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UNBOUNDED EXPECTED UTILITY

By PETER C. FISHBURN

The Pennsylvania State University

Let P be a convex set of finitely additive probability measures defined
on a Boolean algebra of subsets of a set X of consequences. Axioms are
specified for a preference relation > on P which are necessary and sufficient
for the existence of a real-valued utility function » on X for which expected
utility E(u, p) is finite for all p in P and for which p > g iff E(u, p) > E(u, q),
forall pand g in P. A slightly simpler set of axioms yields the same results
when the algebra is a Borel algebra and every measure in P is countably
additive. The axioms allow P to contain nonsimple probability measures
without necessarily implying that the utility function « is bounded.

1. Introduction. Given a preference relation > on a set P of probability
measures defined on an algebra of subsets of a set X of consequences, this paper
addresses the question of whether there exists a real-valued utility function u
on X for which expected utility E(x, p) = § u(x) dp(x) exists and is finite for all
p € P and for which

) pP>q if and only if E(u, p) > E(u, q)

for all p, g € P. The primary purpose of the paper is to present general axioms
for > on P which are necessary and sufficient for the existence of u as specified
whenever P is any set of finitely additive probability measures defined on an
appropriate Boolean algebra of subsets of X, subject only to elementary closure
conditions on P. Secondarily, we note how these axioms simplify to provide
necessary and sufficient conditions for the finite expected-utility representation
when every p e P is a countably additive measure defined on a Borel algebra
(o-field) of subsets of X. As will be observed, the present formulation subsumes
most of the special cases treated by others. In addition, it is designed to deal
with P sets which include nonsimple measures without necessarily implying that
the utility function u is bounded. The possibility of unbounded « in the presence
of nonsimple measures, discussed some time ago by Menger [10], distinguishes
the present theory from all others that I am aware of except for the important
contributions by DeGroot [4] and Ledyard [9]. I shall return to these momen-
tarily.

The initial axiomatization of (1), by von Neumann and Morgenstern [12],
was designed for the case in which P is the set P, of all simple probability
measures on X (those which assign probability 1 to a finite subset of X). Despite
this, their axioms, or an equivalent set of axioms [6, 8], can be applied to any
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set of probability measures which is closed under finite convex combinations
with p + (1 — 2)g € P whenever 0 < 2 < 1 and p, g € P. However, these axio-
matizations imply (1) only when p and ¢ are in P,. Thus, when P, C P, the
axioms of von Neumann and Morgenstern yield (1) for all p, g € P, but do not
necessarily imply (1) wken either p or ¢ is not a simple measure. In this case
u can be unbounded when X has an infinite number of indifference classes.

The next significant development for (1), by Blackwell and Girshick [3], took
P equal to the set P, of all discrete probability measures on X (those which are
countably additive and assign probability 1 to a countable subset of X). To
obtain (1) for all p, g € P, they used an independence or dominance axiom based
on countable convex combinations of measures and noted in this case that u
must be bounded. Later extensions of this approach by Arrow [1] and Fishburn
[5, 6], designed to handle nondiscrete measures in the context of (1) with P, <
P, also require u to be bounded.

This work left open the possibility of specitying axioms which imply (1) for
all p, g € P but do not necessarily imply that u is bounded when P, C P but P,
is not included in P. This possibility was realized by DeGroot [4] and Ledyard
[9]. Both authors first apply the preference axioms to a convex set P, of bounded
probability measures. With < a preference-or-indifference relation on the con-
sequence set X (read x < y as “x is not preferred to y”), p is bounded if and only
if p({x:x, =< x < x,}) = 1 for some x;, x,e X. Since only bounded measures
are used in this initial step, (1) is obtained for all p, g € P, without requiring u
to be bounded. Having obtained # on X in a bounded-measures context, they
then use appropriate axioms to extend (1) to unbounded measures that are
integrable with respect to u in the sense that E(u, p) exists and is finite for each
such measure.

This paper presents an alternative to the two-stepapproachadopted by DeGroot
and Ledyard. Throughout, we shall work with a fixed set P of measures which,
in a specific decision situation, would be determined by particular aspects of
that situation. Some measures in P will be bounded while others may be un-
bounded. The axioms for > on P are applied in one step. Since the axioms
are necessary and sufficient for the finite expected-utility representation, they
show precisely what must be true of > on P to obtain this representation for
the particular P under consideration. Thus, instead of going through a first
step to determine which measures are integrable with respect to u, we specify
what must be true of > on P so that all measures in P will in fact be integrable
with respect to an appropriate u. Depending on the particular characteristics
of P, the axioms may or may not entail boundedness of .

The practical import of not requiring # to be bounded when P contains non-
simple measures is most easily illustrated in the traditional monetary setting
where say X = [0, co) and each x e X represents a potential net wealth of an
individual. For the sake of argument, suppose that preference increases in x.
Then if (1) is to apply and if P, & P, u must be bounded above. However,
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some of the more attractive functional forms for u which agree fairly well with
some individuals’ preferences, such as power functions u(x) = (x 4+ a)® with
a=0and 0 < b < 1, or log functions u(x) = log (x 4 a) with a > 0, are un-
bounded above. Hence, if such a u is used for (1), then P must be restricted to
avoid contradiction with finite E(u, p). In particular, P must not include all
discrete distributions although it may contain a variety of nonsimple discrete
distributions as well as various nondiscrete distributions such as lower-truncated
normals or gammas. Indeed, if P is not allowed to contain any measure with
infinite mean (which is a very sensible restriction in the net wealth setting),
then [2, 7] any increasing  which is concave or risk-averse on [x, co) for some
x € X has finite E(u, p) for every p € P. Additional comments in the net wealth
setting on the aspect of unbounded « are given by Ryan [11] and Arrow [2].

The rest of the paper is organized as follows. The next section formulates
the minimal requirements that will be imposed on the Boolean algebra on which
probability measures are defined and on the set P of measures to which > is
applied in the axioms. Section 3 then presents four axioms which are necessary
for (1) with finite expected utilities and notes that they imply (1) if u is bounded.
Section 4 shows that a fifth necessary axiom is required for those cases in which
u might be unbounded. Since Ledyard’s axioms are set within the Boolean
algebra framework, I shall comment further on his theory at the end of Section
4. Section 5 then shows how the axioms simplify when the algebra is a Borel
algebra and every measure in P is countably additive. Further comparisons
with DeGroot’s theory are made at the end of Section 5.

2. Notation and structure. Our axioms specify the behavior of a binary
relation > (“is preferred to”) on a set P of probability measures defined on a
Boolean algebra .97 of subsets of the set X of consequences. The basic structure
for (&7, P, >) that is used in the axioms and derivations will be set forth in
this section.

First, each singleton subset {x} from X will be assumed to be in .& and each
one-point measure will be assumed to be in P. We distinguish between con-
sequence x € X and the measure which assigns probability 1 to x by letting x*
denote the latter. That is, x* ¢ P and x*({x}) = 1 for every x€ X. Then x* >
y* indicates that consequence x is preferred to consequence y. We shall also
write x* > y* as x > y.

The use of one-point measures permits us to define utilities of consequences
in an unambiguous way. Similarly, for the purpose of ensuring that expected
utilities are well defined, we shall require all preference intervals from X to be
in &, Writing x < yiff y > x, x x yiffi not (y > x), and x s yiff y = x, a
subset 4 of X is a preference interval iff ze A whenever x, ye 4, x < z and
z 5 y. In special cases the following notation is used for the designated prefer-
ence intervals: (—oo, x) = {yeX:y < x}, (—oo, x] ={yeX:y =z x}, (x,y] =
{zeX:x < zand z 5y}, (x, ©) ={yeX:y > x}, and so forth. It will be
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assumed later that > on P is an asymmetric weak order, in which case all
preference intervals from X will be in . iff %" contains each lower interval 4
having the property that x € 4 when ye 4 and x < y, and contains each upper
interval B having the property that y € B when x e B and x < y. In some cases,
such as increasing preferences on X = [0, c0), the preference intervals have a
natural structure, but this will not be true in general. If %7 is taken to be the
power set of X then all preference intervals will of course be in .97

Besides inclusion of all one-point measures in P, we shall assume that P is
closed under finite convex combinations and that P is closed under the formation
of conditional probability measures on preference intervals with positive measure.
Both assumptions facilitate the orderly computation of expected utilities as dis-
cussed in [6, pages 134-137]. The convex closure assumption says that 2p +
(1 —2)ge Pwhen2e]0,1]and p, g € P. The convex combination Ap 4 (1 — 2)g
is the measure which assigns probability ip(4) 4+ (1 — 2)g(4) to each 4 ¢ 7.
The conditional probability closure assumption says that if p € P, if 4 is a prefer-
ence interval from X, and if p(4) > 0, then p, € P where p,(B) = p(4 n B)/p(A)
foral Be &7 If A=[x,y] ={zeX:x sz < y} thenp, = p, ;.

These structural impositions on (%, P, >) are summarized by the following
axiom.

AXIOM 0. The set %7 is a Boolean algebra of subsets of X which contains {x} for
each x € X and contains every preference interval from X. The set P is a set of
finitely-additive probability measures defined on 7 such that: x* € P for each x € X;
Ap + (1 — 2)q € P whenever 2¢[0, 1] and p, g€ P; and p, € P whenever pc P, A
is a preference interval from X, and p(A4) > 0.

The smallest P which satisfies Axiom 0 is the set P, of all simple probability
measures on .%. The largest P which satisfies the axiom is of course the set of
all finitely-additive probability measures on %7, Unless X is finite, a huge
number of admissible P sets lie between these extremes.

3. Four preference axioms. Our first four axioms for > on P are taken from
Fishburn [5, 6]. As explained in this section, they do most of the work towards
implying (1) for all p, ¢ € P with finite E(u, p) for all p ¢ P. A fifth axiom which
may be needed for (1) is discussed in the next section. The relation > on P is
an asymmetric weak order iff it is asymmetric (p > ¢ — not (¢ > p)) and nega-
tively transitive (p > g =p > rorr > q), for all p, g, re P. When > on P is
an asymmetric weak order, the preference-indifference relation = on P, defined
by p = giff not (¢ > p), is a ‘weak order’ or ‘complete preorder,’ being reflexive,
transitive and complete (p # g =p = q or ¢ = p).

AXIOM 1. The binary relation > on P is an asymmetric weak order.

AXIOM 2. If p,q,reP, p>q and 0 < A< 1, then Ap + (1 — X)r > g +
1 — .
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AxioM 3. If p,q,reP, p > q and q > r, then ap + (1 — a)r > q and q >
Bp + (1 — B)r for some a and B strictly between zero and one.

AxioM 4. If p,qe P, Ae 57 and p(A) = 1, then p = q if x* > q forall x € 4,
and q = p if ¢ > x* forall xe A.

Since these axioms are discussed in detail elsewhere [5, 6], we shall mention
here only that Axiom 2 is an independence or linearity assumption which
preserves preference under similar combinations, Axiom 3 is an Archimedean-
type assumption which facilitates the derivation of real-valued (as opposed to
vector-valued) utilities, and Axiom 4 is a dominance principle which says, for
example, that if p({x: x* > ¢}) = 1 then p x ¢. All four axioms are easily seen
to be necessary for (1) with finite expected utilities, given Axiom 0. In addition,
Axiom 4 is superfluous if P = P,, as can be seen from the following basic lemma
[6, Theorem 8.4].

LEMMA 1. Suppose Axiom O holds. Then Axioms 1, 2 and 3 hold if and only if
there exists v: P — Re such that, for all A¢[0, 1] and all p, g€ P,

() p>9q i v(p) >v9),
3) v(Ap + (1 — 2)q) = 2w(p) + (1 — v(q) .

Moreover, if v satisfies (2) and (3) for all 2€ [0, 1] and all p, q € P, then v': P —
Re satisfies (2) and (3) in place of v for all 2€ [0, 1] and all p, q € P, if and only if
there exist real numbers a > 0 and b such that v'(p) = av(p) + b for all p € P.

Given v on P as in Lemma 1, it is natural (though not essential) to define
u: X — Re by u(x) = v(x*) for all xe X. Then, by the linearity property (3),
E(u, p) = v(p) for all pe P,. Hence, using (2), Axioms 1 through 3 yield (1)
whenever p and ¢ are simple measures. However, as shown by examples in
[, 6], Axioms 1 through 3 do not imply E(u, p) = v(p) when p is not simple.
The next lemma shows that our further concerns can focus on the question of
whether E(u, p) = v(p) for all pe P.

LEMMA 2. Suppose Axiem O holds and v: P — Re satisfies (2) and (3) for all
2¢[0, 1] and all p, q € P. Then, defining u: X — Re by u(x) = v(x*) for all x € X,
there exists u': X — Re which satisfies (1) for all p, q € P and for which E(’, p)
exists and is finite for all p € P, if and only if E(u, p) = v(p) for all p € P.

PrOOF. Suppose E(u, p) = v(p) for all pe P. Then E(u, p) is finite for all p e
P and (1) follows from (2). Conversely, suppose #’: X — Re gives E(«’, p) finite
for all p € Palong with p > ¢ iff E(w', p) > E(#', q), for all p, g ¢ P. Then E(u’, )
is linear on P; thatis, E(w’, Ap + (1 — 2)q) = AE(W, p) + (1 — )E®@W, g). Con-
sequently, defining v'(p) = E(«’, p), (2) and (3) hold for +’. Therefore, by the
last part of Lemma 1, there exist @ > 0 and 4 such that v'(p) = av(p) + b for
all pe P. Hence av(p) + b = v'(p) = E(W, p) = aE(u, p) + b so that v(p) =
E(u,p) forallpeP. [J
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Henceforth it is to be understood that v satisfies (2) and (3) and that u(x) = v(x*)
for all xe X. The effect of Axiom 4 on the question of whether E(u, p) = v(p)

will now be noted.
THEOREM 1. Suppose Axioms O through 4 hold. Then, for all p € P:

(@) E(u, p) = v(p) if there exists Ae 7, such that p(A) =1 and both
inf {u(x): x € A} and sup {u(x) : x € A} are finite;

(b) v(p) = E(u, p) if there exists A € S such that p(4) = 1 and inf {u(x): x € A}
is finite;

(€) E(u, p) = v(p) if there exists A € S such that p(A) = 1 and sup{u(x): x € A}
is finite,

(d) E(u, p) is well defined and finite.

Proor. The proof of part (a) is essentially the same as the proof given for
Theorem 10.1 on page 142 of [6]. With ¢ = inf{u(x): x € 4} and d = sup{u(x):
x € A} and ¢ and d finite, it follows from standard definitions of expectations
that E(u, p) is the supremum of {E(f;, p):i=1,2,---} where f,,f,, --- is a
sequence of simple functionson B = {x: ¢ < u(x) < d} which converge uniformly
from below to u on B. (A4 simple function has only a finite number of distinct
values.) Axiom 4 leads to ¢ < v(p) < d, and appropriate partitions of B with
the use of the closure properties in Axiom 0 leads to v(p) = E(u, p).

For part (b) suppose that 4 € %7, p(4) = 1, inf {u(x): x € 4} is finite and, to
avoid case (a) (which gives the desired result), suppose also that p((y, c0)) > 0
for all ye X. Letting E(u, p_..,;) = 0 when p_., ; is undefined (because of
p((— o0, y]) = 0), the expectation definition for this case leads to

(4)  E(@, p) = sup{p((—o0, YDE(: p—w,y1) + P((¥> 0))u(y): y € X} .
Since the sum in braces in (4) does not decrease as u(y) increases [i.e.,

{ x min {u(x), u(y)} dp(x) does not decrease as u(y) increases], (4) can also be
written as

#) E(u, p) = im {p((— o0, yE(; pi-w,y1) + P> 22))u(y)}

with the understanding that the limit is taken as u(y) approaches sup u(X),
whether finite or infinite. Now for each ye X, p = p, ., if p((y, )) =1,

and p = p((— 0, YD)Pi-w,1 + P((¥> )P, If p((y> 0)) < 1. Hence, letting
V(Pi—w,,1) = 0 by convention when p((— oo, y]) = 0, (3) yields

G wp) = p(=00: YDU(Pew ) + PP @DV(Py )  forall yeX.
Now when p((— o0, y]) > 0, p(_w ,5(A4 N (— o0, y]) = 1and therefore v(p _.. ;) =
E(u, p(—=,,) by part (a) of the theorem. Moreover, since x > y for every x¢
(ys o0), and since p, ..,((y, 0)) = 1, Axiom 4 along with (2) yields v(p, ..,) =
v(y*) = u(y), for all y e X. Comparison of (4) and (5) then shows that v(p) =
E(u, p), as was to be proved.

The proof of part (c) is similar to the proof of part (b) (using the other half
of Axiom 4) and will be omitted.
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Finally, for part (d), let p be in P and let z be a consequence in X. If
P((—o0,z]) =1 then p =p .. and v(p) < E(u, p) = v(z*) by part (c); if
p((z, 0)) = 1 then p = p,, .., and v(z*) < E(u, p) < v(p) by part (b); otherwise,
P = P((— 00, 2P, 1 FP((2: 20))Pis, o) 20 P((— 00, ZNV(Pen, 1) +P((2, 20))0(Z) =
E(u, p) = p((— o0, 2])0(2%) + p((z, 0))¥(Per,e)- O

Clearly, if u is bounded, then E(u, p) = v(p) for all p e P under Axioms 0
through 4. Moreover, as shown by part (a) of Theorem 1, if u is unbounded
but if each p e P has a corresponding A € % such that p(4) = 1 and infu(4)
and sup u(A) are finite, then E(u, p) = v(p) for all p e P. The problem in obtain-
ing E(u, p) = v(p) therefore arises in the setting of Axioms O through 4 only
when p((—oo,y]) <1 for all ye X and u is unbounded above, or when
p([y, ) < 1 forall ye X and u is unbounded below. We examine this case
further in the next section.

4. A fifth preference axiom. The following example shows that E(u, p) =
v(p) is not guaranteed by Axioms 0 through 4.

ExampLE 1. Let X = {1, 2, - .-}, let % equal the set of all finite subsets of
X and their complements, let P, equal the set of all one-point measures on %
plus the measure ¢ for which ¢({i}) = 2~* for i = 1,2, - - -, and let P be the
smallest set of probability measures on % which includes P, and satisfies Axiom
0 under the assumption that 1 < 2 < 3 < -... With ¢* the measure which has
q'({k}) = O for k < i and ¢'({k}) = 2*~*~* for k = i, so that ¢" = ¢, ¢’ is the con-
ditional of ¢ on {2, 3, -- .}, and so forth, P is the set of all measures which can
be expressed in the form ,p" 4+ X {4,¢,:i €I} such that I is a finite subset of
X, 2, =0 for each ie7 U {0}, X 2, =1, and p’ e P,, because such measures
must be in P and the set of all such measures is closed under finite convex
combinations and the formation of conditional measures on preference intervals
in X. It is easily checked that P, is a maximal linearly independent subset of
P, and that for every p € P which is not in P, there is an essentially unique re-
presentation of the form

(6) ap+ Lia®pe = LBty
wheren>1,m>=1, @, >0and B; >0 foralliandj, > &, = 3 ; = 1, and
P29 "‘9Pm rys "'3rmeP0‘

Now define v(i*) = u(i) = i for each i € X, define v(q) = 3, extend v linearly
by (6) to all of P and take p > p’ iff v(p) > v(p’), for all p, p’ e P. Then, by
construction and Lemma 1, Axioms O through 3 hold. Since E(u, q) = 2,
v(q) > E(u, q) and it is easily checked that v(q") > E(u, ¢) for all i. Therefore,
using the 2 representation of the preceding paragraph, v(p) = E(u, p) for all
peP. Then, if p(4) =1, p’ e P and x* > p’ for all xe A4, v(p) = E(u, p) and
E(u, p) > v(p’) since u(x) = v(x*) > v(p’) for all x € 4, so that v(p) > v(p’), or
p>p. Andifp(4) = 1, p’e Pand p’ > x* forall x € 4, thenv(p’) > E(u, p) =
v(p), or p’ > p. Hence Axiom 4 holds. However, v(¢") > E(u, q*) for each i e
X so that it is not true that v(p) = E(u, p) for all p € P.
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To be more explicit about an important aspect of Example 1, a little algebraic
manipulation shows that v(¢*+') — v(i*) = 2 + 2 and hence that ¢({i + 1,7 +
2, - Plv(g+Y) — v(i*)] = 1 + 2+, which does not approach zero as i gets
large. In effect, the failure of the latter quantity to go to zero as i — oo is the
reason that it is not true that E(u, g) = v(¢). In more general terms, we do not
get the desired result when « is unbounded above and p((y, o)) > Oforallye X
unless inf p((y, c0))[V(Pyy,) — #(y)] = 0.

To formulate an axiom which will accomplish this, we shall let P+ be the
subset in P of measures which are bounded below but have ‘upper preference
tails’, and let P~ be the measures in P which are bounded above but have ‘lower
preference tails’. Formally,

P ={peP:p(x, 0)) =1 forsome xeX and p((y, c0)) >0
for all ye X},

P-={peP:p((—o0, x]) =1 forsome xeX and p((—oo, y)) >0
for all ye X}.

AxioMm 5. (a) If pe P+, if p, > p, with p,, p, € P,, and if p((— oo, y]) > 0 for
some yc X, then there is a ye X such that p((—oco, y)p, + p((y, )* =
P((— 00, y])po + P((¥> 20))Pey,o0-

(b) If pe P, if p, > p, with py, p, € P,, and if p([y, )) > O for some y € X,
then there is a y € X such that p((— 0, y))p—w,y + P(> 0))Pr = p((— o0, y))y* +
P[y> 20))po-

Since Axiom 5 is not as elegant as one might desire and since it has not been
discussed in detail elsewhere, it deserves a few words. We shall focus on Axiom
5(a) since interpretations of Axiom 5(b) are similar.

Note first that the hypotheses of Axiom 5 (a) require p((— oo, y]) > 0 for some
y e X, which is automatic when p is countably additive and .27 "is a Borel algebra.
The reason for requiring p((—oo, y]) > 0 in the finitely-additive context is as
follows. If P* contains a measure p for which p((y, o)) = 1 for all y € X, then
Theorem 1(b) and (4) require # to be bounded above, and if u(y) < sup u(X)
for all y e X then sup u(X) = E(u, p) > u(y) for all y e X so that p > y* for all
yeX. Butif p > y* for all y and if p((y, o0)) = 1 for all y then it is impossible
to get p((—co, yDpy + p((y> ))y* = p((— 005 y1)Po + P((¥s 9))Piy,)» and hence
the conclusion of the axiom fails.

Since it is easily seen that Axiom 5(a) is implied by previous axioms when u
is bounded above, suppose in this paragraph that u is unbounded above. Then,
with p e P*, p((— o0, y]) > 0 for some y € X, and p, preferred to p,, Axiom 5(a)
says that Gamble 1 is preferred or indifferent to Gamble 2 for some y € X, where:

Gamble 1 gives p, with probability p((— oo, y]),
or y with probability p((y, )) =1 — p((— o0, y])

Gamble 2 gives p, with probability p((— oo, y]),
or p,. With probability p((y, o)) .



892 FISHBURN, PETER C.

In a manner of speaking, this says that the relative advantage ot getting p, .,
which gives something preferred to y with probability 1, over getting y as a sure
thing, can be outweighted by getting p, instead of p,, taking account of the
mixing probabilities p((— oo, y]) and p((y, o)), at least for some y for which
u(y) is very large. Now if p((y, o0)) — @ with 0 < a < 1 then, as seen from
Theorem 1(b) and (4), # must be bounded above under our earlier axioms.
Hence, under the temporary presumption of unbounded u, p((y, o)) — 0 as
u(y) gets large. Then a preference for Gamble 1 over Gamble 2 may not seem
unreasonable for some y with p((y, o)) very near to zero, since in this case p,
is almost a sure thing under Gamble 1, p, is almost a sure thing under Gamble
2, and if in fact the conditioning event with probability p((y, oo)) does occur
then, although Gamble 1 gives y and Gamble 2 gives something better than y,
y may be ‘high enough’ in the preference order to provide a suitably attractive
‘prize’. But note that this must hold regardless of how close together E(u, p;)
and E(u, p,) are so long as E(u, p,) > E(u, p,).

Despite these arguments, I would hesitate to say that Axiom 5 seems as intui-
tively reasonable (apart from a host of psychological problems that I shall not
pursue here) as Axioms 1 through 4. Nevertheless, if we are interested in
‘justifying’ the expected utility model with finite expected utilities in the context
of Axiom 0 without necessarily requiring utility to be bounded, then Axiom 5
or something similar to it must be adopted so long as P contains unbounded
measures.

LeEMMA 3. Suppose Axioms O through 4 hold. Then E(u, p) = v(p) for allpe P
if and only if Axiom 5 holds.

Proor. If u is bounded above then Axiom 5(a) is easily seen to hold, and
E(u, p) = v(p) for all p e P* by Theorem 1(a). Assume then that u is unbounded
above and P* is not empty. To verify the necessity of Axiom 5 (a) suppose that
p € P, p((—o0, y]) > 0 for some ye X, p, > p, with p,, pe P,, and E(u, q) =
v(q) for all geP. Then (3) and (4) imply lim{p((— o0, y]) E(#, P(-w,,1) +
P> NP} = 2(p) = p((— 05 YDE(Hs Pary) + P> ©))V(Py)> SO that
lim {p((y, co)[(¥) — ¥(py,e)]} = 0. Hence, since v(p,) — v(p) >0 and
p((—oo, y]) > 0 for some y, there is a y € X with p((— oo, y]) > 0 such that

P((—o0, yDIv(p1) — v(po)] + P(y> 0))u(y) > p((¥> ))V(Piy,)) -

Then transposition of p((— oo, y])v(p,) and the use of (2) and (3) imply the con-
clusion of Axiom 5(a).

On the other hand, with » unbounded above and P+ not empty, suppose
Axioms 0 through 5(a) hold and p € P* has p((— oo, y]) > 0 for some y. Then,
since the positive difference v(p,) — v(p,) can be made arbitrarily small by the
choice of p, and p, from P,, Axiom 5(a) in conjunction with (2), (3), and
P,y = y* yleldsinf {p((y, 0))[V(pqy,)) — #(y)]} = 0. Then, since E(u, p(_,1) =
V(P(=w,,1) by Theorem 1(a), v(p) = E(u, p) follows from (4) and (5).
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In a similar fashion, Axiom 5(b) is necessary for the finite expected utility
representation, and Axioms 0 through 4 along with Axiom 5(b) imply E(u, p) =
v(p) for all pe P-.

Finally, letting P’ be all measures in P which are in neither P* nor P-, if pe
P does not fall under the condition in part (a) of Theorem 1 then it can be
written as a convex combination of measures in P’ and P*, or in P’ and P-, or
in P- and P+, and E(u, p) = v(p), given Axioms 0 through 5, then follows from
(3), the linearity of E(u, +), Theorem 1 (a), and the results for P~ and P+ established
in the present proof. []

As a general consequence of the preceding lemmas, Theorem 1, and the ob-
served necessity of the preference axioms for the finite expected utility model,
we obtain the following summary theorem.

THEOREM 2. Suppose Axiom O holds. Then there exists u: X — Re for which
E(u, p) is well defined and finite for all p € P and such that (1) holds for all p, q € P,
if and only if Axioms 1 through 5 hold.

Before going on to countably-additive measures, we shall briefly compare
Ledyard’s approach [9] to Theorem 2. As mentioned previously, Ledyard
considers first the case in which every p € P is bounded. He also assumes most
of our Axiom 0 (except for the conditional measures part) and Axioms 1 through
3. Instead of using an axiom like Axiom 4 in his main development, he defines
distribution functions for the measures p, g, - - - based on u on X [viz., F (r) =
p({x e X: u(x) < r})], defines a pseudo-metric p on the distribution functions
[viz., o(F,, F,) = § |F,(r) — F,(r)| dr], and then assumes that {pc P: p > ¢} and
{pe P:q > p}are contained in the topology on P induced by p, for each g € P.
His interpretation of this axiom is that “whenever two measures imply almost
the same distribution on the indifference classes of X, their utility is almost the
same” (page 797). Although this delivers the desired conclusions (including
continuity of v on P with respect to p), it seems a bit roundabout in comparison
with Axiom 4.

Late in his paper, Ledyard suggests the assumption of finite expected utilities
as an alternative to the boundedness assumption for measures in P and shows
how his previous theory would be modified in this setting. In this context he
does not require an additional axiom like our Axiom 5 because the contingency
that Axiom 5 was designed to handle, as illustrated by Example 1, is taken care
of by the continuity of v on P with respect to p. Thus, Ledyard’s topological
axiom applied in the context of Example 1 would require v(g) = 2 and hence
E(u, 9) = v(9)-

5. Countable additivity. To conclude our discussion we first note how
Theorem 2 can be modified when all measures are countably additive, and then
compare this modification to DeGroot’s theory [4].

If &7 is a Borel algebra and every measure in P is countably additive then,
as discussed in Chapter 10 of [6], Axiom 4 can be replaced in Theorem 1 by
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AxioM 4. If peP, Ac 7, p(A) =1 and ye X, then p = y* if x* = y* for
all x e A, and y* = p if y* = x* forall x ¢ A.

In addition, the rather cumbersome Axiom 5 can be replaced in Theorem 2
by the more obvious

Axiom 5'. If pye P, and p € P, then p_., ,; = p, for some y e X if p > p,, and
Do = Py, fOr some y € X if p, > p.
This simply says that if p > p, then some ‘upper truncation’ of p will be at least
as good as p,, and if p, > p then p, will be at least as good as some ‘lower trun-
cation’ of p. Examples show that Axiom 5’ is not a necessary condition for (1)
in the finitely-additive context, but it is necessary in the countably-additive
context. For in the latter context, if p is bounded above then the first part of
Axiom 5’ holds when (1) holds for all p, g € P, and if p is unbounded above
then, given (1) with finite expected utilities,

(7 E(u, p) = lim E(u, p—,,)

so that E(u, p) > E(u, p,) implies E(u, p,_.. ;) = E(u, p,) for some ye X. The
necessity of the latter part of Axiom 5’ follows in like maaner.

To verify the sufficiency of Axiom 5 in the countably-additive setting it will
suffice to show that E(u, p) = v(p) when p e P* and that v(p) = E(u, p) when
p € P, for then, by Theorem 1, E(x, p) = v(p) forall pe P~ U P*, and E(u, p) =
v(p) then follows for all p e P as in the final paragraph of the proof of Lemma
3. Given p e P+, (7) follows from (4) or (4’) in the present context. Contrary
to the desired result, if v(p) > E(u, p) then v(p) > « > E(u, p_.,j) for some
real number « and all y € X; then, since u(x,) > a > u(x;) for some x, x, € X,
there is a p, € P, with E(u, p,) = «a. But this gives p > p,and p, = p_.,,; for all
y€ X, by Lemma 1 and Theorem 1(a), thus contradicting the first part of Axiom
5'. In similar fashion, v(p) = E(u, p) for p € P~ follows from the latter part of
Axiom 5'. Thus we obtain

THEOREM 3. Suppose Axiom O holds, .7 is a Borel algebra and every measure
in P is countably additive. Then there exists u: X — Re for which E(u, p) is well
defined and finite for all p € P and such that (1) holds for all p, g € P, if and only if
Axioms 1, 2, 3, 4’ and 5' hold.

In DeGroot’s theory, .o/ is taken to be a Borel algebra of subsets of X which
contains every singleton subset of X and every closed preference interval in X.
P, is then defined to be the set of all countably-additive and bounded probability
measures on .. In addition to axioms for > on P, which are equivalent to
Axioms 1, 2 and 3 applied to P,, he uses an assumption (U,, page 106) which
guarantees that the utility function # on X is measurable with respect to %
(which is accomplished by our Axiom 0) along with an axiom (U,, page
108) which states that p ~ Bx,* + (1 — B)x;* when p([x;, x,]) = 1 and S =

§ 123291 A(x) dp(x), Where a(x) for x € [x,, x,] is defined as a number in [0, 1] for
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which x* ~ a(x)x,* + [1 — a(x)]x,*. The latter axiom, which has a fairly
straightforward interpretation but seems to me to be a bit less transparent than
Axiom 4 or 4’, is used instead of something like Axiom 4’ to obtain the finite
expected-utility representation for > on P,.

To complete his theory, DeGroot then defines P, to be the set of all countably-
additive measures on . which are integrable with respect to  on X as obtained
in the P, setting. His versions of Axioms 1, 2 and 3 are then extended to apply
to P,, and two final assumptions are introduced. The first of these (U;, page 110)
says thatp x ¢ if p, g € P, and p([x, o0)) = ¢((— o0, x]) = 1 for some x € X. This
is proposed in a spirit similar to Axiom 4’ and follows directly from that axiom
and the transitivity of . Moreover, DeGroot’s U; clearly implies Axiom 4’ for
P = P, so that U, in the preceding paragraph becomes superfluous at this point.
Thus, U, and Axiom 4’ for P = P, are almost equivalent.

DeGroot’s final assumption (U,, page 112) serves much the same purpose as
Axiom 5’ but is a bit more awkward to state. Half of U, says that if y, 5 y, =
s = -+ is such that for every x e X there is some y, such that x < y;, and if
p,q€P, and p_ ;=< g for all i larger than some n, then p < ¢. The other
half of Uj is the dual of this.

Based on these comparisons we see that the axioms used in Theorem 3 for
countably-additive measures are very similar to the assumptions made by
DeGroot to arrive at the finite expected-utility representation for P,. Thus,
apart from some minor differences concerning the nature of .%"and the statements
of the axioms, the difference between our two approaches lies in the two-step
versus the one-step procedure as discussed in the introduction.
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