the sum is over all com-
binations (ay, ---, a,) of m integers from (1, ..., n) and all combinations

(B, - - 5 Bn) of m integers from (1, - .-, n) having exactly ¢ common members.
But now, as in the expression immediately before (47) of Arvesen (1969),

(3.16) ES,) = m¥%,, +o(l) =m*, , 4+ o(1).
We are done with the first term of (3.13) if it can be shown that
(3.17) E[ 31 hyo(X)(U, — Ui)] = m&, + o(1).

To this end, note that
UL = Uiy = ()7 Do 5 (X Koty -5 Xo )
=[G = ()] Xt [H (Kt -5 X, 1)
where 3],  indicates that the sum is over all combinations of m — 1 integers
(af, -+ -, ai_,) chosen from (1, ---,i — 1,i + 1, ---, n). Hence
E[hyo (X ) (U, — U3

(3.18) = ()G EUD v fEppe (X))
X (ZDQ_I XX, Xali’ - X"ﬁn—))]

m—1 ! :z)—l Z(i) Cl;(i)ﬂl,m,,&m_l;rl.-~-,rm_1 *
Summing (3.18) over i, and using (3.9) one obtains (3.17), and hence E(V,) — 0.
It remains to show that the second term of (3.13) convergences to zero in
probability. First note that by Hoeffding’s (1948) U-statistic Central Limit
Theorem for the nonidentically distributed case, one obtains
(3.19) (U, —50.
Also note that since |7,,..., | < 4 forall (ay, - -, a,,)

le; — 1| = (n — |G Zz)i_l 7]«;“11“_“:'”_1 + () =D Zoi_l ”ﬂf'”ﬂmil/lﬂnol
< (n = DIG)TEDA + ()7 = GO AN |
< 2Am/|7}n0| *
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Since 7, converges to nonzero 7,
(3.20) lim, (n — 1)7* 311 (a, — 1)* £ A*2m)Y7? .

Combining (3.9) and (3.20), the second term of (3.13) converges to zero in
probability, and the lemma follows.

THEOREM 1. Let X,, -, X, be independent random variables, and assume that
(3.9), (3.10), and (3.11) hold. Let g be a function defined on the real line, which
in a neighborhood of . has a bounded second derivative. Let 0, the jackknife estimate
of 0 = g(p) be based on 0,° = g(U,%/7,°) as in (3.8). Define 6i_, as in (3.8), and
follow the procedures of (3.1)—(3.3). Then if

(3.21) CGnm& @ nooo, 0K <o,

the distribution of (§ — 0)/g'()(Var (U,%/7,%)}) is asymptotically normal with mean
zero and variance one.

Proor. Without loss of generality, let x =0, and also let Y, =
) I 2o, [H( Xy Xy, -+ -, X, ). Noting that E(Y;?) = Var(Y,) < {y) + 1
for n sufficiently large, the proof follows from that of Theorem 10 of Arvesen
(1969) until we expand terms in a power series to obtain

(6 — 6) = (ng(U,[7,%) — (n — D)n~* T2, g(U'_y/ns-s) — 9(0))
(3.22) = [9(U,/n,%) — 9(0)] — (n — 1)n~?
X [9'(U,7,%) Dty (Ui sf7iey — U200
+ e (Ui fnioy — U009 (6))/2]

where &, lies between U:_,/y:_, and U,%/5,°. First note that

(3.23) (n — {221 0 (Usa/7ia — U 1°)?
— 21 (Ussy — 0iaa/7.)U0)" —5 0

since ((7,°)" — (M-1))/(7-1)" = (7’ — Do) (7" + Do)/ (Mmy)* < 2mA(n — 1)7X(3,° +
7i_)/(7i-1)* by (3.20). Also (3.9) assures there is a 0 < M < oo such that
170 + 7i_4|/(55_,)* < M, and using Lemma 2, (3.23) follows. Since lim,_,, », =
7 # 0, the second and third terms of (3.22) converge to zero using the proof
of Arvesen (1969) (note that the Cauchy-Schwarz inequality handles the second
term).

THEOREM 2. Let X, .- -, X, be independent random variables, and assume the
hypotheses of Theorem 1. Then

(3.24) 53" —p mC(9'(1))’[(7)

where s3* is given by (3.3).
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Proor. The proof follows Theorem 11 of Arvesen (1969). However note that
sit=(n— 1) D, (6, — 0y

= (n — 1) X3 (9Unoif7hr) — 177 5 9(Usaf73-))?

= (n— 1) 2 [(Unaaf7hs — U179 (20)
= 17 5 (Uia/miea — Ul [0)9 (7))

(3:25) = (n — 1) B [(Uaas/nhr — UL'[127)9(0)

+ (Unasf s — Ul[1.79'(z:) — 9'(0))
— 17 i (Ui — Ul [0.0)9' (2 )T

= (n — 1) X (Usssf 7 — U [12))%(9'(0))?
+ (1 = DIZ i (Unaf 7y — U [0.°)9'(71) — 9(0))
— n7 N (Uis/7i — Ul [0.0)9'(75)]" + X-product term

where z, lies between U:_,/7:_, and U,%/5,°. Now from (3.23), and Lemma 2,
the first term of (3.25) converges to m*(,(9'(0))?/(7)*. The second term may also
be readily shown to converge to zero in probability. Hence the result follows.

Combining Theorems 1 and 2, one obtains the result that ni(@ — 6)/sy is
asymptotically standard normal. In the original grouping N = nk, if n remains
finite as N — oo, Theorem 7 of Arvesen (1969) can be readily extended to ob-
tain convergence to a ¢ distribution with n — 1 degrees of freedom- Again, in
what follows, we will assume k = 1. The generalization of Theorems 1 and 2
to functions of several U-statistics is straightforward, proceeding along the lines
of Theorems 12 and 13 of Arvesen (1969).

4. An asymptotically robust test. The results of the previous section will
now be used to obtain an asymptotically robust test of (2.2). Consider the model
specified in (2.1) without the normality assumption, but assuming moments of
order at least six.

Temporarily let us assume that we are on the boundary of H, as given in
(2.2), that is Ay = ¢,%/0,”. Let

Y, -
Xi:(z.li (Y“ 7 )2>’ Wi:Ji(AoJi+l)‘1’ i=1,.-.-.,n,
3=1\5 45 T Tde

f*(l)(Xal’ Xaﬂ) = walwaz(}_’alo - Ya2.)2/2 ’
Ja = "
XX, = 28 Ye; — Yo))  and W= 310, w,.

If
ur =)™ Zoz1<oz2 f*(l)(Xal.Xag) ="M Wi(Yi. - Y")S/Z) s
Y, =w 2w Yi.’ and
UD = ()7 T, [H(Xe) =17 T D (Y — Y),
we find that

(4.1 E(U®) = Wopln, and  E(U®) = (N* — n)a}/n.
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Also, note that p® = pu® = ¢ 2 and

(4.2) 7Y = (1) Dayca W Wy Bo 4 (I3 + J53)[2) = Win,

7® = (N* — n)/n.
Hence letting
_ U(l)/v(l)
(4.3) o= U = Gy

)

the hypotheses of the generalization of Theorems 1 and 2 to functions of several
U-statistics are satisfied as long as ¢,’ is nonzero and max (J,, - - -, J,) remains
bounded as n — co. Note that the test statistic in (2.4) is identical to (4.3).

Finally, note that under the assumption of normality in (2.1) the numerator
and denominator of (4.3) are independent random variables, each distributed
as a constant times a chi-square random variable. This was shown by Spjgtvoll.
Since the logarithm of a chi-square variable is approximately normally dis-
tributed, we propose testing H, by using the jackknife in conjunction with the
log transformation of (4.3), that is by jackknifing

a 1) 1)
(4.9) 0, = log {%} .
Y
Note that the variances of U™, U® go to zero as n — oo as shown by Tukey
(1957). Moreover, for ¢,% ¢,2 arbitrary, we find that

(4.5)  E[UP] = Wolln + (A — A)(W* — T, wl)o/(n(n — 1)),

and hence under H,, U™ converges in probability to a quantity greater than
Wo */n, on the boundary of H,and H,, U™ converges in probability to Wo 2/n,
and in the interior of H,, U™ converges in probability to a quantity less than
Wo[n. Thus, from the generalization of Theorems 1 and 2, one obtains an
asymptotically robust and unbiased test of (2.2) by rejecting H, at the a-level if

(4.6) nbls; > Z,,

where Z, is the upper « point of a standard normal distribution.

Finally, in practice (and to be conservative), one might replace the cutoff
point in (4.6) by the upper a point of a ¢ distribution with (n — 1) degrees of
freedom. This point will be discussed again in Section 6.

Unfortunately, it is not possible to readily use (4.6) to obtain a lower con-
fidence bound for A since the boundary value A, of (2.2) appears in the statistic
. However, note that in testing

H,: A < A*
H,: A > A*
at the a-level using the proposed jackknife technique, if A,,, = {A*: H, is

accepted}, and A, = inf A, then A, < A forms an asymptotic lower (1 — @) x
1009, confidence bound for A. But the actual computation of such a bound
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may be quite difficult. Spj¢tvoll’s proposed confidence interval also has this
unpleasant property. Note that in theory this technique can be readily used to
obtain a two-sided confidence interval, or an upper confidence bound for A.

5. Asymptotic efficiency results. Section 4 of this paper suggests that
H,: A < A, be tested by applying the jackknife procedure to the logarithm of
Spjgtvoll’s F statistic (F = (U®V/p®)/(U®[p®) in the notation of Section 4).
Section 3(c) of Arvesen (1969) proposed the use of the jackknife with the sta-
tistic H = MSA/MSE, where

MSA = (n — )7 2, (Yee — n7 Zio Yol)*s

MSE = n! 32, (J, — 1) 20, (Y — YL)P,
and Y,, = J;7! 71, Y,;. The fact that for normally distributed variables MSA
and MSE are inefficient estimators, relative to the numerator and denominator
of F, suggests that F may be a superior test statistic to H in terms of power.
(This presumption is also raised by the manner of Spj¢tvoll’s derivation of F.)
In this section we find that the Pitman ARE of F versus H, when all effects
are assumed to be normally distributed, is greater than 1 when the J, are not
all equal. The log transformation and jackknifing do not affect the ARE, so
the result holds for the comparison of tests based on the jackknifed versions of
log F and log H respectively (these tests were used in Monte Carlo study dis-
cussed in the next section).

Recalling that F is the ratio of independent random variables, each distributed
as a constant times a y* variable (in particular, for A = A, F ~ F,_, ,._,), and
using (4.5), we readily find that the Pitman efficacy of F is
o lim (1 — D)W — 3r wi Wy

lim 2J/(J — 1)

(5.1)

where J = n"1 37 J, .
The Pitman efficacy of H can be obtained as
(5.2) n/lim 2[(A, + JY(1 +nt 3 (J, — D) 4 nt S (L7 — D))

If all J, = J, both (5.1) and (5.2) reduce to nJ(J — 1)/2(4,J + 1)?, and the
Pitman ARE of F versus H is 1. If the J, are not all equal (and
limn=t 32 (J,"' — J)? > 0), then the ARE is > 1, after applying Jensen’s
inequality. Suppose that the J, have values 2, 3, and 4 in equal proportions,
and that A; = 1 (which is the case in the Monte Carlo simulation of Section 6).
Then the ARE of Fvs. His 1.1.

6. Monte Carlo simulation. To obtain some information about the small
sample behavior of the tests discussed in the preceding sections, a Monte Carlo
simulation study was made. The program was run on the CDC6500 at Purdue
University using procedures described by Rubin (1971). The model selected to
test the jackknife procedure was:

6.1) Y ,=a,+e;, i=1,...,15, j=1,...,J,
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and the {a,}, {e,;} are mutually independent random variables with mean zero,
variance ¢ %, ¢,” respectively. As in Arvesen and Schmitz (1970), three distri-
butions were considered for the {a,}, {e,;;}: both sets normal random variables,
both sets double exponential random variables (kurtosis of 3), and both sets
uniform random variables (kurtosis of —1.2).

The Monte Carlo study compares the empirical power functions of the
Spjgtvoll F test to the jackknife procedure in testing

(6.2) Hy:A=o0d2c2<1 vs. A>1.

The jackknife was used with

(6.3) do(1) = log (Y211 where
15 U@ p®

U®, p®, i = 1,2 are given in Section 4, and with
6.4) 6%(2) = log (MSA/MSE) (see Section 5) .

Of course n = 15, as stated above. In terms of the decomposition N = nk,
k = 1 for this study.

There were 1000 sets of {a,}, {e,;} generated according to the three distribu-
tions. They were first generated with A = 1, and then scaled so that A = .5,
1.5, 2.5, 4,6, 9. Hence 180,000 pseudo-random numbers were generated in
all. As mentioned in Section 4, there is some question as to whether the ¢,_,
distribution (7, in this case) or the standard normal should be used in practice
with moderate samples. The latter seems to be preferable for reasonable sig-
nificance levels as the results in Table 1 demonstrate. Results are given sepa-
rately for a = .10, a = .05, a = .01. Finally, J(6%(1)) J(6%(2)) denotes the
jackknife procedure using (6.3) and (6.4) respectively, and they are used either
with the 7, distribution (w/t) or with the standard normal distribution (w/z) to
obtain critical values. Note that the Monte Carlo accuracy is readily obtained
from the binomial standard error. For example, the a = .10 case yields a
standard error of approximately (.10 x .90/1000)! = .01.

Examination of Table 1 produces several interesting results.

(i) The definite nonrobustness of the significance level of the Spjgtvoll F test
is readily apparent. Comparison with an even more leptokurtic distribution
than the double exponential would further emphasize this fact.

(if) It was felt that the jackknife would work well at & = .10, giving poorer
results in the tails at « = .01. Actually, at a = .10, the jackknife using
J(@%(1))(w/z) is an excellent competitor to the Spjgtvoll F test even if the data
are normal, and gives a more appropriate empirical significance level if the data
are double exponential or uniform.

(iii) At a = .10, J(B2(1)) appears to be slightly more powerful than J(6%(2))
using either ¢ or z critical values. Of course, this is also essentially shown by
Spjgtvoll and Section 5.

(iv) At a = .10, the use of z critical values appear to be recommended as ¢
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TABLE 1
Values of the Monte Carlo power function for testing (6.2)
A = 042/0.? .5 1.0 1.5 2.5 4 6 9
Normal distribution

a=.10

Spjetvoll F test .010 .109 .305 .631 .889 .977 .995
J(q'l’b(l))( wit) .009 .091 .276 .595 .852 .959 .990
J(ﬂi‘l)5(2))( w/t) .012 .093 .280 .596 .833 .952 .985
J(di%(l))(w/z) .010 .109 .300 .619 .869 .966 .993
J(035(2))(w/z) .013 .109 .299 .585 .884 .956 .986
a = .05

Spjetvoll F test .001 .053 .184 .516 .813 .948 .990
J(é‘l’ﬁ(l))(w/t) .001 .039 154 .449 .743 913 .980
J(q'l}ﬁ(Z))(w/t) 002 .043 .147 .433 .706 .885 .970
J(@3(1))(w/z) 003 .056 .178 .488 .775 .927 .982
J(6%(2)(w/z) 004 .052 .181 471 .739 .906 .974
a = .01

Spjetvoll F test .000 .006 .051 .282 .600 .849 .965
J((;V'l}5(l))(w/t) .000 .008 .041 .191 .457 .707 .888
JO3%2))(w/t) 000 .009 .038 .185 .435 .664 .837
J(0%(1))(w/z) 000 .015 .066 272 .550 .788 .927
J(63,(2))(w)/z) 000 .014 .064 .264 .532 .743 .906

Double exponential distribution

a=.10

Spjetvoll F test .023 .143 .300 .559 .799 %16 977
J((;V'l}5(l))(w/t) .012 .092 .199 .430 .681 .831 .934
J(635(2))(w/D) .018 .088 .210 .437 .668 .826 .928
JO(1))(w/z) .016 .100 .220 .464 .695 .843 .946
J(605(2))(w/z) .025 .093 .229 .466 .683 .838 .939
a = .05

Spjetvoll F test .012 .084 219 .461 .725 .861 .958
J(é‘l’5(l))(w/t) .004 .045 .108 .289 .536 .718 .868
J(O%2))(w/E) .006 .046 .107 .297 .527 .713 .860
J(0%(1))(w/z) .007 .055 .128 .330 .574 .749 .886
J(035(2))(w/z) .011 .057 135 .331 .566 .748 .877
a= .01

Spjetvoll F test .002 .031 .094 .287 .522 .763 .895
J(é‘l’f,,(l))(w/t) .001 .010 .038 .101 .248 .433 .617
J(0°%(2))(w/t) .000 .012 .032¢ .100 .257 .424 .608
JO%(1))(w/z) .000 .018 .055 .154 .320 .536 712
J(6%(2))(w/z) .001 .020 .052 . 149 .335 .525 .703

Uniform distribution

a= .10

Spjetvoll F test .005 .060 .230 .672 .939 .993 1.000
JO%(1)(w/t) .005 .074 277 728 .952 .994 .998
J(0%(2)(w/E) .007 .084 279 .693 .930 .989 .998
JO%(1))(w/z) .006 .088 .299 . 749 .956 .995 .999

J(é‘l)ﬁ(Z))( w/z) .008 .097 .299 719 .934 .992 .999
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TABLE | CONTINUED

A = g4%/oe? .5 1.0 1.5 2.5 4 6 9

a = .05

Spjotvoll F test .003 .023 119 .519 .881 .982 .999
JO%1)(w/t) .004 .026 .161 572 .892 .983 .997
JE(2) (WD) .004 .031 .161 .546 .853 .976 .996
J%(1))(w/z) .004 .040 .190 612 .916 .986 .998
J(0%2))(w/z) .005 044 .184 .584 .882 .980 .997
a = .01

Spjetvoll F test .001 .004 .021 .201 .655 .917 .987
JO%1)(w/t) .000 .005 .036 .280 .676 .898 977
J0%(2))(wit) .000 .006 042 .251 .620 .860 .976
J%(1))(w/z) .002 .010 .066 .361 .760 .947 .990
J(09,(2))(w/z) .001 .009 .067 .338 122 .917 .984

critical values are too conservative. Note that at a = .01, ¢ values appear to
be recommended, but then the power of the jackknife procedure is too low to
recommend it as a competitor to Spjgtvoll’s test. Of course, a larger sample
size would correct this situation. Thus, there appears to be an interesting
question as to the connection between sample size and the general asymptotic
results.

In conclusion, it appears that if the jackknife works well, it should be used
with J(8,°(1))(w/z). A researcher will have to be careful to see that n is large
enough to use the normal approximation. In the Monte Carlo study given for
n = 15, a = .10 results are excellent, a = .05 results are good, &« = .01 results
are poor.
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