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ON MOST EFFECTIVE TOURNAMENT PLANS WITH
FEWER GAMES THAN COMPETITORS!

By WILLI MAURER
University of Florida

Let Qn denote a set of z players, p;; the probability that player i defeats
player j and T' the class of preference matrices (pi;) with pi; = 4, j > 2.
Under the assumption that the outcomes of games are independent and
distributed according to (ps;;) €T, the effectiveness (relative to (pij)) of a
tournament plan, together with a rule to select a winner, is measured by
the probability that player 1 (the ‘‘best’* player) wins the tournament. A
k.o. plan is a tournament plan in which a player is eliminated from the
tournament if he loses one game. It is shown that there are no plans on
Qn with n — 1 games that are more effective than k.o. plans relative to all
matrices contained in certain reasonable subclasses of I'. Among the k.o.
plans for 2m + k, 0 < k < 2m, players, those which consist of a preliminary
round of k£ games followed by a ‘‘symmetric’’ k.o. tournament on the re-
maining 2= players are more effective than all other plans relative to the
preference matrices contained in two large subclasses of I'. In order to
prove these assertions, the tournament plans are interpreted as mappings
with directed digraphs as domain and range.

~

1. Introduction. General random tournament designs have been introduced
by Narayana and Zidek (1969). The definition of nonrandom tournament plans
proposed in the author’s thesis (1972) is consistent with this more general con-
ception: A tournament plan on aset of players is a rule that generates a sequence
of games with the game to be played or termination of the sequence depending
only on the outcomes of previous games. In a k.o. plan a player is eliminated
from the tournament if he loses a game. The interpretation of tournament plans
as mappings with digraphs as domain and range proves to be useful to show the
superiority of k.o. plans over other plans with the same fixed number of games
in finding the “best” among n players.

David (1963) proposes to measure the effectiveness of a plan in selecting the
“best” out of n players by the probability that this player wins the tournament
under the assumption of an appropriate probability model. Glenn (1960) calcu-
lated and compared the effectiveness of generalized knock-out plans with varying
numbers of games and Round Robin plans on four players using fixed but repre-
sentative preference matrices. Searls(1963)extended these results to eight players.
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It is our aim to show that for two different probability models there exists a
class of k.o. plans that is more effective than any other class of tournament
plans with the same fixed number of games. A corollary of our main theorem
gives an application to random k.o. plans, defined by Narayana (1968). It
shows that for 2™ + k, 0 < k < 2™, players no random plan is more effective
than the following one: First a preliminary round consisting of k games between
k randomly selected disjoint pairs of players is held; then a standard random
symmetric plan is played among the k winners of the first round and the 2™ — k
players who drew a “bye”. In general, this plan is more effective than the ran-
dom plan which has as many games as possible in each round.

Throughout the paper we use the language of sport competition together with
that of graph theory used by Harary, Norman and Cartwright (1965). It is,
however, obvious that in the context of pairwise comparisons, finding the most
effective plan is a problem in the area of the designs of experiments. Many ex-
tensions and generalizations of this problem are possible, among them the use
of other probability models, the selection of a subset of players containing the
best one and the determination of the most effective plans that have more games
than players and allow repetition of games. If we restrict ourselves to plans
with fewer than n games, however, it is sufficient to consider plans without
repeated games.

2. Preference structures and tournament plans. Let Q, denote a set of n
players {1,2, ..., n}. A preference matrix P, = (p;;) is an n X n matrix with
nonnegative elements p,; such that p,; + p;, = 1 for i, j€ Q,. The quantity p,;
is the probability that player / beats player j. If all elements of a preference
matrix P, are either 0 or 1 (except the elements in the diagonal which are 1) we
call it a dominance matrix D, = (d;;). A dominance matrix is equivalent to a
complete asymmetric relation (—) in Q, by p,; = 1 = i — j (read: i dominates
j)- If D, is an adjacency matrix of a graph G, with point set Q,, then G, has to
be complete and directed. Such a digraph is usually, but unfortunately, called
a tournament. In order to avoid ambiguities we call it here dominance graph and
denote it (as well as the associated adjacency matrix) by D,

Given a fixed but “unknown” dominance graph D, a game &,; between players
i and j reveals if either i — jor j — i in'D. A game &;, therefore, can be in-
terpreted as a mapping from D onto the subdigraph of D with point set {i, j}.
&,;(D) is then called the outcome of game &,;. If &,(D) = i — j, we say: i has
won the game against j. A tournament plan 7, on Q,, is a rule that generates a
sequence of games depending on the underlying dominance structure D, such
that at each stage in this sequence the decision of which game to play or whether
to terminate the tournament depends only on the outcomes of the preceding
games. The union of the point set Q, and all outcomes of the games generated
by &, and D, is called the outcome of the plan ., given D, and is denoted by
(D). This allows us to interpret 2, as a mapping of D, onto C, = F,(D,)
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with the following two properties:

(2.1) AD)y=Cc D

i.e., Cis a partial digraph of the dominance graph D and

(2.2) if AD)y=C and Cc D* then FA(D*) = C,

D* being a dominance graph, since at each stage in the sequence of games played
simultaneously on D and D* the same partial digraph of C is revealed; hence the
same decision of which game follows is made. We are here only interested in
the outcomes C of the tournaments and not in the sequence of games itself. We
consider, therefore, two plans &, and F* as equal (&, = F*) if F#(D,) =
F*(D,) for all dominance structures D, on Q,. In this sense all Round-Robin
tournament plans .72, are equal (but not necessarily identical) because Z,(D,) =
D, for all D, on Q,.

Given any plan ., and a permutation ¢ of Q,, the plan generated from &,
by interchanging the players’ names according to ¢ is denoted by Z°. We call
two plans &” and F°* equivalent (° ~ F7*) if there exists a permutation ¢ such
that &% = &% and refer to a full class & of equivalent plans as the plan type Z.
It can be shown, that the automorphisms of a plan &%, i.e., the permutations
for which &= &%, form a subgroup 4, of the symmetric group S, and that
the size || of the full equivalence class containing & is n!/order (A4,).

3. K.o. plans. A plan &, is called a k.o. plan and denoted by .5, if a player
who loses a game is eliminated, i.e., may not play any further game and the
tournament ends when all players except one are eliminated.

A k.o. plan %, consists of n — 1 games because in every game one player is
eliminated. The plan can be described by a binary tree consisting of 2n — 1
nodes, n of them “pendant” nodes representing the players and n — 1 nodes
representing games between directly designated players or winners of former
games. The players’ names are assigned to the pendant nodes and in permuting
them one produces all possible equivalent plans of the same type. We shall
label the pendant nodes with neutral names v,, v,, - - -, v, if we want to refer to
specific ones.

It is typographically easier to describe k.o. plans by bracket clusters. The
relation between this and the tree-method is clarified by Figure 1. Some examples
will illustrate the definitions and concepts presented so far. The k.o. plan 97" =
((1 2)3) is equal to (3(2 1)) and equivalent to %" = ((1 3)2) and %" =
((2 3)1). All three plans are pairwise different because e.g., for D = {1 23,
3 — 1} the tournament outcomes are Z"(D) = (3 —>1—2), Z'(D) = (2 —
3 —>1)and Z""(D) = (1 > 2 — 3). Together they form the only equivalence
class of k.o. plans on three players, .97, = ((**)*). Clearly 4, = {e, (1, 2},
where (i, j) is the transposition of i and j and ™~ = &, " = a9,
For four players there exist two types of k.o. plans namely %, = ((**)(**)) and
Z, = (((**)*)*). We call the first one symmetric. Symmetric plans exist for 2™,
m=2,3, ..., players.
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TABLE 1
Some values of a and b

i 3 4 5 6 17 8 9 10 11 12 13 14 15 16

ai 1 2 3 6 11 23 46 98 207 451 983 2179 4850 10905
by 1 1 1 2 1 1 1 3 3 5 3 3 1 1
az = 8436379, by =35; aze = 7862958391, b3 =1

We call a k.o. plan onn = 2™ + k, 0 < k < 2™, players balanced if it consists
of a preliminary round of k games among 2k players, followed by a symmetric
plan on the k winners of these games and the remaining 2™ — k players.

Let I(v;) be the level of the pendant node v, in the tree representation of a k.o.
plan ¢, i.e., I(v,) is the number of games a player assigned to this node has
to play in order to win the tournament. It is then obvious that in a balanced
k.o. plan the maximum difference between all levels is one, and some reflection
shows that a k.o. plan with this property is balanced.

The number a, of different k.o. plan types and the number &, of different
balanced k.o. plan types for n players may be computed by recursion formulas
that we give without proof.

(3.1) a=a=1; a, =% 2015 a(@p-; + 0;0-) 3
where d,; denotes Kronecker’s delta.

(3.2) bi=by=1; by =14 Nty bbyy + b,
where for

n=2"+4+k, 0Zk<2": I = max (2™, k),
u = min (2™ + k, 2™) .

4. The winner rule. It has been shown by Maurer (1972) that k.o. plans may
be characterized by the property that all their outcomes are rooted trees. The
root of the tree; i.e., that player from which every other player can be reached
by exactly one directed path, is called winner of the tournament. In general, a
winner rule w associated with a plan &, is a many-to-one mapping of the range
of &, onto the set of players Q,. We call w unbiased if w((D,)) = b for all
D, in which player &4 dominates all other players. The usual winner rules for
k.o. plans and the one for Round-Robin plans which maps each dominance
graph on one of the players with maximum out-degree are both unbiased. For

k.o. plans there exists no other unbiased winner rule.

LeEMMA 4.1. Let &, be any plan with maximum number of games less than n and
w a winner rule associated with &#,. Then w is unbiased iff &7, is a knock-out plan
and w its usual winner rule.

Proor. One direction of the assertion is evident. Assume that <2, is not a
k.o. plan. Then there exists an outcome Z,(D) = C that is not a rooted tree.
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If C is connected it has to be a tree possessing at least two nodes with only
outgoing branches. Therefore, there exist two transitive dominance graphs D’
and D” with different dominating players 4’ and 4” such that C c D', C c D"
and hence by (2.2) A(D') = SA(D") = C. Hence Z, cannot have an unbiased
winner rule. If C is not connected, but has at least two acyclic components,
the same argument holds. This proves the lemma because one can show that
if C is not connected and has cycles there must exist an outcome C* of &, with
at least two acyclic components.

5. Probability models. Let p{D,} be a probability distribution over the set
of all dominance graphs on Q, and let D, be a random dominance graph with
this distribution, so that Pr (D, = D,) = p(D,). Then

where I is the indicator function.
We assume that a preference matrix P, is given with p(i — j) = p,; and that
all dominances in D, are independent. We then have

(5:2) P(Dy) = ILin; Pif »
(d,;) being the dominance matrix associated with D,.
We consider the following classes of preference matrices:

T'y: The class of all preference matrices,
Ly {P;p,; =% for j=2},

Ly {Pipyy=p=4 for j=2},

Ly {P;pi; = 3 pis = % for i,j = 2}.

In all classes except I, player 1 is distinguished from the others and will be
called the ‘“best” player. If a plan is chosen at random from an equivalence
class Zand w is the winner rule associated with this plan, then the probability
that player 1 wins this random tournament is

(5:3)  HPP) = -1 Toes Ty 11 = WP D)D) = Tp #(FPYp(P)

where ZPe 2, n is the number of players and P is a preference matrix on Q,.

By the random choice of a plan from an equivalence class we can express our
ignorance of the best player. As a special case given an equivalence class 7",
of k.o. plans represented by a tree or bracket clusters with labeled nodes v,
v,, +++, V,, We can assign the players at random to the nodes in order to generate
a random plan out of 7.

6. The chance to win from a fixed place. If player i is assigned to node v,
and the other competitors are placed at random on the remaining nodes, we
denote the probability that player 1 wins the tournament given P is the underly-
ing preference matrix by 7(% (P), i on v,) or shorter z(i on v;).
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LEMMA 6.1. Let 57, be a k.o. plan type, v, and v; nodes of 9, with levels
l(v;) < l(v;) and P, an underlying preference matrix.
Then the inequality

(1 on v;) = (1 on v,)
holds if any one of the following assumptions is true:

@i P,el,uT, for n=3
(iiy P,el, for n=3,4,5,6.

For n = 7 there exist plans, nodes and preference matrices for which the ine-
quality does not hold.

Proor. (i) If P,el’,, the probability for player 1 to win a tournament
starting from node v, in a fixed plan from equivalence class .7, is p'¥; therefore,
7(1l on v,) = p'®v.

In model I’y all players except number 1 are assumed to be of equal stréngth.
If player 1 wins the tournament, starting from node v,, he is likely to meet each
subset of I(v;) players out of the remaining n — 1 ones with equal probability,
given they are assigned with equal probability to the remaining nodes.

With I = I(v;) and {k,, k,, - - -, k;} being a subset of (Q, — {1}) we thus have

(6.1) a(l on ;) = [1/("T)] Zikyerr ey Py Prry =+ * Prty +

Under the assumption: m = [(v;) > I, we can write

(62) w1 on v;) = ([1/("7")] Liiky,-wrsbyy Prey Priy * * * Piky)
X (/R 5] Zityggoeeetog) Prtysy *** Piky)
where {k;.;, - -+, k,} is a subset of Q, — {1, k;, - -+, k;}.

The second factor represents the probability that player 1 wins the remaining
games of the tournament given he already won against &, k,, - - -, k,. From
(6.2) the inequality follows easily.

It is sufficient to prove (ii) for dominance matrices. This can be shown by
the following representation:

(6.3) T( (P, 1 on v) = ¥, p(D)x(57,(D,), 1 on v,).

Let ¥, denote the number of tournaments player 1 wins if he starts from node
v;; the other players are permuted on the remaining nodes and the underlying
dominance matrix is D,. Then

1

(6.4) 2(SF(D,), 1 on v,) = TE— V,.

In order to prove the assertion for the simplest case, the k.o. plan type .%%; =
((v15 vy)> v5), We have to show that V; = V,. Assume that for a given D, player
1 wins a tournament starting from node v,. Then by transposing the player on
node v, and player 1, one obtains a plan with 1 starting from v, and winning
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the tournament. The possible permutations of the remaining players while 1 is
fixed on node v, are transformed by that transposition into the permutations of
the players with 1 fixed on v,; hence V, > V..

This type of proof works for any plan if one compares a node of level one
with a node of higher level.

In order to prove (ii) for n = 4, 5, 6 we have to check every plan type sepa-
rately. The following more general methods help to verify the inequality for
all possible pairs of nodes in these plans:

1) Compare only nodes v;, v; with I(v;) < I(v;) for which no node v, exists
such that I(v,) < I(v,) < (v;).

2) It is sufficient to consider only the smallest subplan in which both nodes
are contained.

3) Instead of interchanging only player 1 on v, with the player on node v, for
a given plan in order to get a comparable plan with 1 on v;, interchange simul-
taneously a whole set of players.

4) Make use of symmetries.

All these methods are sufficient, too, to verify the inequality for 10 out of the
11 plans for n = 7. They fail for &, = ((v,, va)((¥s ¥)(vs(vs v7)))) in comparing
the nodes vy(I(v,) = 2) and y,(/(v;) = 3). In fact a simple counterexample can be
found:

Let Q, be the strong dominance graph on Q, with i — j for i < j except that
player 7 dominates 1 (7 — 1) It is then easy to verify that 7(£,(Q,), 1 on vs) = 1
and 7(£,(Q,), 1 on v,) = 5

7. Most effective plans with n — 1 games for n players. We say a plan Zof
type 7 with associated winner rule w is more effective than plan Z°* of type G
with winner rule w* relative to one of the classes ';, i = 1, 2, 3, if 7((P)) >
n(Z°*(P)) for all P e T, and if for at least one P ¢ T, this inequality holds strictly.

Forall T';, i = 1, 2, 3 clearly no winner rule is more effective for k.o. plans
than the usual one, because it is the only rule with 7(2(P)) = 1 if Py =1,
J > 2, in P. In the sequel, k.o. plans are always understood to be associated
with the usual winner rule.

TuEoREM 7.1. (i) With any winner rule, no plan Z, on Q, with fewer than n
games is more effective than any k.o. plan ¢, on Q, relative to ', T, and T, for
n = 3.

(ii) Balanced k.o. plans <7, are more effective than unbalanced k.o. plans 7/,
relative to I'y and T, for n = 4.

Proor. (i) The preference matrix P, with pi=1j=2,---,nand p;; = }
for i,j=2,...,nis an element of I';, T, and 'y, n = 2,3, --.. For a k.o.
plan .57, we have for this matrix: n(%;(Pn)) =1; %, e.%,. Thus, for any
Z, in order to be more effective than .7, we must have z(Z(P)) =
2o, n(%(D”))p(Dn) =1, Z# e, Hence 2(Z(D,)) = 1 for all dominance
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AL, = (2,2) ()5 (Ve¥r)) Sy (Jyo(ElL,)) = (v (02 ()Y (gvr))

Vi Yy Y3 ¥ Y Y Y VIoov Yoy oyoyg oy,

N\ /

J 12(‘17,,) = (((”1(”2”3))”4)("5”6))

VY

;Y2 Y3 Yy Y5 Y

FiG. 1.

matrices D, with p(D,) > 0, i.e., for all D, with d,; =1,j =2, ..., n. This
implies: w(&,(D,)) = 1 for all D, where player 1 dominates all other players.
According to Lemma 4.1 this is only the case if &, is a k.o. plan.

(ii) Let P,,, be any preference matrix on Q,,, and P,,,._; denote the n X n
matrix obtained from P,,, by deleting the jth row and column. Let .7, be any
k.o. plan type with nodes v, v,, - -+, v,. We now define two operators S (split)
and J (join) which increase and decrease respectively, the number of nodes (see
Figure 1): S,.9, is the k.o. plan type with n 4 1 nodes obtained from %, by
replacing node v, by a game (**); if .9, contains a game (v;v;) then J; i
denotes the plan type with n — 1 nodes obtained from .97, by replacing (xJt v;)
by a single node.

In addition to these definitions we will use a further abbreviation: z_,(iony,)=
n(%‘ (Pn+1;-3) i on ), the probability that player 1 wins the random tournament
o7, if player i is assigned to node v, and the remaining players (Q,,, — {1, i, Jjh
are assigned at random to the remaining nodes. (For i=j we define:
n_;(jony) =0.

We need the following two basic formulas:

(7.1) WP) = Tt on v)  for k=1,
and
(1.2) 7S, T (Pas)) = 1/(*5Y) T2 Dt pym_y(i on v,)

for k = 1,
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Using now p;; = 1 — p,; we can transform (7.2) into
7(Sy I o(Ps1))
(7.3) = VOINZIL (1 on vy) + § Btilam (i on vy
3 D D (P — pi)(moa(i on v) — w_i(j on )}

The third sum disappears for P,,,eT, U I', because for P,,, eI, we have
z_jiony) =r_(jony), i,j=2,...,n and for P, el; p,; =p;, i,j=
2, <., m.

The second of the three sums in the bracket is by (7.1) equal to 3%t ((n/2) X
(P, -3)) — m_;(1 on v,)). Assuming P,eT, U T, in the sequel (until
otherwise stated) we finally have

(7.4) m(Se TP = 1/(" T {2

) s ”(‘%‘ (Prt1;-1)

+ T3 (s — Dyl on )l

Because of (p,; — ) = 0 forj =2, ..., nand Lemma 6.1 it follows from (7.4)
that

(7.5) I(v;) <) =7_;(1 on v,) =7_y(1 on v,) for j=2,...,n
= 7(S, T o(Pasr)) = 7(S, T o(Ppsy) -

We now show that for any unbalanced plan %/, there exists always a more
effective balanced plan <7,.
In ?2 there exist two nodes, say v, and v, with maximum level m and another
node say v, such that I(v;) > I(v,) + 2 (otherwise %/, would be balanced). If
operator J, joins game (v, v,) to v, in ?/ we have in .97, _, = =Jy, Z/ the inequality
I(v;) = l(v,) + 1 and thus according to (7.5):

(7.6) T(S, o i(P,) = 7(S, % _\(P)) = n(Z(P,)).  (See Figure 1.)

This means that plan type S,J,,7, is more effective than ,. IfS,J,, %, is not
already a balanced plan type we iterate this procedure until it stops; the final
plan has to be balanced. []

This proof also shows that the relation “more effective than” is a simply struc-
tured half order on all k.o. plan types. - Furthermore, all balanced plans are
equally effective for P,eT', U I['y; this is easy to see using proof (i) of Lemma
6.1. By a linearity argument that we owe to J. A. Hartigan, we can check the
assertion (ii) for the class I, of preference matrices for every n by a finite number
of computations: z(.9,(P,)) is linear in every element pi; Of P, soisa(F,(P,)) —
n(Z(P,)). If, therefore, this difference is positive for every preference matrix
Q, with g,; taking only values 1 or 4 and ¢,; only values 1 or O fori, j = 2, - - -, n,
the same has to be true for any preference matrix P, e I';,. We verified that for
n = 4 the balanced plan type is more effective than the unbalanced one for all
P,eT,. Checks for n = 5 with “extreme” matrices produced no contradiction
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either. However, result (ii) in Lemma 6.1 together with (7.3) seem to indicate
that (probably for relatively large n) there exist unbalanced plans which are for
some P, ¢ I', more effective than balanced ones.

8. Application to random k.o. designs. Narayana (1968) defines a random
k.o. “design” ZZ(my, m,, ..., m,) as follows. Let m;,, i=1, ..., k, be non-
negative integers summing to n — 1 and such that 2m; < n — } iz} m, for
j=1,..., k. The random tournament consists of k rounds. In the first round
m, pairs of players are chosen with equal probability to form m, games, the
losers of which are eliminated. In the jth round m; pairs of players are selected
at random from the remaining winners of former games and all players who
have not yet played a game. For n = 2™ + [, 0 < [ < 2™, the sample space of
(I, 2m1, 2™, ..., 1) is the class of all balanced plans on Q,.

From Theorem 7.1 we thus gain the

CoOROLLARY 8.1. ForP,el,uT,andn =2 + 1,0 <1 < 2™, therandomk.o.
design A(l, 2™, - .., 1) is at least as effective as any other random k.o. design.

At first glance this result is especially surprising for the random design 2 ([n/2],
[(n — [n/2D/2], - - ) = G2([n/2], [(n + 1)/4], [(n + 3)/8), [(n + T)/16], - --) (cf.
Moon (1968), page 49).

In this design in every round as many games as possible are played among
the remaining competitors. For n = 2™ and n = 2™ — 1 this is equivalent to
playing the balanced design; for other n (as e.g., for n = 6) the sample space of
this design is a proper subset of the class of balanced plans, but for n = 2™ 4 1
it contains unbalanced plans and, therefore, is not most effective.
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