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ON MINIMIZING THE PROBABILITY OF MISCLASSIFICATION
FOR LINEAR FEATURE SELECTION

By L. F. GUsEMAN, Jr.,! B. CHARLES PETERS, JR.2
AND HoMER F. WALKER?

Texas A & M University and University of Denver

We describe an approach to linear feature selection for n-dimensional
normally distributed observation vectors which belong to one of m popu-
lations. More specifically, we consider the problem of finding a rank k&
k x n matrix B which minimizes the probability of misclassification with
respect to the k-dimensional transformed density functions when a Bayes
optimal (maximum likelihood) classification scheme is used. Theoretical
results are presented which, for the case k = 1, give rise to a numerically
tractable expression for the variation in the probability of misclassification
with respect to B. The use of this exression in a computational procedure
for obtaining a B which minimizes the probability of misclassification in
the case of two populations is discussed.

1. Introduction. Consider a set of m distinct populations IL, ..., I, with
positive a priori probabilities «;, - - -, a,, and multivariate normal conditional
density functions defined for x = (x,, - - -, x,)" € R* by

Pi(x) = 2r)™ |2 [T exp[—H(x — p)" TN x — )], i=1,2,..0,m.

The parameters p, and Z, are assumed known with X, positive definite and sym-
metric. If Bisa k X n matrix of rank k then the populations z, have transformed
normal conditional density functions defined for y = (y,, - - -, y,)” € R* by

P{y» B) = (2m)~*"| BZ, BY|"* exp[ —(y — Bp)"(BE, B")™(y — Bp,)] ,
i=12...,m.

Employing a Bayes optimal (maximum likelihood) classification procedure,
the probability of misclassifying a transformed observation y = Bxe R* as a
function of B is given, [1], by g(B) = 1 — h(B), where

h(B) = \px max, g, @; pyy, B)dy

is the probability of correct classification. The linear feature selection problem
considered in the sequel is to choose, for a given k, the k X n matrix B of rank
k which minimizes g, or equivalently, which maximizes 4. It is readily verified
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that if Q is a nonsingular k X k matrix, then #(QB) = h(B). From this and the
fact that BB” is positive definite, the problem reduces to maximizing 4 over the
set of k X n matrices B of rank k satisfying BB” = I, which is compact. Since
h is a continuous function of B, a solution exists.

Attempts to treat the special case k = 1, m = 2 of this problem under various
simplifying assumptions (such as X, = Z, or else a linear discriminant function)
appear in the literature (see e.g. [2], [3], [7]). For this special case, the Bayes
decision regions determined by the nonzero 1 X n vector B which minimizes g
give rise to a classification procedure which is in general better than that pre-
sented in [2]. This follows from the fact that the discriminant function which
determines the decision regions is quadratic, except in the special case
BX, BT = BX, BT which can occur even if Z, = X,.

In Section 2 we present (Theorem 1) necessary and sufficient conditions for
the Gateaux differentiability of 4 (and hence g) as a function of a k X n matrix
B of rank k. A subsequent result (Theorem 2) shows that # is differentiable at a
local maximum. For the case k = 1, the expression for the Gateaux differential
given in Theorem 1 is shown (Theorem 3) to be numerically tractable. A
computational procedure for the case k = 1, m = 2 is presented in Section 3.
Finally, in Section 4, some remarks concerning extensions of the theoretical
results are presented.

2. Differentiating the probability of correct classification. If B maximizes
h, then the Gateaux differential, ([6] page 171),
h(B 4+ sC) — h(B)

N

dh(B; C) = lim, ,

vanishes for all k X n matrices C for which it exists. If dk(B; C) exists for all C,
then £ is said to be Gateaux differentiable at B. Preliminary to the main results of
this section are the following two lemmas concerning the Gateaux differentials,

3p(y, B; C) = lim,_, P> B+ 5C) — ply, B)

N

of the transformed density functions. The first lemma, whose proof is omitted,
is obtained by a rather lengthy but straightforward calculation.

LemMA 1. Let B be a k X n matrix of rank k. Then dp,(y, B; C) exists for all
k X n matrices C and

opiy, B; C) = p(y, B){(y — Bp.)"(BZ; B")[Cp, + CX; B"(BZ, B")™(y — By)]
— tr[CZ, B*(BZ, B")]} .

LEMMA 2. Let B be a k X n matrix of rank k and let C be a k X n matrix.
Then there exist 2 > 0 and a function p(y), integrable on R*, such that

|9p(y> B + 5C; C)| = B(y)
forallyeRY |s|<4,i=1,2,...,m.
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ProoF. Since B has rank k, there exists 2 > 0 such that for |s| < 4, B + sC
has rank k. For |s| < let p(s) = (B + sC)y; and Z,(s) = (B + sC)Z(B + sC)T
denote the mean vector and covariance matrix of the density function p,(y, B +
sC),i=1,2,...,m. By Lemma 1,

3pu(ys B + 5C, C) = pu(y, B + sON(y — 1)) 2:(s5)™

X [Cpi + CZ(B + sC)Zy(s) ™y — pu(5))]

— tr [CZy(B + sC)TZ,(s)7']} -
Since the mean vectors y,(s) and the covariance matrices Z,(s), as well as the
other coefficients of the polynomial expression in brackets, are continuous func-
tions of s, they are bounded for || < 2,i =1, 2, ..., m. From this it follows
that the required function j(y) exists although its actual construction is tedious
and will be omitted.

For a given k X n matrix B of rank k partition the set {a,p,(x)}r~, into dis-
joint sets

Sy = {an pu(¥), appi(X)s -« 5 i Pra(X)}

Sr = {arlprl(x)’ aﬂpﬂ(‘x)’ ] arnrprn,.(x)} ’
where the S, are defined by
aquqj(y’ B) = aqipqi(y’ B) 1 § i’j é nq
ay;Pei(y> B) # ay; pu(ys B) q=+1.
Forl=1,...,r, let
R, = {ye R*|a;,pu(y> B) > @ pu(ys B), k+1}.

The sets R, are disjoint, open and cover R* except for a set M of measure zero.

Let z,; and Z,; denote the mean vector and covariance matrix associated with

the density function p, ;(x).

THEOREM 1. Let B be a k X n matrix of rank k. Then h is Gateaux differenti-
able at B if and only if for each I such that R, + @, 1, = p,;and Z,; B" = Z,; B"
for each i, j < n,. If h is differentiable at B, then

Oh(B; C) = Xii_1ay g 0pu(y, B; €) dy .
Proor. For a given k X n matrix C write p,;(y, s) for p,,(y, B + sC) and h(s)
for A(B 4 sC), so that
h(s) = §zemax, ; a;;p,(y,s)dy .
By repeating some of the members of the sets S, if necessary, we can assume
that n, = n, = ... = n, = n,. Thus
h(s) = § e MaX,g g, MaXigio, ;P (Y5 5) Ay
= (pr maXg;<n, fj(y’ 5) dy ’
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where f;(y, 5) = max,,, a,;p,(y, s). The functions f;(y, s) have the following
properties:

(1) [0 =00 = - =110, 0),
and
of; . .
(2) _a_f(y,O) exists forall yg¢ M, j=1,--+,n4.
H

Indeed, for y € R,, (3f;/0s)(y, 0) = a;;(dp,;/0s)(y 0).
Using the inequality

Pii(ys 5) — pii(y> 0)

N

[y, 8) = [0 0)! < max,_,
N

and Lemma 2, it follows from the mean value theorem that the difference quo-
tients (f;(y, s) — fi(y, 0))/s are bounded for |s| < A by the function f(y) in
Lemma 2. Hence, for s > 0,

h(s) — h(0) _

1
- § ot (MK f(> 9) — MK, £, O)] dy

= S maxg,, (0 5) — [0 )y

— SR" maxjs” fj(.y’ S) - ff(.y’ O) dy
0 s

which tends to § ,x max;g, (9f;/95)(y, 0)dy as s — 0.
Taking the limit inside the integral sign is justified by the foregoing remarks
and the Lebesgue dominated convergence theorem. Similarly, for s < 0,

B = HO) _ { min,. [029) = £0.0) 4,
s = s

which tends to § . min,, (9f;/9s)(y,0)dy as s — 0~. Thus the Gateaux differ-
ential #’(0) exists if and only if

of ; . of;
maX;<n, {{: (», 0) = min;, z{; (7, 0)
almost everywhere. That is, if and only if
opy; op.;
@, B (7, 0) = a; 21 (3, 0)

for each i,j < n,andall yeR,, I =1, ...,r. Using Lemma 1 and the facts
that By, = Bp,;, a,;, = a,;, and BX,, B" = BX,; B” for all i,j < n,, it is easily
seen that 4’(0) exists if and only if Cy,; = Cp,;, CZ;; BT = CX;,B” for all i, j <
n,, for all nonempty R,. Therefore, & is Gateaux differentiable at B if and only
if p; = g4y, Zy; BT = Z,, B for all i, j < n, for all nonempty R,.

The final assertion of the theorem follows readily by noting that if 6A(B; C)
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exists, then
0
Oh(B; C) = (i % (»,0)dy = 31,y $z, 0Pu(y, B; C)dy .

If &, p(y, B) and a; p,(y, B) are distinct functions of y for i # j, then the con-
dition in Theorem 1 for Gateaux differentiability is satisfied, and

Oh(B; C) = 211 & Sy Opu(y> B; C) dy
where the sets R,(B) are Bayes decision regions defined by
Ri(B) = {y e R*|a;pi(y, B) > a;pi(y, B), ] + i} .
The meaning of Theorem 1 becomes clearer when it is applied to the two
population problem. Let II, and II, be normally distributed populations in R*

with class statistics a;, ¢, £, and a,, p,, I, respectively. Let Bbea k X n matrix
of rank k. There are several cases to consider:

Case 1. a, + a,. Then h is Gateaux differentiable for all B.

Case 2. o, = a,, p1, # p,. Then h is differentiable at B if and only if By, +
By, or BS, BT + B3, BT.

Case 3. a, = a,, pt; = p,. Then & is Gateaux differentiable at B if and only
if B, B" #+ BZ,B” or I,B" = X,B”. In particular, if the rank of £, — X, is
greater than n — k, then X, B = X, B” for all B and thus # is Gateaux differenti-
able at B if and only if a, p,(y, B) % a,py(y, B).

The following result is useful if a numerical solution to the problem is sought.

THEOREM 2. If h has a local maximum at a k X n matrix B of rank k, then h is
Gateaux differentiable at B.

Proor. It is evident from the proof of Theorem 1 that for any k x n matrix C,

hB +5C) — h(B) _ ;. (B — sC) — h(B)
B -0+ P s

lim sup,_,

and
h(B + sC) — h(B) = lim, ,_ h(B + sC) — h(B) .
s s

lim inf,_,

If # has a local maximum at B, then, since lim,_,_ (#(B + sC) — h(B))/s exists,

HB +5C) — MB) _ iy MB +sC) — h(B)
N N

lim sup,_,

Thus 4 is Gateaux differentiable at B.

The expressions given in Theorem 1 for dk(B; C) are numerically intractable
because of the integrals which appear. However, for the case k = 1 we obtain
the following integral-free expression for 64(B; C). We remark that similarly
the expression for dA(B; C) in the case k > 1 can be converted into an integral
over the boundaries of the regions R,.
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THEOREM 3. Let B be a nonzero 1 x n vector. If h is Gateaux differentiable at
B, then

CZ, BT
0h(B; C) = — X1, aypu(y, B) [ i

BZ, BT B

(y — Bpy) + Cﬂu]

where the notation |y, denotes the sum of the values of the function at the right end-
points of the intervals comprising R, minus the sum of its values at the left endpoints.

Proor. For k = 1, Lemma 1 yields

CZ, BT Cp CZ, BT
ConB By 4 St _ By — CEaB
B3, gy O T B gy T O = B — 5

0pu(ys B; C) = pu(y, B)
Integrating by parts we obtain

Cc3, BT
Sz, 0pu(ys B; C)dy = —pu(y, B)[ 1

BZ, BT

(y — Bpw) + Cﬂu:l

By

Combining this with the expression for §A(B; C) given in Theorem 1 gives the
desired result.

3. Computational procedure for m = 2, k = 1. If Bisa 1 x n vector which
minimizes g(B) = 1 — h(B), then by Theorem 2, B must satisfy the vector

equation
d99(B; C)) 0

= P

39(B; C.) 0

0

Il

where C;, 1 < j < n,isal x n vector with a one in the jth slot and zeros else-
where. Using the formula for dg/dB provided by Theorem 3, one can employ
existing minimization procedures to find a local minimum of G. Assuming that
the a priori probabilities are equal and that the n x 1 mean vectors g, and g, and
the n X n covariance matrices X, and Z, are known, we describe below a way
in which the necessary functions can be computed for such a minimization
procedure.

For a nonzero 1 x n vector B, the probability of misclassification is given by

9(B) = 3 $ym Po()s B)dy + % $rym P2(y> B) dy
where the Bayes decision regions are given by R,(B) = {y € R*: F(y, B) = 0} and
R(B) = {y e R*: F(y, B) < 0}. The quadratic discriminant function F(y, B) is
obtained from the log likelihood function and is given by
F(y, B) = a(B)y’ + 25(B)y + 1(B) ,
a(B) = BE, BT — BX,B7,
B(B) = (BX,B")(Bp,) — (BZ,B")(Bp,) ,

where

and
B, BT
BZ, BT’

7(B) = (BE, B)(Byn)' — (BE, BT)(Byn)* + (BE, BY)(BE, B") log
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The error function
D(a) = (27)~F (2, exp(—if’) dt

can be computed using double precision library routines. Then, for a given
nonzero 1 x n vector B let

‘Di(a’ B) = S’impq,(y$B)dy’ i—_— 1,2,
and compute the values of D,(a, B) using the relationship
Di(a,B):d)(a__lﬁ‘_i>, i—1,2.
(BZ,B")t

After computing the scalars By,, By,, B, B”, and BX, BT, one solves the quad-
ratic equation F(y, B) = 0. This equation has either a single root or else two
distinct real roots. These cases can be treated separately in computing g(B)
and dg/0B.

Single root case. The quadratic equation has a single root precisely when
a(B) = 0; that is, when the transformed covariances are equal. In this case,
the single root, a, is given by a = (B, 4+ Bp,)/2. Then

9(B) = § — 4[Dy(a, B) — Dy(a, B)],  if Ry(B) = (—oo, q]
=} + 4[Dy(a, B) — Dy(a, B)],  if RyB) = (—oo,a),
and
09—y py— Gt I)BT g if R(B) = (—
28 T T gy g 4oz, O T By I R(B) = (o0, ]
5, 4 X,)B7 .
=y — o+ (2 + 2,)B (By, — Bp,) , if Ry(B) =(—o0,a).

BZ, B” 1 B3, B”

Two root case. In this case, let a,, a, denote the roots of the quadratic equ-
ation arranged so that a, < a,. Then,

9By =% —K, if Ry(B) = [a,, a,]
=3+K, if Ry(B) = (a;, a,)

where
K = 3[D(a,, B) — D\(a,, B)] — [Dy(a,, B) — Dy(ay, B)],
and
o9 BT . Z,BT . _
9B s — Ky + Ky BZ:'lBT - K BZ:BT ’ it Ry(B) = [ay, an]
= K 2B g LB if RyB) = (a,, a))
= Bapty — 1/"1+ ABzzBT—‘ 3BEIBT, ) —(112»
where

K, = p\(a;; B) — py(ay, B)

K, = pa(a;, B) — py(ay, B)

Ky = (a, — Bpy)p\(ay B) — (a, — Bp,)py(ay, B)
K, = (a3 — Bp)py(a;, B) — (a, — Buy)py(ay, B) .
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It should be noted that when X, = X, we always have the single root case,
and one can verify that
B = (¢t — p)"(Z; + Zp)7?

satisfies dg/0B = 0. This suggests that one should start the minimization pro-
cedure using this B as an initial guess, even when X, =+ X,.

A preliminary program using the formulation of Theorem 3 for two popula-
tions was developed for the Univac 1108 at NASA /Johnson Space Center, Hous-
ton, Texas. A subsequent multi-population version has been developed for the
IBM 360. Both programs employ a Davidon-Fletcher-Powell minimization
procedure [4]. Preliminary numerical results of the procedure for the case of
two populations appear in [5].

4. Concluding remarks. Although the results herein have been restricted to
normally distributed populations, it seems clear that similar results could be
obtained for other types of density functions (e.g. multimodal normal, normal
density function times a polynomial) and associated computational procedures
developed. The computational infeasibility of applying Theorem 1 with k¥ > 1
to the existing optimization procedure has already been mentioned. The possi-
bility of determining a k X n matrix B, one row at a time, so as to “nearly”
maximize the probability of correct classification in k-dimensional space should
be investigated. The theory for such a procedure has not been developed even
for the case of two populations.
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