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UNIFORMLY MINIMUM VARIANCE ESTIMATION
IN LOCATION PARAMETER FAMILIES

By LENNART BONDESSON
University of Lund and Institut Mittag-Leffler

Let x1, -+ -, X be a sample of size z of an rv with df F(x — 6), where
Fis known but ¢ unknown. In this paper we make a Fourier approach to
the problem of existence of a statistic g(x1, ++ -, Xx) which is a uniformly
minimum variance (UMV) estimator of its own mean value. We mention
only some of the results. If # =1 we find an NASC for an estimator g(x1)
to be, in a restricted sense, UMYV. This condition is given in terms of the
zeroes of the ch.f. of F and the support of the Fourier transform of g. If
n =2, it is shown that a statistic of the form g(x), where X is the sample
mean, cannot be UMYV, unless g is periodic or F is a normal df. We prove
the non-existence of a UMV-estimator of 6, provided that the tail of F
tends to zero rapidly enough. Finally, itis proved that no polynomial
P(x1, - -, xy,) can be a UMV-estimator, unless F is a normal df.

1. Introduction and summary. Let x, ---, x, be n independent observations
of an rv X having df F(x — ), where @ is unknown but F is known. The content
of this paper circles around the question of existence of a statistic g(x;, - - -, x,)
which is a uniformly minimum variance (UMYV) estimator of its own mean value.
The basic tool for these investigations is a well-known UMYV-criterion saying
roughly that g is UMV iff g is uncorrelated with every unbiased (maybe complex)
estimator of zero (see e.g. Rao [21] page 257). Due to the fact that ¢ is a location
parameter, it is possible to apply Fourier methods. To give a hint, if { is a zero
of the characteristic function (ch.f.) of F, then exp{i{x,} becomes an unbiased
estimator of zero.

In Section 3 we treat the case n = 1. It will prove possible, by using some
results from harmonic analysis given in Section 2, to obtain a condition which is
both necessary and sufficient for an estimator to be, in a restricted sense, UMYV.
If the tail of F tends to zero rapidly enough, it turns out that g(x,) cannot be a
UMYV-estimator, unless g is a periodic function or F is a normal df. In Section
4 we consider the case n > 2 and find a necessary condition for g(x,, - - -, x,) to
be UMV which will enable us to derive unrigorously an old operator UMV-
condition given by Stein [23] and others. In Section 5 we give a simple new
proof of a result due to Lehmann and Scheffé [15], saying that it is impossible
to UMV-estimate a nonconstant parametric function in the case of the uniform
distribution. A somewhat more general result of the same type is also proved.
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In Section 6 we derive two UMV-characterizations. The normal distribution is
shown to be the only one admitting a UMV-estimator of the form g(%), where
g is aperiodic and not increasing too fast, and where % is the sample mean. This
generalizes a result by Kagan [11]. When g is periodic it is only possible to
conclude that the df is a convolution of a normal df with a lattice-df. If a sta-
tistic g(x;) 4- - - - + g(x,) is a UMV-estimator, then, under slight assumptions,
F is normal, the df of the logarithm of some power of a gamma-distributed rv,
or a lattice-df. In Section 7 we prove that, under some conditions, a UMV-
estimator must also be a sufficient statistic. Similar results have earlier been
obtained by other authors. UMV-estimation of the location parameter itself is
treated in Section 8. Very recently, this subject has also been studied by Take-
uchi [24]. If the tail of F tends to zero rapidly enough, it turns out that no
UMYV-estimator of § exists. In Section 9 we prove that no polynomial can be
a UMV-estimator, unless the distribution is normal. The final section contains
other more traditional aspects of the problem.

2. Some results from harmonic analysis. For the theory that will follow we
need certain results from harmonic analysis.

The class of Borel measurable functions g on R, satisfying sup, |g(x)|/(1 +
|x])¥ < co, where N is an integer > 0, is called B,. We set B,, = lim,,__ B,.
If g coincides almost everywhere with respect to the Lebesgue measure (a.e. (L))
with a function belonging to B, we write ge, B,. If ge, B, but g ¢, B,_,, we
say that g belongs effectively to B,.

For g ¢, B., the real set S(g), called the spectrum of g, is defined as the support
of the Fourier transform of g. The Fourier transform is usually a generalized
function (distribution). Concerning these concepts, see Donoghue [3] Chapter
IT and Chapter III, Section 46. However, note that in our paper the Fourier
transform of an integrable function f is defined by f(¢) = § exp{i€x}f(x) dx.

LemMA 2.1. Let g € By and let dy be a measure, not certainly positive or real,
satisfying § (1 4 |x|)"|dp(x)| < oo. If the convolution g x du is zero everywhere,
then § exp{i{x}du(x) = 0 for all { e S(g).

A set of the form {ja; j e Z}, where 0 < a < oo, is called arithmetic.

LEMMA 2.2. Let g be a function belonging to By, effectively belonging to B,
(M < N), and having spectrum contained in an arithmetic set. Then a point { € S(g)
exists such that § x* exp{i{x}du(x) =0, k =0, - .-, M, for all measures dy, satis-
fying § (1 + |x])¥|du(x)| < oo and g xdu = 0.

LEMMA 2.3. Let g€, By. Then S(g) is contained in the arithmetic set {ja; j ¢ Z}
iff the N + 1th difference Alflg is zero a.e. (L). Further, S(g) = {0} iff g coincides
a.e. (L) with a polynomial of degree at most N.

LemMA 2.4, For g, he, B, we have S(gh) < S(g) + S(h). (The bar denotes
closure.)
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LEMMA 2.5. Let g€, By and let dy be an absolutely continuous measure for
which § (1 + |x[)"*}|dpu(x)| < oo. If, for all L e S(g) and forall k =0, ..., N,
§ x* exp{i{x}du(x) = 0, then g +dy = 0.

Lemma 2.2 is very essential for us and a proof will be given in an appendix.
The arguments used there also prove Lemma 2.3. Concerning the other lemmas
we only make some remarks. Lemma 2.1 is for N = 0 only a slight extension
of the Wiener Tauberian theorem. For a proof, see Donoghue [3] page 232.
However, it is assumed there that dyu is absolutely continuous but that is not
necessary. L. Garding has communicated a way of generalizing this proof to
cover also the case N > 0. Lemma 2.4 is quite elementary. Lemma 2.5 is for
N = 0 a famous unpublished theorem of Beurling. After certain changes the
arguments given on page 233 in [3] yield a proof. The book by Donoghue is
based on lectures by L. Hérmander and the lecture notes (in Swedish) contain
an explicit proof for N = 0. With certain modifications this proof also works
in the case N > 0.

3. The one observation case. In this section we consider the case when there
is given only a single observation x from a population with df F(x — ), where
F is considered to be known.

Suppose only 2N moments of F are known to be finite. Then, since we
measure the goodness of an estimator by the variance, it is to some extent reason-
able to consider only estimators g(x), where g € B,. Such estimators are called
B,-estimators. If g(x) isa UMV-estimator in the class of B,-estimators, we say
that g(x) is ByUMV. A B,-estimator g(x), having finite variance, is B, UMV
iff E,[g(x)h(x)] = O for all (complex) B,-estimators A(x) such that E,[4(x)] = 0
and E[|A(x)])] < oo. This is just a variant of the UM V-criterion.

Letting ¢ stand for the ch.f. of F, i.e. ¢({) = § exp{i€x} dF(x), we have

THEOREM 3.1A. If g(x) is a B, UMV-estimator of its mean value, then S(g) — D,
where D = {{; o(n — §) = 0 for all zeroes 7 of ¢}.

ProoF. Let  be any zero of ¢. We have E,;[exp{iyx}] = 0. Therefore, from
the UMV-criterion, E,[g(x) exp{inx}] = 0. Equivalently, g « exp{ —ipx}dF* = 0,
where dF*(x) = dF(—x). So it follows from Lemma 2.1 that, for all { e S(g),
§ exp{iCx} - exp{—inx}dF*(x) = 0, i.e. p(y — {) = 0. The theorem is proved.

Let N(¢) be the set of zeroes of ¢. Since N(p) is symmetric, it is easy to see
that D is equal to the set of periods of N(¢) (i.e. periods of the indicator function
of N(¢)). The set D is a closed subgroup of R and hence D can only be of three
different types, namely:

(i) D=R
(i) D={ja;jeZ},a>0
(iii) D = {0}.

The first alternative holds iff N(¢) = @, the second one iff N(¢) is a periodic
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set, and the third one otherwise. The ch.f. ¢({) = (sin ¢{)/c{ (uniform distri-
bution over [ —c, c]) provides an example of case (iii) and ¢({) = cos { (two-point
distribution) an example of case (ii).

An immediate consequence of Theorem 3.1A and Lemma 2.3 is that in case
(ii) only estimators g(x), where All*lg is zero a.e. (L), can be B, UMV. For g(x)
to have this property it is in case (iii) necessary that g is a.e. (L) equal to a
polynomial of degree at most N. So, for e.g. the uniform distribution only
constants are B,UMV-estimators. In fact, the next theorem shows that also a
B, UMYV-estimator (N > 0) must be constant for this distribution.

THEOREM 3.1B. Let F have at least 2N moments. Further, let g belong to By
and effectively to B, (0 < M < N). If g(x) is a B,UMV-estimator, then every
zero of ¢ is of multiplicity at least N + M + 1.

If g(x) = x, this theorem is almost immediate. For, if ¢(y) = 0, then
E,[exp{inx}] = 0, and hence, by the UMV-criterion, E,[xexp{ipx}] = 0. Re-
peated use of the criterion yileds E,[x*exp{iyx}]=0, k=0,1,..., N+ L.
Setting # = 0, we have the theorem.

Proor. If N(¢) is empty, there is nothing to prove. In the contrary case we
have shown above that S(g) is contained in an arithmetic set. Let 5 be any zero
of ¢. From the proof of Theorem 3.1A we have

3.1) g x exp{—inx}dF* = 0.

Now, let { be the point in S(g) mentioned in Lemma 2.2. It follows from (3.1)
and this lemma that 7 — { is a zero of ¢, ¢, - - -, . Since ¢(—&) = ¢(&), also
€ — nis a zero of these derivatives. Hence x* exp{i({ — »)x}, k =0, ---, M,

are unbiased estimators of zero. Therefore
E[9(x + 0)(x + 0)* exp{i(C — n)(x + 0)}] =0, k=0,.--,M.
By induction it then follows that

. Eg(x + 0)x* exp{i({ — p)x}] =0, k=0,..., M,
e g+ x* expi(y — )x}dF* = 0, k=0,...,M.
Using again Lemma 2.2, we find that —y is a zero of ¢, ¢, - - -, ¢®, and so is
n. If M = N, nothing remains to prove.. If M < N, it follows as above that

g x x* exp{—inx}dF* =0, k=0,...,min(2M, N) .

Then iterating sufficiently many times the argumentation above, the rest of the
proof is easily accomplished.
Now we state a converse of Theorems 3.1A and B.

THEOREM 3.2. Let F be absolutely continuous and have moments up to order
2N+ 4. If ge B, (M < N), if S(9) C D (D is defined above), and if all real
zeroes of ¢ have multiplicity at least N + M + 1, then g(x) is a B, UMV-estimator
of its mean value.
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ProoF. Let A(x) be any unbiased B,-estimator of zero. It follows from Lemma
2.1 that S(h) C N(¢). Using also Lemma 2.4, the assumption that S(g) c D, the
definition of D, and the fact that N(¢) is a closed symmetric set, we get

S(gh) C S(9) + S(h) < S(9) + N(¢) < D + N(p) = N(p) = M) -

Evidently, gh € B,,,. Since M < N, F has at least N + M + } finite moments.
An application of Lemma 2.5 yields gk « dF* = 0, i.e. E,[g(x)k(x)] = 0, and the
proof is complete. Observe that if N(¢) = @ or if M < N, it is only necessary
to assume the existence of 2N finite moments of F. []

Obviously it is possible to let N take the value infinity in the theorems given.

Let F be absolutely continuous and have at least 2N (N > 0) finite moments
and mean zero. If N = 1, we also suppose § |x[?dF(x) < co. Consider g(x) = x.
Of course, S(g) = {0}. From Theorem 3.1B and Theorem 3.2 it follows that x
is a By UMV-estimator of ¢ iff every zero of ¢ has multiplicity at least N 4 2.

It is not hard to construct a ch.f. which is zero outside an interval and real-
valued and strictly positive inside it, and furthermore infinitely differentiable.
For this purpose we take a symmetric infinitely differentiable function ¢ with
¢(§) = 0when || = 1, and ¢({) > 0 when |{| < 1. We then form ¢ = ¢(¢ x ¢),
where ¢ is chosen such that ¢(0) = 1. This ¢ is a ch.f. and fulfills the require-
ments. (Cp. Donoghue [3] pages 183-184.) The corresponding df F is absolutely
continuous and has moments of all orders and mean value zero. Theorem 3.2
for N = co shows that x is a B, UMV-estimator of §. However, the family
dF(x — 0) is not B_-complete.

If we just know that § exp{|x|*}dF(x) < o0, 0 < a < 1, then it is not so un-
natural to consider only estimators g(x) which satisfy

sup, |9(x)|/exp{|x|*?} < oo, 06809 < a.

We only mention that it is possible to extend (at least partly) the theory above to
cover also this situation. This depends mostly on the fact that § log (exp{|x|*})/
(1 + x*) dx < co (non-quasianalytic case).

Let now F satisfy e.g. { exp{|x|}dF(x) < oo and have mean zero. Suppose x
is a UMV-estimator of ¢ in the class K of estimators g(x) satisfying, forall £ = 0,
sup, |x*g(x)|/exp{|x|/2} < oo. It follows that § x*.A(x + 6)dF(x) =0, k =0,
1, ..., for all 2e K such that § A(x 4 6)dF(x) = 0. Since, easily checked,
h(x + 0) dF(x) has an analytic Fourier transform, we get A(x 4 0) dF(x) = 0.
Hence # = 0 a.s. dF(x — @) for all §. So from the UMV-assumption for x
we have proved K-completeness for dF(x — 6). (The essential point is that
{ log (exp{|x|})/(1 + x*) = oo; quasianalytic case.)

Next we give a characterization of the normal distribution. For the concepts
and results used, see Lukacs [17] or Ramachandran [22].

THEOREM 3.3. Suppose that ¢ is an entire analytic function of finite order. If, for
some function g belonging to B, and not being a.e. (L) equal to a periodic function,
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the statistic g(x) is @ UMV-estimator of its mean value, then the distribution is
normal (or degenerate).

REMARK. Let T(x) =1 — F(x) 4+ F(—x). Then ¢ has order 1 + 1/a (a > 0) iff

liminf,_, log {log (1/T(x))}/logx =1 4 «a.

Proor. Of course, the proof of Theorem 3.1A shows that S(g) c D’, where
D" = {{eR; p(n — §) = O for all complex zeroes » of ¢}. It is easy to check
that D’ is a closed subgroup of R. Assume that (complex) zeroes of ¢ exist.
Hence D' is arithmetic or contains the point zero only. By the assumption that
g is not periodic and by Lemma 2.3, we see that g cannot effectively belong to
B,. So g effectively belongs to some class B,,, where M > 0. Using the proof of
Theorem 3.1B with certain changes (notice that ¢(5) = 0 = ¢(—7) = 0), we find
that every zero of ¢ is also a zero of all the derivatives of ¢. As ¢ is analytic, this
is an obvious contradiction, proving that ¢ vanishes nowhere. By the Hadamard
factorization theorem for functions of finite order, we have ¢({) = exp{P({)},
where P is a polynomial. Then a well-known theorem of Marcinkiewicz asserts
that the degree of P cannot exceed two, and the theorem stands proved.

REmMARK. The aperiodicity assumption is necessary. For, let F be a lattice-df
with span % (i.e. dF vanishes outside some set {a + jh, j € Z}) and let g have
period £. Then g(x) = g(6 + a) a.s. dF(x — ). Hence g(x) estimates its mean
value without error and is therefore a UMV-estimator.

We end this section with an odd result.

THEOREM 3.4. If dF has compact support but is not degenerate, no strictly mono-
tone statistic g(x) can be a UMV-estimator.

Proor. The ch.f. ¢ is an entire function of order 1. Hence it has a zero 7
somewhere in the complex plane. We have E [exp{inx}] = 0. Using that g(x)
is a UMV-estimator, we find that E,[(g(x))? exp{inx}] = 0, for all nonnegative
integers jand for all §. Hence, setting g(x) = y, E,[ yE,[exp{inx}|g(x) = y]] = O,
Jj=0,1,2,.... Now, since E;[exp{inx}|g(x) = y] is (or can be defined to be)
zero outside a bounded set (depending on @), the Weierstrass approximation
theorem can be applied, showing that E,[exp{iyx}|g(x) = y] = 0 a.s. for all 4.
As g is injective, this is a contradiction ending the proof.

4. The case of two or more observations. Here we suppose that n (n > 2)
observations x;, - .- -, x, are available. To abbreviate the formulas we write as
though n = 2.

The following proposition is a basic result for the rest of this paper, even
though it will not always be explicitly utilized.

THEOREM 4.1. If 9(x,, x,) is a UMV-estimator of its mean value, then there exists
a function C(§, 0) such that the relation

4.1 Ey[g(x; + 0, xy + 0) exp{il; x, + i{,x,}] = C&, + o 0)p(L)e()
holds for all (real) ¢, {, and 6.
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Proor. It is equivalent to show that a function C,({, #) exists such that

4.2) Eg[g(x,, x,) exp{iC, x, + i, x%,]] = C(&, + &, 0)o(L1)e(L) -
Consider the points on the line {; + {, = { = constant. Two cases arise depend-

ing on whether:

(i) no point (;, {,) on the line exists such that ¢({,) # 0 and ¢(,) + 0; or:
(ii) at least one such point exists.

In case (i) exp{i{,x, + i{,x,} is an unbiased estimator of zero, and hence any
choice of Cy({, #) suits. In case (ii), we fix one point (»,, »,) such that ¢(,) + 0,
©(n,) # 0, and define

CU&, 0) = Egl9(x1, x,) exp{imx, + i, %,}]/¢(7:)¢(7,) -

Since the statistic

h(xy, x,) = exp{il;x; + il x,} — (2(L)e(Ca)/ (1) (ns)) exPin. X, + in, X3}
has mean value zero for all ¢, it follows that E,[g(x,, x,)A(x,, X,)] = 0, which is

exactly the desired result. []

Using formal calculations, we are also able to show that (4.1) is a sufficient
condition for g to be UMV. We introduce a family of linear operators L,,
operating on functions with argument y, by L,(exp{i{y}) = C({, §). This means
that L, is the Fourier transform of C({, §). By extension the L,’s will be defined
on an appropriately large space of functions. Supposing that the df has a density
function f, and letting > stand for the two-dimensional Fourier transform, we
see that (4.1) can be written as

/\ T~
901 + 0 %, + O)f(x)f(x2)(Co Ca) = Lo[exp{i(Cy + Sy} - fx)f(xa)(Ess Co) -

Since both L, and the Fourier transform are linear,
. — . Ny
Lo[exp{iCCs + C1] - S (o &) = Lolexpi(G + Ly} - fix)f(x)(Co )]
/\
= L[ f(x;, — p)f(xs — ¥)(&y5 §9)]
/\
= L[ f(x, — y)f(xs — D) &) -

The uniqueness theorem for the Fourier transform therefore implies
(4.3) 9(x1 + 05 %, + O)f(x,)f(x2) = L[ fxr — y)f(xs = ¥)] -

Let now % be an unbiased estimator of zero. Then
E,J9h] = § § 9(x, + 0, x, + O)a(x, + 0, x, + O)f(x))f(x,) dx, dx,
= § VA(x + 0, X, + O)Lo[ fx, — y)f(xs — )] dx, dx,
= L,[§ § A(x, + 0, x, + O)f(x, — y)f(x, — y) dx,dx,] = L,[0] = 0.
Hence g is a UMV-estimator.
It should be observed that for a fixed 6 (4.1) is instead a necessary (and
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formally a sufficient) condition for g to be a locally best (at the point #) unbiased
estimator of its mean value. The formal calculations above indicate equivalence
between (4.1) and the operator condition (4.3) given by Stein [23] and others.

5. A theorem of Lehmann and Scheffé. In this section we give a new proof
of a result first proved by Lehmann and Scheffé [15]. Then we try to find
generalizations. We write as though n = 2.

THEOREM 5.1. For the uniform distribution over [0 — ¢, 6 + c], no nonconstant
parametric function can be UMV-estimated.

Proor. It is no restriction to suppose ¢ = z. Then ¢({) = (sin n{)/x{. Let
g(x,, x;) be a UMV-estimator of g*(d). As all integers = 0 are zeroes of ¢, it
follows from Theorem 4.1 that

(1/27)* § § _isapmyse 901 + 0, x, + 0) explijx, + ikx,} dx, dx, = 0,
JokeZ, (j,k)+#(0,0).
But this means that all the Fourier coefficients ¢, (j, k) # (0, 0), of the-func-
tion g(x, + 6, x, + 0) are zero, and hence it must be constant a.e. (L x L) in
the interval —z < x,, x, < . As this is true for all 4, g is constant a.e. (L x L)
in the strip |x; — x,| < 27. Therefore also g*(#) is constant and the theorem is

proved.
Observe that the proof also applies to the case n = 1. Lehmann and Scheffé’s

proof does not.

For what other distributions does the conclusion of Theorem 5.1 hold? It is
tempting to believe that if for n = 1 only constants can be UMV-estimated, then
the same must be true for n > 2. The next theorem is a partial solution of this
problem. (Cp. Theorem 3.1.A).

THEOREM 5.2. Let F have a strictly positive density function f. Further, let at
least 2N (N = 0) moments be finite. Suppose also that

D={Co(—8) =0 forall 7eNg)}=1(0}.

Then, if a statistic g(x,, X,), satisfying sup, .. |9(x,, x,)|/(1 + x,* + x,")"* < oo,
is a UMV-estimator of its mean value, this mean value must be constant.

Proor. Let {, be any (real) zero of ¢ and {, any (real) number. Applying
Fubini’s theorem to (4.2), we find
§ exp{il,x,} f(x, — O)(§ 9(x1 X,) exp{il, x,} f(x, — 0) dx,)dx, =0 .
Since this is true for all {,, the uniqueness theorem for the Fourier transform
and the fact that f is strictly positive yield
5.1 § 9(x;, x,) exp{il, x,}f(x, — 0)dx, = 0 for almost all (L) x, .

The possible exceptional set may depend on #. However, (5.1) holds simultane-
ously for all rational @ for almost all (L) x,. It is not difficult to show that the
left-hand side of (5.1) is a continuous function of #. Hence, after multiplication
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by exp{—it,0},

9(s, x,) x exp{—ily()}f* =0 for almost all (L) x, .
Comparison with the proof of Theorem 3.1A and the theory following it shows
that, for almost all (L) x,, g(x, x;) is a.e. (L) equal to a polynomial in x,. In
view of the fact that this is true also if x, and x, are interchanged, it easily follows
that g(x,, x,) is equal to a polynomial in (x;, x,) a.e. (L x L). This polynomial is
then also a UMV-estimator with the same mean value as g(x,, x,). If the poly-
nomial is constant, the theorem is immediate. If not, Theorem 9.1 to be proved
later asserts that F is a normal df. This is a contradiction since the normal ch.f.
has no zeroes. The proof is finished.
As seen earlier, D = {0} iff ¢ has zeroes and N(¢) is not periodic. If F = G % H,
where G is a lattice df whose ch.f. has (real) zeroes, and H is a normal df, then
9(x), which will be shown in Section 6, is a UMV-estimator, provided that g is
periodic with an appropriate period. This proves that the condition D = {0} in
Theorem 5.2 cannot be replaced by the weaker condition N(¢) # @.

6. UMYV-characterizations. In this section we shall UMV-characterize cer-
tain distributions. Kagan, Linnik, and Rao [10] proved that the sample mean X
(n = 3)isa UMV-estimator of ¢ only if F is normal. The same conclusion holds
if instead P(%), where P is a polynomial, is supposed to be a UMV-estimator of
its mean value (see Kagan [11]). The following proposition contains a more
general result.

THEOREM 6.1. Let F have at least 2N (N = 0) moments. Suppose that, for some
function g, belonging to B, and not being a.e. (L) equal to a periodic function, the
statistic §(X), where n = 2, is a UMV-estimator. Then F is normal.

Proor. It suffices to consider the case n = 2 only. Let (x,, x,) be an unbiased
bounded estimator of zero. Then also A(x;, + 2, x, + 4), where 2 is arbitrary, is
an unbiased estimator of zero. So from the suppositions it easily follows that

Eg[9(% + O)r(x;, x5)] = 0,
and hence
(6.1)  §0(x + O)E,[A(x;, x;)| ¥ = x] dFy(x)
= E[g(% + O)E[A(x,, x,)|X]] = 0.

So, using Lemma 2.1, for each point { € $(g), we find

(6.2) E[exp{—ilx}h(x,, x,)] = E[exp{—ilX}E[A(x;, X,)|X]]
= { exp{—ilx}E[A(x;, x;) | X = x]dF3(x) = 0.

Now, first we take into consideration the case when S(g) is not contained in any
arithmetic set. In this case the ch.f. ¢ has no zeroes. For, if the contrary holds,
also the ch.f. of the variable % has a zero. Then, considering ¥ as one observation
of a variable with df F,(x — 6), we find through Theorem 3.1A and the theory
following it that S(g) is included in an arithmetic set, which is a contradiction.
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For points &,, &,, 1, 7., satisfying &, + &, = 5, + »,, we set
h(xy, x)) = exp{i€ix, + i€, x;} _ explinyx, + ipyx}
P(€1)p(6,) P(1)P(1:)
From (6.2) we have, for { e S(9),
Ej[exp{—iCx} - exp{i, x, + i§;x,}] — Eo[exp{—iCx} - exp{in,x, + in, X,}] .
P(€1)p(6) P(1)P(1s)

Since this is true whenever &, + &, = », + 7,, the left-hand side depends only
on the sum &, + &,. After some manipulations we find

log [90(51(5—1) T ):l + log [SD(&( —2) ):l = C(& + &),

where ¢ = {/2 and C is some function. This is Cauchy’s functional equation,
and it follows that there exist constants 4, and B, such that

(6.3) log|:¢(i(€) )] — A&+ B,.

Hence the second derivative of log ¢ is a periodic function with period . This
is true for any { € S(g). It is easy to show that then also the numbers j,{,/2 +
J2&o/2, where ji, j,€ Z and ,, {, € S(g), must be periods. Since it has been as-
sumed that S(g) is not contained in any arithmetic set, infinitely small numbers
of this type exist. Therefore d*/d&* log ¢(£) has infinitely small periods and must
then be constant. This is what we wanted to prove. (If two derivatives do not
exist, finite differences can be used instead of derivatives.)

It remains to give a proof of the theorem for the case that S(g) is included in
an arithmetic set. As g is not a.e. (L) equal to a periodic function, g effectively
belongs to some class B, (M > 0). Therefore an application of Lemma 2.2 to
(6.1) shows that a point { exists such that

(6.4) E [exp{—ilx}A(x;, x,)] = 0
(6.5) E[% - exp{—i{x}h(x;, x,)] = 0.

Let ¢ = {/2. If ¢(r) = 0, we may set h(x,, x,) = exp{ir(x, + x;)}. For this
choice of % we find that exp{—i{X}A(x,, x,) = 1, and this evidently contradicts
(6.4). Thus ¢(c) # 0. By employing instead the expression of A(x;, x,) used in
the first part of this proof, (6.4) and (6.5) lead, after some argumentation, to
the equations

06 — )& — )e(E)e(6) = Cuéy + &)
¢'(& — D)p(Ea — DP(E)e(6a) + @(61 — )¢ (§s — )/P(E)P(62) = Colér + &) »

where C, and C, are two functions. The equations are valid for all £,, £, in some
neighborhood of the point . By division we find

Q6 — Dfp6 — 7) + ¢'(6 — D)/p(6s — 7) = Co& + E)/C(E + &) -
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This is Cauchy’s functional equation. Hence ¢'(£)/¢(£) is linear in some neigh-
borhood of the origin. The rest of the proof proceeds as in Kagan, Linnik, and
Rao [10].

If g is periodic, also other distributions than the normal one can appear. To
see this, assume that ¢ vanishes nowhere. By recalling (6.3), it is not hard to
verify that a quadratic polynomial P (depending on A4, and B,) can be found such
that ¢(§) exp{—P(§)} is a periodic function ¢ with period . Hence

9(&) = ¢(&) exp{P(£)] -
We may set P(0) = 0 and ¢(0) = 1, and therefore exp{P(§)} is the ch.f. of a
normal df (we neglect the fact that e.g. P””(0) may be complex-valued). If e.g.
two finite moments of F exist, then ¢ is twice continuously differentiable and so
is ¢. It follows from general theory for Fourier series that we have

$(§) = X prexp{i2nké/z},

where 3} |[p| < oo and } p, = 1. Even though some of the numbers p, are
negative, it is possible that ¢ is a ch.f. Let X be the rv of which the x,’s are
observations. Thus, from the UMV-assumption and some regularity conditions
we have shown that we can write

X=Y+ Z,

where Z is a normally distributed rv with unknown location # (4 constant),
where Y is an rv taking values (we suppose ¢ = 27) 0, +1, +2, ... (with pos-
sibly negative probability), and where Y and Z are independent.

It is more remarkable that the converse is true, i.e. if X =Y 4+ Z, Y and Z

as above, and x;, j = 1, - - -, n, are independent observations of X, then g(x) is
a UMV-estimator of its mean value, provided that g has period 1/n.

To prove this, let y;, z;,, j = 1, - - -, n, be imagined independent observations
of Y and Z such that x; =y, 4 z;. As g has period 1/n, g(¥) = 9(2). Let
h(xyy + -+, x,) = h(y; + 2y, - -+, y, + z,) be any unbiased estimator of zero. We
then have

0 = Eg[h(y, + 215 -+ 5 Y + Z2)] = Ef[Ef[A(yy + 215 -+ -5 Yo + 2,) | 2] -
Since the distribution of Y does not depend on ¢ and Z has a normal df, Z is a

complete sufficient statistic for §. Therefore A*(Z) = Ey[A(y, + z15- - 5 Vu + 24)| Z]
is independent of # and A*(Z) = 0. Hence

E J9(X)h(xy, - -+, x,)] = E[9(2)h*(2)] = O .
So from the UMV-criterion the desired result follows. (The author does not

know whether this result has been obtained before.) Observe that if Z is de-
generate, estimation without error is possible.

REMARK. Omitting the proof, we mention that if g(X), g € B., arbitrary but
not constant a.e. (L), is a UMV-estimator for all sample sizes, then the distri-
bution must be normal.
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Above we have found all df’s admitting UMV-estimators of a certain form,
namely g(%¥). Now the same will be done for estimators of another simple form.

THEOREM 6.2. Let g be a Borel measurable function which is locally integrable
(L) on R and not constant a.e. (L). Suppose [9(x)) + --- + 9(x,)]/n is a UMV-
estimator of Ey[g(x,)] for all sample sizes n = 2. Then F is a normal df (and g isa
linear function), the df of the logarithm of some power of a gamma variable (and
9(x) = ¢, a - explax} + c,, where a, c,, ¢, are constants), or a lattice-df (and g is a
periodic function).

Proor. Let ¢ be the ch.f. of F. Using Theorem 4.1, we get

(6.6) Ej[9(x;, + 0) exp{iC, x,}] + E[9(x, + 0) e’(‘g?@&}] - 9(8) + ...
(G

¢ Al £ O TPERI B = Gt 4 0@,

provided that ¢({,), - - -, ¢(£,) are all different from zero. Let /, be the largest
open interval containing the origin on which ¢ does not vanish. Let {;, ---,
¢, € I, and divide both sides of (6.6) by ¢({,). We get Cauchy’s functional equa-
tion and hence functions A(f) and B(6) exist so that for all { e ],

(6.7) E[g(x; + 0) expl{iCx}] = (LA®) + B(9)) - ¢(C) -
Of course, B(6) = E,[9(x,)]. However, (6.7) holds for all {. To see this, let {
be arbitrary and choose n so large that —{/(n — 1)e,andset{, =, {, = ---
= {, = —{/(n —1). Using (6.6) and (6.7) and observing that B(§) = C,(0, 0)/n,
we then get
E[9(x, + 6) exp{ilx,}]
= n- B(0)p(C) — [(A0) + B@)¢e(C) + --- + (i, A4(0) + B0))2(%)]
= (LA(0) + B9))e (%),
which is the desired result. Equivalently,
(6.8) § (9(x + 0) — B(0)) exp{iCx}dF(x) = iCA(0) - § exp{i{x}dF(x) .
It is easy to see that 4(¢) and B(f) are real-valued. Let now for a moment 6 be

fixed and suppose A(f) = 0. Then Khatri and Rao [13] have shown that the
solution dF of (6.8) must have a strictly positive density function given by

69 (v =exp{co) — s 0T jga)“ BDay},  —co<x< 4o,
where C(0) is a normalization constant. In their proof they assumed g to be
continuous. However, a new proof based on the theory of generalized functions
(distributions) will show that it suffices to assume that g is locally integrable (L)
on R (see [1]). If A(0) is zero for some # = 6, but not identically equal to zero,
then a uniqueness theorem for Fourier transforms yields

9(x + 6,) = B(6) a.s. (dF).
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Since dF has a strictly positive density function, this relation also holds a.e. (L)
and therefore g is constant a.e. (L). In view of the assumptions, this is a con-
tradiction. Hence A(¢) vanishes either nowhere or everywhere. Consider first
the first alternative. Then (6.9) holds for all § and it follows that both C(#) and
the continuous function

H(x) = (3200 = B0) 4y

A(0)
are independent of #. Let G(x) = (& g(y) dy. Hence, for all ¢ and x,
(6.10) G(x + 0) — G(0) = B(0)x + A(0)H(x) .

Let 6 be any number. Equation (6.10) yields

G(x + 0 + 20) — 2G(x + 6 + 0) + G(x + 0)
= A(0)(H(x + 20) — 2H(x + 0) + H(x)),

i.e.
(6.11) AlG(x + 0) = A(0) - A H(x) .
Now, H cannot be a linear function, for linearity of H implies via (6.11) that
also G is linear, and hence g is constant a.e. (L), which is a contradiction. Thus,
since H is not linear, there exists a sequence (d,),” decreasing to zero such that
for every 4, an x, can be found with property A} H(x,) # 0. So Aj G(x, +6) # 0
for all 6 and n (as A(f) never vanishes). Hence A} G(y) # O for all y and n. Thus
it is permitted to take the logarithms of both sides of (6.11). We obtain

log A} G(x + 0) = log A(f) + log A7 H(x) .
As this is just a variant of Cauchy’s functional equation, we easily get
(6.12) A?gnG(x) = expfax + b,},

where a, b,, b,, - - - are constants. If a = 0, (6.12) means that, for x and n fixed,
all points (x + kd,, G(x + kd,)), k € Z, lie on some parabola. Letting n tend to
infinity and recalling that G is continuous, we find that G is a quadratic poly-
nomial, and hence g(x) = ¢, + c,x a.e. (L), where the constant ¢, + 0. Inserting
this result in (6.9) and putting § = 0, we immediately conclude that F is normal.
If @ # 0, similar arguments will show that

G(x) = ¢ expl{ax} + ¢;x + ¢; .

The corresponding df is that of the logarithm of some power of a gamma variable.
It remains to study the case A(¢) = 0. For every ¢ we then have

(6.13) 9(x + 0) = B(9) a.s. (dF).

This means that it is possible to estimate the parametric function B(f) without
any error. An application of Fubini’s theorem gives

G(x + 0) — G(x) = \{ B(6")d6'  as. (dF).
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Calling the function on the right-hand side 8, we thus have

G(x + 0) = G(x) + B(9) a.s. (dF).
Translating the measure dF if necessary, we see that 0 can be supposed to be a
point of increase of . This means that every open interval containing the origin

has positive measure with respect to dF. Since G is continuous and G(0) = 0, it
therefore follows that G(¢) = (), and hence, for all 6,

(6.14) G(x + 0) = G(x) + G(9) a.s. (dF).
It follows from (6.14) by induction that for all § and all N
(6.15) G(LTx; + 0) = G(LY x,) + G©O) as. (dFx ... xdF).

If F is not degenerate, it is further no restriction to assume that F has both
positive and negative points of increase and we do so. If F is not a lattice-df,
Lemma 2 in Feller [5] page 144 shows that, for any y € R, there exist points of
increase x;, j = 1,2, ..., of F such that ¥ x; —y when N — co. Equation
(6.15) therefore yields

G(y 4+ 0) = G(y) + G(9) forall y,0eR.
Hence G is linear and g is constant a.e. (L). This contradiction shows that F
must be a lattice-df. In this case (6.13) is equivalent to

9(x + 0) = B(6)

for all 6 and for all x that belong to the minimal lattice that supports dF. Hence
g is a periodic function. The proof is complete.

REMARK 1. Also certain non-lattice-df’s can admit an estimator which esti-
mates a nonconstant parametric function without any error. Consider e.g. a
discrete non-lattice-df. Let then 6 and 6’ be equivalent if there exist finitely
many points x, - -+, Xy, y;, - -+, ¥y belonging to the support of dF so that

0+ 20 x; =0+ 2V y;-
This is an equivalence relation which yields a nontrivial partition of R. Put
then B(f) = 1 when ¢ belongs to the same class as 0 and = 0 otherwise. Put

also g(x) = B(x). It is easy to check that g(x,) estimates B(#) without error.
However, observe that g(x) is constant a.e. (L).

REMARK 2. It would be desirable to replace the condition “for all n” by “for
some n = 2” in the formulation of Theorem 6.2. This is possible if one instead
imposes some weak a priori condition on F, e.g. that the set of zeroes of the
ch.f. ¢ has no interior points (cp. [1]).

7. A general theorem. In this section we do not assume that 6 is a location
parameter. It is well known that if a complete sufficient statistic exists, then all
estimable parametric functions admit UMV-estimators. Here a partial converse
is given. Similar results have been discussed by several authors, see e.g. Rao
[20] and Klebanov et al. [14].
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THEOREM 7.1. Let T be a UMV-estimator. If E,[T*] < oo for all positive inte-
gers k and all 0, and further, these moments uniquely determine the distribution of T,
then T and every ancillary statistic Y are independent for all 0.

Proor. Let ¢ be any bounded measurable function of Y. Then ¢(Y) —
Ey[¢(Y)]is an unbiased estimator of zero. (Observe that E,[¢(Y)] does not depend
on @ since Y is ancillary.) Using the UMV-criterion iteratively, we get

E[THg(Y) — Ef¢()])] =0, k=1,2, ...
Equivalently,

(7.1) E[T*(Y)] = E[[T*] - E[(Y)], k=1,2, ...
Let ¢ be positive and ¢(Y) not zero a.s. It is easy to check that
1(€) = Eo[exp{iCT}(Y)]/E [$(Y)]

is a characteristic function. Since (7.1) shows that the derivatives of y coincide
with the derivatives of E,[exp{i{T}] at { = 0 and since these derivatives uniquely
determine the distribution (and the corresponding characteristic function), we
have for all { and all positive ¢

E,[exp{iCT}(Y)] = E,[exp{ilT}] - E,[¢(Y)] .
Obviously, this relation also holds for all negative ¢. The decomposition ¢ =

¢+ — ¢~ therefore shows that it is valid for all real ¢ and hence also for all
complex-valued ¢. This concludes the proof.

CoroLLARY. If T satisfies the assumptions of Theorem 7.1, and if further, for
some ancillary statistic Y, the mapping. (X, ---, x,) — (T, Y) is injective (with
measurable inverse), then T is a sufficient statistic.

Proor. It must be proved that E,[g(x, - - -, x,) | T = ] is independent of ¢ for
all bounded functions g. We set g*(T, Y) = g(x,, - -+, x,). Using Fubini’s
theorem and Theorem 7.1, we easily see that E,[g*(¢, Y)] is a possible represen-
tation of the conditional mean value not depending on 6. []

No example seems to have been constructed where a UMV-estimator and an
ancillary statistic are not independent.

8. The Pitman estimator. Here we return to the location parameter families
and study UMV-estimators of the location parameter 4 itself. Weset ¥ = (x, —
%, -++, x, — X). Note that Y is ancillary.

An estimator 6* of @ is said to be translative if 0*(x; + 2, - -+, x, + ) = 1 +
0*(x, +++, x,) for all Ze R and all (x,, - - -, x,) € R*. The Pitman estimator ,*
is the best, with respect to square error loss, translative estimator of §. We have
0p* = % — E[X| Y] (see e.g. Rao [21] page 259).

THEOREM 8.1. If a UMV-estimator of 0 exists, then 0,* is also a UMV-estimator
of 6.

Proor. It suffices to show that there is a translative UMV-estimator of 4.
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Let 6* be UMV. For any 1 we set
O%(xp =00 X)) = 0%, + 4, + -y x, + 2) — 2.

Clearly 6,* is also a UMV-estimator of . In view of the uniqueness of a UMV-
estimator, we have for each fixed A

0, = 0* a.s. for all @.
With ¢(x, - -+, x,) = 0%(x;, - -+, x,) — X, this is equivalent to
P(xy, oo X)) =, + 4, -0, x, + A) as. for all @,

i.e. ¢ is almost translation invariant with respect to all the measures dF(x — 0)
and especially with respect to the measure dF(x — 6,), where 6, is fixed. Then
by Theorem 4 in Lehmann [16] page 225 there is a translation invariant function
¢° such that ¢ = ¢° a.s. for 6 = 6,. Using again that ¢ is almost translation in-
variant, we easily see that then also ¢y = ¢° a.s. for all §. Therefore the trans-
lative statistic x; + ¢° is a UMV-estimator of # and the proof is finished.

REMARK. A referee has pointed out that Theorem 8.1 has earlier been proved
by Ghosh [8]. The idea can partly be found in Ghosh and Singh [7]. Another
proof was very recently given by Takeuchi [24].

THEOREM 8.2. If F is symmetric and a UMV-estimator of 6 exists forn = 2, F
must be normal or degenerate.

Proor. When n = 2 the symmetry of F implies that §,* = %. An application
of Theorem 8.1 and Theorem 6.1 completes the proof.

When do the moments of #,* uniquely determine its distribution so that
Theorem 7.1 and its corollary can be applied (with Y as above)? Observe that
the mapping: (x;, ---, x,) — (6%, Y) is injective.

LemMmA 8.1.

E[I0:4] < 29 - Ef|x )], J=0,1,2, 0

ProoF. The lemma follows from the elementary inequalities below.

Ef|0:*)] = E[|* — E[*| Y]] = 277 - (B[[%°] + Ef|E[%] Y]I’])
= 2NE[IR] 4 ELE[[XI| Y]]) = 27 - B[|%] = 27 - Ef|x|T] -

Due to a theorem of Carleman a sequence of moments y; uniquely determines
the df if 315, (¢,;)""?? = co. From Lemma 8.1 we find that if the moments of
F satisfy the Carleman condition so do (for all #) the moments of 6,*.

Next we see what happens if the tail of F tends to zero rapidly.

THEOREM 8.3. If the ch.f. ¢ of F is an entire analytic function of finite order
< 2, no UMV-estimator of 6 exists, unless F is degenerate.

PROOF. Assume that 6,* is a UMV-estimator of # (recall Theorem 8.1). An
analytic function H({) = 7., a;{? is of order 5 (y = 0) if

(8.1) lim inf,_,, 28 A/14:D _ 1/, .
Jlogj
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If the left-hand side is zero, (8.1) shall be interpreted as: H is not entire, or H
is entire but not of finite order. (See Titchmarsh [25] page 246.) From Lemma
8.1, (8.1), and the fact that (E[|0,*|])" increases when j does, we easily find
that the order of the ch.f. of 6,* (for § = 0) is less or equal to the order of ¢.
The estimator 6,* has a df of the form G(x — ). We now consider 6,* as one
single observation from a population with df G(x — #). Then, in view of Theorem
3.3, G must be normal or degenerate. Since the order is less than 2, G is not
normal. Obviously, G is degenerate iff F is degenerate. This ends the proof.

REMARK. It is reasonable to believe that normality of G implies normality
of F. However, without assuming some regularity properties of F (e.g. the
existence of a strictly positive density function) this seems hard to show. That
F must be continuous is obvious.

ExampLE. Consider a df F with density function C, exp{—x*}. The order of
¢ is 4. Theorem 8.3 then shows that no UMV-estimator of # exists. Also the
corollary of Theorem 7.1 proves the non-existence, for the moments of F satisfy
the Carleman condition, and there exists no single sufficient statistic.

The main theorem in Takeuchi [24] states that if §,,* is a UMV-estimator, then
6,* is independent of Y and hence a sufficient statistc. The remarkable thing is
that no additional conditions on 6,* are used (cp. Theorem 7.1). However, there
is a gap in the proof which seems hard to fill.

Let ¢,,+(C) = Ej[exp{il0,*}]. The (real) zeroes of ¢,.. form a closed set N.
The complement N° is open and therefore it admits the representation: N° =
U*Z 1, where I, are open disjoint intervals. We may suppose 0 € /,. If ¢, . has
no zeroes, then I, = R. We end this section by giving a correct variant of
Takeuchi’s theorem and a simplified proof.

THEOREM 8.4. Suppose ¢, . is uniquely determined by its valueson I,. If 0,* isa
UM V-estimator of 0, then 6 ,* and Y are independent for all § and 0,* is a sufficient
statistic.

ProoF. We set:
H = {¢; ¢ complex-valued measurable function of Y and Ej[|¢(Y)|*] < oo}.

Then H is a Hilbert space with scalar product (¢, ¢,) = E[¢(Y)¢(Y)]. Let
be a fixed real number. We put
¢(Y) = Efexp{iC6,*}| Y]  and  ¢/(Y) = E[if,* exp{il0,*}| Y].

As E||0,*)] < oo, both ¢, and ¢,/ belong to H. Let (¢,¢,) =0, i.e.
Ej[exp{il6,*}¢(Y)] = 0. Since 6,* is translative and Y translation invariant, it
follows that E,[exp{i{0,*}¢(Y)] = O for all 4, i.e. exp{i0,*}¢(Y) is an unbiased
estimator of zero. The UMV-criterion yields

E,[0,* exp{il0,*}p(Y)] =0 for all 6.
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For 6 = 0 we get (¢, ¢.) = 0. Thus
8.2) PLo=¢ Lo .

Let H, and H, be closed linear subspaces of H. A well-known theorem from
linear algebra says: H,* C H,' = H, C H,. So, (8.2) proves the existence of a
constant a({) such that ¢, = a({)¢,. Hence, for all ¢ € H,

EJ[i6,* exp(iC0,*)¢(Y)] = a(C) - E[exp(ic0,*}(Y)]

Equivalently, (from now on we let { vary)
(8.3) d%Eo[eXP{iCﬁp*}s/’(Y)] = a(8) - Ej[exp{i0,*}¢(Y)] -

Setting ¢y = 1, we see that a({) is continuous on each component 7, and hence
locally integrable over I,. So an integration of (8.3) yields

E[exp{iC0,*}¢(Y)] = exp{{¢, a(z) dz} - B,(¢) , Sel,,
where {, is any fixed point in I, and where B,(¢) is a constant depending on ¢.

The left factor on the right-hand side can be calculated by setting ¢ = 1, and
hence we obtain

E[exp{iC0,*}¢(Y)] = Ej[exp{il0,*}] - Cu(¢) » Cely,
where Ci(¢) = B,(¢)/Bi(1). Setting { = 0, we find C(¢) = E[¢(Y)]. To prove
that also Cy(¢) = E[¢(Y)] when k = 0 and that E[exp{i{6,*}¢(Y)] = 0 when
€ e N without using any additional conditions on ¢,,. seems to be impossible.
(Easily verified, a({) is locally integrable over R iff I, = R.) However, now we
suppose that ¢, . is uniquely determined by its values on /,. Arguments similar
to those that were used at the end of the proof of Theorem 7.1 then show that
6,* and Y are independent for # = 0. As @.* is translative and Y translation
invariant, they must be independent for all ¢, and hence 6,* is a sufficient sta-
tistic (cp. the corollary of Theorem 7.1).

9. Polynomial UMYV-estimation. It turns out that only the normal df admits
a polynomial nontrivial UMV-estimator. More exactly, we have

THEOREM 9.1. Let P(x,, - - -, x,) be a nonconstant polynomial in the observations
X ooy X, (n = 2). If P is a UMV-estimator of its mean value, then F is normal
or dF has finite support. In the first case P depends only on %. In the second case
P is constant a.s.

To prove this theorem we need a lemma.

LEMMA 9.1. Suppose that dF has not finite support and let P(x,, ---, x,) be a
polynomial UMV-estimator. Then, for every choice of (xp,i, +-+,x,%,0=<k <
n—1, P(x;, -+ +y X4 Xypp + + +» X,°) is @ UMV-estimator based on (xy, - - -, x,).

Proor. Using induction, we realize that it suffices to prove the lemma for
k=n —1. We write as though n = 3, k = 2. Let A(x,, x,) be any unbiased
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estimator of zero. Then also exp{i{x,}A(x;, x,) has mean value zero for all 4.
Hence, by the UM V-criterion,

§ exp{ilx}[§ § P(xys xa5 X5)h(xy, X,) dF(x;, — 0) dF(x, — 0)]dF(x, — 6) = 0.
As this is true for all {,
9.1 § § P(xys Xg5 Xg)h(xy, X;) dF(x, — 0) dF(x, — 0) = 0

for almost all x, with respect to the measure dF(x — 6). Since dF has not finite
support, (9.1) holds for at least infinitely many x,. However, the left-hand side
of (9.1) is a polynomial in x,, and therefore (9.1) is an identity. In view of the
UMV-criterion, this proves the lemma.

ProOF oF THEOREM 9.1. The proof is long and is given in some stages.

Suppose first down to something else is said that dF has not finite support.
Then, in view of Lemma 9.1, it suffices to consider the case n = 2 in order to
conclude that F is normal.

Assume that P(x;, x,) = X, ,a;,%9x,* is a nonconstant UMV-estimator. Let
J = max {j; a; + 0 for some k} and K = max {k; a;, + O for some j}. Since
P(x,, x,) has finite variance, it is not hard to see that F must have at least
max (2J, 2K) finite moments.

I. The ch.f. ¢ of F is analytic in some neighborhood of the origin. To prove
this, we may suppose J > 0. By Theorem 4.1 (for § = 0), we have for real
points ;, §,

00 UG Thahe¥) | Tahe'CetC) _ e 4 o).
¢-2) oGl T e@e) Gt &)

where a¥, = (—i)i**a;,, and where ’ on the second summation sign indicates
that there is no summation over j = J. It is no restriction to suppose that F has
mean zero and variance 1 (for F is not degenerate). Then according to an in-
equality for ch.f.’s (see e.g. Feller [5] page 487), [¢({) — 1| < £ when [¢| < 1,
and therefore (9.2) holds for all {;, ¢, in this region. We differentiate (9.2) sepa-
rately once with respect to {; and once with respect to £, (which is permitted).
The left-hand sides obtained must then be equal. We then fix ¢, so that
22 a5, 9" (L) # 0 (if this were impossible, dF would have finite support) and
solve for ¢+1({,) which we write as

e (&) = H(e(Gy)s ¢"(8)s -+ P (C)

where H is analytic (indeed rational) in the region |¢ — 1| < 4. For any given
initial conditions there is always an analytic solution of this differential equation
(see e.g. Cartan [2] Chapter 7). The result wanted then follows from the unique-
ness part of the Picard-Lindelof theorem (see e.g. Hale [9] page 18).
We now write P(x,, x;) = };, a,(Y)(%)*. Here a,(Y) are polynomials in ¥ =
(x; — x;). Let M be the largest integer such that a,(Y) is not equal to zero a.s.
II. If M > 0, then the Pitman estimator 0,* coincides a.s. with a polynomial
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UMV-estimator. To prove this, we first note that the translated estimator
P(x; + 4, x, + 2), 1€ R, and all the derivatives of this estimator with respect to
4 have the UMV-property if P has.

Obviously, 31, a,(Y)(%)* is a UMV-estimator. Translating this estimator 2
unities, then differentiating M respectively M — 1 times with respect to 4, and
after that setting 4 = 0, we find that both M! a,(Y) and M! a,(Y) % + (M —
1)t ay_(Y) are UMV-estimators. Then a,(Y) is uncorrelated with every func-
tion of Y and must therefore be equal to a nonzero constant a, a.s. (In stage
III we use that this is true also if M = 0.) Hence, also X + R(Y), where R(Y) =
ay_1(Y)/Ma, is a UMV-estimator. Clearly, 6,* = % 4+ R(Y) (+4constant) a.s.

1. Necessarily M > 0, for otherwise dF would have finite support. To prove
this, suppose M is not larger than zero (this does not mean that M = 0). We
know that, for every k = 0, a,(Y) is equal to a constant a, a.s. (cp. stage II).
Here a, = 0 when k > 1. All these equalities cannot hold identically. So, there
exists an integer m such that a,(Y) — a,, is zero a.s. but not identically zero.
Since the polynomial a,(Y) — a, has only a finite number of zeroes, all the
probability mass of ¥ = (x; — x,) must be concentrated at these points. Hence
dF has finite support.

IV. The df F must be normal. As ¢ is analytic and as 6,* = % + R(Y) a.s.,
it follows from Lemma 8.1 that the distribution of X 4 R(Y) is uniquely deter-
mined by its moments. Hence, by Theorem 7.1, % 4 R(Y) and Y are inde-
pendent. Let ¥ 4 R(Y) be of degree p. The coefficient of x,» (or x,?) is not
zero. Then a theorem due to Zinger (see e.g. Lukacs and Laha [18] Theorem
5.3.2, page 89, or Ramachandran [22] Theorem 8.1.2, page 166) guarantees that
¢ is an entire function of finite order. Recalling Lemma 9.1, we know that also
P(x;, x,’) (or if necessary P(x’ x,)) for an appropriately chosen number x,%(x,%)
is a nonconstant UM V-estimator based upon one single observation. An appli-
cation of Theorem 3.3 then gives the result wanted.

From now on we consider the general case with n (n > 2) observations, and
we let P(x, .-, x,) be a polynomial UMV-estimator. It is possible to write
P(xy, -+ x,) = 20 a(Y)(X)*, where now ¥ = (x; — %, -+, x, — %).

V. If F is normal, P depends on % only. Using the same method as in stage
II, we find that a,(Y) is constant a.s. and therefore identically equal to a con-
stant a,. Since for the normal distribution (%)¥ is a UMV-estimator, so is
i a(Y)(%)* — ay(x)". By induction, ay_(Y), ay_y(Y), - -, a,(Y) must also
be constants.

VL. Let now dF have finite support. Then P is constant a.s. Exactly as in
stages IT and III it follows that either X + R(Y') is a UM V-estimator or a,(Y), - - -
a,(Y) are all zero a.s. and a,(Y) constant a.s. In case of the second possibility,
P is trivially constant a.s. In case of the first one, we find from Theorem 8.3
that ¥ 4 R(Y) has a degenerate df. Hence also F is degenerate, and P is con-
stant a.s.

The theorem is completely proved.
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10. Additional remarks. The purpose of this paper has been to see what new
light Fourier methods are able to cast on the UMV-problem. Finally, we there-
fore touch on another aspect which deliberately has been neglected before.

Suppose there exists a UM V-estimator T such that the mapping: (x, - -, x,) —
(T, x, — %, - -+, x, — X) is injective (in the sequel this is called Property I).
Under the conditions of Theorem 7.1 we know that T is a sufficient statistic.
Under the further condition that F has a sufficiently smooth density function,
it is then well known that F(x — #) must constitute an exponential family. This
fact implies that F is either

(i) a normal df, or
(ii) the df of the logarithm of some power of a gamma variable.

The normal df’s can be considered as limits of the distributions in (ii). Also
other limits are possible, namely:

(iii) the translates of exponential (negative exponential) df’s.

If F is of type (iii), min, x;, (max, x,) is a sufficient statistic for §. It can also be
shown that if F is a one-sided df having a sufficiently smooth density function,
then a single sufficient statistic exists only if F is of type (iii). There exist also
discrete analogues of the distributions in (iii) admitting single sufficient statistics.
For more details concerning the statements we have made, see Dynkin [4] and
Ferguson [6]. An elementary treatment can be found in Takeuchi [24] (where,
however, the theorems partly remain unproved; cp. Section 8). See also Kagan
et al. [12]. These mentioned location parameter families are the only known
ones which admit single sufficient statistics. It may therefore be conjectured
that UMV-estimators having Property I can be found in these cases only. (But
a strict proof seems to be far away.) In view of the facts above the results given
in Theorems 6.1, 6.3, and 9.1 may seem somewhat poor. However, there we
have not assumed Property I and no regularity for the df. The assumptions
concern instead the form of the estimator (cp. Pfanzagl [19], Section 3).

APPENDIX

Here we give proofs of Lemmas 2.2 and 2.3. The reader is assumed to be
familiar with the stuff treated in Chapter II of the book by Donoghue [3], and
therefore we freely use the terminology and the results given there. However,
recall our definition of the Fourier transform. First some new lemmas are stated
and proved.

LEMMA 1. Let g e, By and suppose §, is an isolated point in S(g9). Then the
Fourier transform § is locally at §, a linear combination 3{_, ¢, 6{% of the Dirac
measure at §, and its derivatives up to order at most N.

Proor. The fact that only finitely many derivatives, say L, are needed is just
the corollary on page 103 in [3]. Our point is that L < N. It is no restriction
to assume {, = 0. Let ¢ be any testfunction (i.e. ¢ € C,°) such that ¢©’(0) = 0.
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We set ¢,({) = ¢({/e). Let here e > 0 be so small that supp (¢,) N S(g) = {0}.
Obviously, ¢.(x) = ¢@(ex). By the definition of § we have

(1) 9(ps) = 9($.) -
We now find
() 9(p) = Lk cu0.M(0)

= ko0 e Fe®(0) ~ c e~ Lp(0) when ¢ —0.
Further,
9(P) = § 9(¥)P(x) dx = § g(x)ep(ex) dx = § g(x/e)P(x) dx .
As |g(x)| < constant (1 + |x|)" a.e. (L), we easily get

©) 19(¢a)] = O(==") .
The lemma therefore follows from (1), (2), and (3).

LEMMA 2. Let g be any function such that § is defined and such that S(g) C {ja;
Jj€Z}, a>0. Then § = 35 _., Ykigc, 0. If max; L; < N, then Altlg =0
a.e. (L).

ProoF. The first statement follows again from the corollary in [3]. Then it is
easy to show by induction that (exp{—i2z{/a} — 1)¥*}§ = 0. Since

N
4) AYtlg = constant x (exp{—i2z{/a} — 1)¥*+1§,
the rest is immediate.

LEMMA 3. Let g be any locally bounded function. If A¥*lg =0 a.e. (L), then
9 €L By.

We omit the proof. Hint: Use induction, telescope sums, and the fact that
Zi-o k"1 = 0(j").

LEMMA 4. Let g be any function such that § is defined. If AY*lg =0 a.e. (L),
then S(g) C {ja; je Z}.

ProoF. This lemma follows from (4) and the fact that exp{—i2z(/a} — 1 is

zero only when { is an integral multiple of a.

PROOF OF LEMMA 2.2. Let g € B,, belong effectively to B, and let S(g) C {ja;
je€Z}. Lemmas 1, 2, and 3 (where N has different meanings) together yield

9= D e ki Cjk5§’;’ )
where, which is the point, max {L; ¢;z; # 0} = M. Choose jsuch that L; = M.
Take ¢ e C,~ such that supp (¢) n S(g9) = {ja} and such that ¢ = 1 in some

neighborhood of the point ja. Then

S ~ /\
gxp=¢-0= i ,c;0 = constant x P(x) exp{—ijax},

where P is a polynomial of degree exactly M. Hence

g * ¢ = constant x P(x) exp{—ijax} .
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As g xdp = 0 implies g x ¢ xdp = 0, it then easily follows that

§ x* exp(ijax} du(v) = 0, k=0,..:, M,

which ends the proof.

Proor or LEMMA 2.3. Concerning the first statement, the necessity follows
from Lemmas 1 and 2 and the sufficiency from Lemma 4. The second statement
is essentially only a consequence of the corollary in [3].

Acknowledgment. For valuable help I want to thank in particular my friends
J. de Maré and H. Rootzén and also the referees.

(1
[2]
(3]
(4]

[5

—

[6

—

[7

—

(8]

9]
[10]

[11]
[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]

[21]
[22]

REFERENCES

BoNDESsON, L. (1973). Characterizations of probability laws through constant regression.
Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 30 93-115.

CARTAN, H. (1961). Théorie élémentaire des fonctions analytiques d’une ou plusieurs variables
complexes. Hermann, Paris.

DoNOGHUE, W. F. (1969). Distributions and Fourier Transforms. Academic Press, New York.

DynNKIN, E. B. (1961). Necessary and sufficient statistics for a family of probability distri-
butions, in Selected Translations in Mathematical Statistics and Probability 1. American
Mathematical Society, Providence, 17-40.

FELLER, W. (1966). An Introduction to Probability Theory and Its Applications 2. Wiley, New
York.

FERGUSON, T. (1962). Location and scale parameters in exponential families of distributions.
Ann. Math. Statist. 33 986-1001.

GHosH, J. K. and RAJINDER SINGH (1966). Unbiased estimation of location and scale pa-
rameters. Ann. Math. Statist. 37 1671-1675.

GHosH, J. K. ( ). Invariance in Testing and Estimation. Statistical Publishing Society,
Calcutta.

HALE, J. K. (1969). Ordinary Differential Equations. Wiley, New York.

KAGAN, A. M., LInNIK, YU. V., and Rao, C. R. (1965). On a characterization of the
normal law based on a property of the sample average. Sankhyd Ser. A 27 405-406.

KAGAN, A. M. (1966). On the estimation theory of location parameter. Sankhya Ser. A
28 335-352.

KAGAN, A. M., LINNIK, YU. V., RoMaNOVsKY, I. V., and RUKHIN, A. L. (1971). “Self-
governing”’ families of distributions. Sankhya Ser. A 33 255-264.

KuaTrI, C. G. and Rao, C. R. (1968). Some characterizations of the gamma distribution.
Sankhya Ser. A 30 157-166.

KLEBANOV, L. B., LINNIK, YUu. V., and RUKHIN, A. L. (1971). Unbiased estimation and
matrix loss functions. Soviet Math. Dokl. 12 1526-1528.

LeaMANN, E. L. and ScHEFFE, H. (1950). Completeness, similar regions and unbiased esti-
mation. Sankhya 10 305-339.

LenMANN, E. L. (1959). Testing Statistical Hypothesis. Wiley, New York.

LukaAcs, E. (1960). Characteristic Functions. Griffin, London.

Lukacs, E. and LAHA, R. G. (1964). Applications of Characteristic Functions. Griffin,
London.

PraNzAGL, J. (1972). Transformation groups and sufficient statistics. Ann. Math. Statist.
43 553-568.

Rao, C. R. (1952). Some theorems on minimum variance estimation. Sankhya 12 27-42.

Rao, C. R. (1965). Linear Statistical Inference and Its Applications. Wiley, New York.

RAMACHANDRAN, B. (1967). Advanced Theory of Characteristic Functions. Statistical Pub-
lishing Society, Calcutta.



660 LENNART BONDESSON

[23] STEIN, C. (1950). Unbiased estimates with minimum variance. Ann. Math. Statist. 21 406~
415.

[24] TakeucHr, K. (1973). On location parameter family of distributions with uniformly mini-
mum variance unbiased estimator of location, in Proceedings of the Japan-USSR
Symposium on Probability Theory. Lecture Notes in Mathematics. Springer Verlag,
Berlin, 465-477.

[25] TitrcamARsH, E. C. (1939). The Theory of Functions. Oxford Univ. Press.

DEPARTMENT OF MATHEMATICAL STATISTICS
Fack

S-220 07 Lunp 7

SWEDEN



