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LOCAL ASYMPTOTIC POWER OF QUADRATIC
RANK TESTS FOR TREND*

By RupoLF BERAN
University of Toronto and University of California, Berkeley

A general class of quadratic rank tests for randomness versus trend is
introduced and studied in this paper. Included within this class are the
Cramér-von Mises two sample test, the Watson two-sample test, and their
extensions to trend alternatives. Analytical study is made of the asymp-
totic power and efficiency of such tests in a neighborhood of the null
hypothesis.

1. Introduction. Consider the problem of testing a set of observations
(Xp X,, - - -, Xy) for randomness versus trend in location. Among the many
tests available for this purpose are those based upon quadratic rank statistics.
One such is the Kruskal-Wallis k-sample test and its extension (Hajek and Sidék
(1967)) to other score functions; the test statistic in this case is

(1.1) Qy = [(N — 1)/ Ziaay’(D] Lica 7 [ Djes, an(R)T

where (R, R,, - - -, Ry) are the ranks of the observations and {s,, s,, - - -, 5,} is a
partition of the set {1, 2, ..., N} such that s, contains n, elements. Another
example is the Cramér-von Mises two-sample test and its generalization (Hajek
and Sidak (1967)) to trend alternatives; the test statistic in the latter case is

(1.2) Ty =[20a(c; — o)1 5 [ 24 (c; — €)ay(R;, P dt,

where the {c,} are constants and the function a,(i, t) is 0 if i < ¢N, is i — ¢N if
INKi<tN+1,andis 1ifi=tN4 1. A third example is Watson’s (1962)
two-sample test based upon the statistic

(1.3)  Usu = (mn/N) 5 [Fo(x) — Fu(x) — GG {Fa(y) — Fu(0)} dHy ()] dHy(x) ,

where F,, F,, and H, are the empirical distribution functions of the first, second,
and combined samples respectively. A class of two-sample quadratic rank tests
containing U? , has been studied by Schach (1969) and by Beran (1969).

Each of the foregoing tests can be embedded (up to asymptotic equivalence
under null hypothesis and contiguous trend alternatives) within the following
general class of quadratic rank tests for trend. Let the N — 1 row vectors
{(c,(1), c,(2), - - -5 ¢,(N)); 1 <£r < N —.1} be orthonormal contrasts and let

(1.4) Sy = X it el [ e (a(R)T
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402 RUDOLF BERAN

where the score functions {a,(+); s = 1} are associated with a complete ortho-
normal basis for the nonconstant elements of L,[0, 1]and Y=,_, 2, < oo; de-
tailed assumptions will be presented in Section 2 of this paper. Reject the
hypothesis of randomness if the observed value of S, exceeds a critical value.
The k-sample statistic Q,, is asymptotically equivalent to a special case of S, in
which a,, =1 for 1 <r <k — l and @, , = 0 otherwise. In Beran (1969), it
was noted that U7, , is asymptotically equivalent to (N/mn) 55, (27s) ™% 3™, X
exp(2zisR;/N)|’; truncation of the infinite sum after N — 1 terms yields an
asymptotically equivalent statistic of the form (1.4). The statistic T, can simi-
larly be associated with

(X5 (e; — €17 2035 2(ws) [ X530 (¢; — €) cos (zsR,/N)]* .

The class of tests based upon S, contains some interesting new rank tests for
trend. For example, setting a, , = (rs)~* for all r, s = 1 gives a test which is
asymptotically strictly unbiased against every regular trend alternative and has
a tabulated asymptotic null distribution. One convenient choice for the ortho-
normal contrast vectors consists of the N — 1 normalized nonconstant basis
vectors of the finite Fourier transform of dimension N. In this case, the weights
a3}, can be assigned to the contrast frequencies according to their anticipated
order of importance.

The asymptotic distribution of S, under trend alternatives contiguous to the
hypothesis of randomness is the same as the distribution of a linear combina-
tion of independent noncentral chi-square distributed random variables. Apart
from the simplest special cases, the complexity of this distribution has deterred
analytical power comparisons among quadratic rank tests. Section 2 of this
paper provides assumptions under which the limiting distribution of S, is as
asserted above and presents some new results concerning the asymptotic power
of S, in a neighborhood of the null hypothesis. It is found that the squared
component(s) of S, associated with the largest of the {a? } largely determines,
at small significance levels, the local asymptotic power of the S,-test. Moreover,
this effect can still be pronounced at customary significance levels. Proofs of
the theorems are sketched in Section 3.

2. Results. Let X,, X,, - -. be a sequence of random variables, let {N,; v > 1}
denote a sequence of sample sizes, and let R,, be the rank of X; among
(X3 Xy, - -+, Xy,). Under the hypothesis of randomness H,, the observations
(X Xy, - -+, Xy, ) will be assumed independent, identically distributed with com-
mon continuous distribution function F. Let I, denote the space of all double
sequences {x, ,; r, s = 1} for which )], x? < co. In studying the asymptotic
behavior of the test statistics

(2'1) SN = Zy——l—’l_l Ziv—:l_l a?‘,s[zy——tl cr,u(j)as,u(Ry,j)P 2

the following assumptions will be made:



POWER OF QUADRATIC TESTS 403

A. The double sequence of constants {a,,;r,s= 1} belongs to I;
max, a’ = 1.

B. The score functions {a, ,(+); s = 1} are associated with a complete ortho-
normal basis {¢,(+); s = 1} for the orthocomplement in L,[0, 1] of the constant

function. Either
(1) a,,(J) = Enlp, - F(X)|R, . =]], 1<j=N,
or
(i)  lim,_. §ia, (1 + [N,) — g ()Pdr =0 for s=1,
lim, ., sup, {5 [4,,(1 + [N,])]dr — 1| =0,
lim, . sup, |§} a, (1 + [tN,]) df| = 0.

C. The vectors {(c, ,(1),¢, ,(2), ---, ¢, (N,); 1 <r < N, — 1} form an or-
thonormal basis for the space of all N,-dimensional contrasts. Moreover,

lim, ., max,_; .y ¢ () =0 for 1<r<N,—-1.

The score functions associated with the Cramér-von Mises and Watson tests
satisfy B(ii). If all but a finite number of the {a,,} vanish, as is the case for
the generalized Kruskal-Wallis test, the last two conditions in B(ii) become
unnecessary. The normalized finite Fourier transform contrasts mentioned in
the Introduction satisfy assumption C.

Let Z, be a stochastic double sequence whose (r, s)th element is a, , 372, X
¢, ())a, (R, ;) for 1 <r,s <N, — 1, and is zero ortherwise. Let Z = {a, .Y, ;
r, s = 1} where the {Y, } are independent N(0, 1) random variables. Under
assumption A, the stochastic double sequence Z belongs to [, with proba-
bility one.

THEOREM 1. Suppose assumptions A, B, C are satisfied. Then, under H, as
v — oo, Z, converges in distribution to Z in the l,-topology.

Suppose the distribution function F has density f and let K,(6) denote the
following trend alternative to H,: under K,(¢) the observations (X;, X,, - -+, Xy,)
have joint density [T} f(x; — 0d,(j)), where 6 + 0. Regarding f and the {d ( ])},
the following assumptions will be made:

D. The density f is absolutely continuous and ¢ ,(u) = —f" - F~Y(u)/f - F~'(u)
belongs to L,[0, 1]. The constants {d,( j)} are such that

y—oo maxlsaszv,, d.(j) — ‘i =0, m, . Z 1(d()) — d)y< o, and
lim, ., 3% ¢, ()A)) = for every r> 1.

lim

Let x denote the double sequence whose (r, s)th element is p, , = B, {5 ¢,(#) X
¢»(u) du and let Z(6y) denote the stochastic double sequence {a, (Y, , + O, ,);
r,s = 1} ’

THEOREM 2. Suppose assumptions A, B, C, D are satisfied. Then, under K (0) as
v — oo, Z, converges in distribution to Z(0y) in the l,-topology.
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Since the statistic S, is simply the /,-norm of Z,, Theorems 1 and 2 imply that
the limiting distributions of S, under H, and under K,(f) are the same as the
distributions of 3, a2 Y2 and 33, a2 (Y,, + Op, ) respectively. By group-
ing together terms given equal weight, these two random variables can be re-
written in the forms § = 3}, a2 ¥} (n,,) and S(@0b) = X3, , 02 .12 (1, ., 072 ),
where the {¢2,} are all distinct, ¢}, = 1,02, <1 for (r,s) = (1,1), and
{2..(n,. )} {2.o(n,.., 0°B )} are, respectively, double sequences of independent
chi-square and noncentral chi-square random variables with the indicated de-
grees of freedom and noncentrality parameters. The symbol b represents the dou-
ble sequence {b% ,, r, s = 1}. Because of assumptions A and D, 7, ,n, 02, < oo
and >, , b2 a2, < oo.

In several well-known cases, including the first three cited in the Introduc-
tion, the distribution function of S has been derived. If @, , = (rs)~?, the dis-
tribution function of S is not known explicitly, but has been tabulated by Blum,
Kiefer and Rosenblatt (1961) in their study of tests for independence. For
S(6b) the situation is less fortunate, apart from trivial special cases. While
series expansions and other approximations to the distribution of S(6b) exist,
they do not appear suitable for analytical study of the asymptotic power of the
S,-tests. However, Durbin and Knott (1972) and Stephens (1973) have recently
used such approximations to examine the distribution of S$(6b) numerically in
several interesting cases.

To obtain some analytical results concerning the asymptotic power of an
S,-test, we will study D(x|S, b) = dP[S(0b) > x]/d6*|,_,. Since the tail proba-
bility P[S(6b) > x] depends on 6 only through 2, the derivative D(x|S, b) de-
termines a local approximation to the asymptotic power function of an S,-test
in a neighborhood of the null hypothesis. Comparisons with other tests can be
made on the basis of this local asymptotic power.

The characteristic function of S(6b) is

2.2) o(1105) = [TL,.0 (1 — 202, it)*+7]
X expl:o2 Zr,s bf‘,so'?',s lt(l - 203,3”)_1] .

Let §¥, = 07,277, + 2) + Dm0 01w Xim(M,m) and let g(-|S¥,) be the
density of the random variable S¥*,. Examination of do(z|0b)/d6?,., and the
inversion formula for characteristic functions and some special cases establishes
the following basic relations:

(2.3) D(x|S,b) = X¥,.5,,.D,,.(x|S),
where
D, (x|S) = PS() > x]
’ ob? , b=0
(2.4) = 27YP[S}, > x] — P[S > x]}

= UE’SQ(XISfys) *
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The convergence of the right side of (2.3) is assured by the convergence of

T B0,

In an unpublished technical report, Withers (1970) has studied the local asym-
potic power of the weighted Cramér-von Mises goodness-of-fit test. Unlike
(2.3) and (2.4), his result is formulated in terms of the resolvent kernel corre-
sponding to the weighted empirical distribution function process. It is interest-
ing that for the usual Cramér-von Mises test under double exponential shift
alternatives, Withers was also able to invert the characteristic function ¢(z/6b)
analytically.

The next theorem describes asymptotic (in x) expansions for P[S > x] and for
the derivative D(x|S, b). These results are a natural development of earlier
work by Zolotarev (1961) and by Hoeffding (1964) on the distribution of S. Let
& = S — yl(ny) and for every integer k = 0, let

Ay = (= 1) E[€" exp(€/2)]
(2.5) B, = (= 1) ("¥")E[E* exp(¢/2)]
h, = 2k ("))
where (7)) =m(m — 1) ... (m — k + 1)/k!'if k = 1 and 1 if k = 0. Note that

for every integer k, E[£* exp(£/2)] is finite and may be calculated from the kth
derivative of the Laplace transform of the distribution of £. In particular

(2.6) E[exp(§/2)] = I1irmean(l — a7,) 7"
E[¢ exp(£/2)] = E[exp (§/2)] Zirmean Mru0rl — 07)7" .

Define constants {C,; k = 0} through the recursion
(2.7) Co= 4, Copr = Apy + 2Dt ik, Cy k=0.

For every (r, s) = (1, 1), let §, , = S}, — x}(n,,) and define A4,(r, s) by replac-
ing & with &, , in the first line of (2.5). Note that 4, =2, 4, = B, = C, =
E[exp(§/2)], and A(r, s) = A1 — a2 ,)'. Let p(x|m) denote the chi-square
density with m degrees of freedom.

THEOREM 3. The following expansions are valid for every integer m = 1:

(2-8) P[S > x] = [Z35 Cox™ + O(x™)1P[xiu(ma) > x]
and
D(x[S, b) = [b4 T Bex™* + O(x~™)]p(x |y + 2)
(2.9) + [ Zeowan 02,07, 25 A(r, 5)x7*
+ O(=")]p(x | my) -
Expansion (2.8) provides a way to approximate c,, the critical value for which
P[S > ¢,] = a. Under alternatives K,() for which |6| is small, the asymptotic

power of a level a S, -test is approximately a -+ 62D(c,|S, b). A calculation
based on the first terms of (2.8), (2.9), and the well-known expansion

(2.10) Pxh(nn) > x] = [ D05 bex™ + O(x~™)] p(x | ny)
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(see Whittaker and Watson (1927), page 159), shows that

(2.11) lim,_, 2(ac,)"'D(c, | S, b) = b3, ng’
and, if % = 0,
(2.12) lim,_, 2a7D(c, | S, b) = X nran 05.00(1 — 07 ).

Thus, for small a, the local asymptotic power of a level a S,-test is largely de-
termined by the value of b} /n,,.

By grouping together equally weighted terms, the statistic S, can be written
in the form S, = 3, >,02,7,,,. Another way of interpreting the informa-
tion contained in expansion (2.9) is to compare the local asymptotic power of
the S,-test with that of the simple tests based upon the individual components
(T,.,.,;r,s=1}. From Theorems 1 and 2, the limiting distributions of T, ,,
under H, and under K,(0) are, respectively, the same as the distributions of T, , =
2.(n,)and T, (0b) = 2 (n,,, 0°b, ). Letd,(r, s) be the critical value for which
P[T,, > d(r, 5)] = a. The local asymptotic efficiency of S, relative to 7, , , at
level a under the alternative K,(6) is defined as

(2‘13) e[S’ Tr,sla’ K] = D(cals’ b)/D(d (r’ S)I r,8 )

Héjek and Siddk (1967) have explored the relation between this concept and
Pitman efficiency. Theorem 3 implies the following result.

THEOREM 4. If b2, + O, then

(2.14) lim,_, e[S, T, ,|a, K] = (b},n3")/(6},,17)) -
If b, = 0 but b} ,, + O for some (I, m), then
(2.15) lim,_ e[S, T,,|a, K] = oo .

Since an S,-test is asymptotically strictly unbiased against every alternative K,(0)
under which 8%, + 0 for some (I, m), the infinite limit in (2.15) is to be ex-
pected. The limit in (2.14) reflects the fact, noted earlier, that the local asymp-
totic power of an S, -test is largely determined, for small a, by the value of
b%/n,. In particular, if 5% = 0 and 5%, = 0 for some (r,s)# (1, 1), then
lim,_, e[S, T, ,|a, K] = 0; if b = O, then lim,_, e[S, Ty, |a, K] = 1.

Within the class of all S,-tests, there exist tests which are asymptotically most
powerful among symmetric two-sided tests for H,(¢) at level «. For example,
consider the level a test which rejects H, for sufficiently large values of

(2.16) ¥, = [T @A) — d) §i 20) du] [ S5 (@) — )R, 5 NI
where the score function a,(., f) is associated with ¢, in the sense of assump-
tion B(i). The limiting distributions of ¥, under H, and under K, (0) are, re-
spectively, the same as the distributions of ¥ = »*(1) and V(fc) = x*(1, 6**)
where ¢* = lim,__, 37, (d,(j) — d,)* {3 ¢5*(#) du. An argument analogous to the
proof of Theorem 4 establishes

(2.17) lim,_, e[S, V|a, K] = (n3'b},)/c* .

a—0



POWER OF QUADRATIC TESTS 407

From this, it may be seen that lim,_, e[S, V|a, K] < 1 for every S; equality
occurs if ny =1, ¢, = [{; ¢5*(u) du]™*¢, and ¢, ,(j) = [Zi4 (@) — 4T x
(d,(j) — d,). Thus, any S,-test for which n,, = 1 and T,,, = V, (or something
asymptotically equivalent to V,) is locally asymptotically most powerful among
symmetric two-sided tests for H, versus K,(f) at small levels a. It is interesting
to note that the tests of Cramér—von Mises type are optimal in this sense when
the underlying density is f(x) = =~ sech (x); for then ¢,(4) = —cos (zu).

Are the small « results of Theorem 4 and (2.17) adequate as approximations
to local asymptotic efficiency when .01 < @ < .10? Numerical and analytical
studies of special cases suggest that the accuracy of the approximation depends
upon the noncentrality parameter sequence b involved; for some b, the small «
results are reasonably trustworthy. We summarize the evidence available.

Durbin and Knott (1972) and Stephens (1973) have numerically approxi-
mated, for certain interesting alternatives, the asymptotic powers of the level
.05 Cramér-von Mises, Anderson-Darling, and Watson goodness-of-fit tests.
Since the asymptotic distribution theory of these tests is mathematically iso-
morphic to that of the §,-tests, their work is relevant to the present question.
Their findings include the following points. For certain families of alternatives
for which b}, = 0, the asymptotic power of the level .05 goodness-of-fit tests is
nearly the same as the asymptotic power of the corresponding first component
tests; it is not closely linked to the asymptotic power of the corresponding second
component tests. These properties are consistent with (2.14), in particular with
the fact lim,_, e[S, Ty,|a, K] = 1.

Analytical study of the rate of convergence as « — 0 can be based upon the
following observation. Whenever the asymptotic distribution of S, under H, is
known explicitly, it is possible to calculate D(x | S, b) exactly for all x and hence
find e[S, T, ,|a, K] for all . We demonstrate this computation in the case of
Watson’s two-sample statistic U?, ,. Let {(m,, n,); v = 1} be a sequence of sample
sizes such that min (m,, n,) - co as v — oo and write U,” in place of U} , .
According to Theorems 1 and 2, with suitable adjustments to notation, the
limiting distributions of U, under H, and under K, () are the same as the dis-
tributions of U? = (4z%)~* 31>, r?x,%(2) and U*(b) = (4=*)~* =, r (2, b,%).
Watson (1962) showed that

(2.18) PIU* > x] = 2 Jv., (— 1) exp(—27%*x) for x=0.

From (2.3), D(x|U?, b) = 33, b,°D,(x|U?), where D, (x|U?) = 0P[U*b) > x]/0b,%|,—,.
A calculation using (2.18) and the middle line of (2.4) yields
(2.19) D, (x| U = (—1)"'(2z’x — 3/4) exp(—27r’x)

+ Daer (=1 — k) exp(—22%k%)

for every integer r > l and x > 0.
Applied to U?, Theorem 3 produces the following expansions, valid for every
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integer m = 1:

P[U* > x] = [2 4 O(x~™)] exp(—27%x)
(2.20) D(x|U? b) = [(2n%x — 3/4)b? + Y=, (r* — 1)~
+ O(x~™)] exp(—2x%x) .

It is interesting to note that the errors incurred in using (2.20) instead of the
exact results (2.18) and (2.19) decrease exponentially in x. This phenomenon
explains the vanishing of all higher order terms in the expansions (2.20).

Let ¢, now denote the critical value for which P[U? > ¢,] = «. Table 1
records values of (27%ac,)'D,(c, | U? calculated from (2.19) for 1 < r < 4 and
a = .10, .05, .01 and the corresponding limits as « — 0. (A factor of 4z® enters
(2.11) in the case of U® because U? does not have the same normalization as S.)
Since the rate of convergence is gradual, (2.11) will, at best, give only a first
approximation to D(c,| U? b).

By grouping together equally weighted terms, the statistic U,? can be written
in the form U,* = (4z*)~* 3, r=*T, ,. The limiting distributions of 7, , under H,
and under K,(f) are the same as the distributions of 7, = y,%2) and T,(6b) =
x-'(0°6,%), respectively. From (2.4),

(2.21) D,(x|T,) = (x/4) exp(—x/2)

forallr = 1 and x > 0. If 5> + 0 and d,, is such that P[y*(2) > d,] = a, then
from (2.3) and (2.13),

(2.22) e[U% T, |a, K] = 23, (/b )EJU T, |a] ,

TABLE 1
Values of (2n%acq)"1Dr(ca | U?)

a
r
.10 .05 .01 0
1 .373 .397 .433 .500
2 .055 .045 .032 0
3 .021 .017 .012 0
4 .011 .009 .006 0
TABLE 2
Values of Ex(U?, T: | a)
a
k
.10 .05 .01 0
1 .973 .980 .994 1.000
2 143 11 073 0
3 054 .02 .027 0
4 .029 .022 .015 0
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where E[U%, T, |a] = D,(c,|U?/D,(d,| T,); in the present example, E,[U?, T, | a]
is the same for all r > 1.

Table 2 records values of E,JU? T,|a] for 1 < k < 4 and « = .10, .05, .01
and the corresponding limits as « — 0, calculated from (2.14). The rate of con-
vergence is swift when k = 1 and slower when k > 2. Thus, (2.14) approxi-
mates e[U?, T, | a, K] reasonably well for some noncentrality parameter sequences
b, but not all.

The considerations above indicate that, in some instances, local asymptotic
power of an S,-test (or its small @ asymptote) provides an acceptable analytical
approximation to asymptotic power. Does asymptotic power of an S, -test yield
a reliable approximation to exact power for interesting sample sizes? Though
some encouraging Monte Carlo results have been reported by Stephens (1973),
we have no theoretical answer.

3. Proofs. This section contains proofs for the theorems of Section 2. To
simplify notation, the subscript v will often be dropped.

Proor oF THEOREM 1. Let Z,,  and Z,, denote the (r, s)th elements in the
double sequences Z, and Z, respectively. From Wichura (1971), necessary and
sufficient conditions for the desired weak convergence in the /,-topology are

(@) For every (L, M), the random matrix{Z,, ;1 <r < L,1 < s < M} con-

verges in distribution under H, to the random matrix

{Z,s1=r<L, 1 <5< M} as y-—oco.

(b) If WL,M,v = Zr>L,s>M Zf‘,s,v’
limy, i, 2y imsup, Py [W; 0, > ¢] = 0 for every ¢ > 0.

To verify (a), consider the arbitrary linear combinations K, , = }7, X
T e D e (e (R)] and K, = T, T 7, [T ¢ (j)e (U] Applica-
tion of Theorem V. 1.5a or Theorem V. 1.6a in Hajek and Sidak (1967), according
to whether B(i) or B(ii) is assumed, yields lim,__, E|K, , — K, ,| = 0. The linear
form K, , canalso be writtenas K, , = > 4_,g,'Y;, whereg;’ = (1L, 7,.¢,(j), - >
SEirene()) and Y/ = (o(Uj)s -+ -5 ou(U;)). If ||+|| denotes Euclidean dis-
tance, assumption C implies that lim,_, max,_;_, ||g;/|* = 0 and 372 ||g,||* =

Lon¥ . < oo. It follows from the Lindberg-Feller theorem that the dis-
tribution of K, , is asymptotically normal (0, >;Z_; >, ¢2 ) and consequently,
condition (a) above is fulfilled (see also Beran (1970) regarding the central
limit theorem used here). ‘

To verify condition (b) under assumption B(i), note that by Jensen’s inequality
for conditional expectations,

(3.1) Eg[Weu,] = 2051 250 o0 B [ 210 c.(De(U)T
< Zr>L Zs>M a?’,s ’ ’

which implies (b). Direct evaluation of E,, [W, , ,] under assumption B(ii) yields
a similar bound, again implying that (b) is satisfied.
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PrROOF oF THEOREM 2. It is sufficient to verify under K, () the counterparts
to conditions (a) and (b) in the previous proof. Since the alternatives K, (f) are
contiguous to the hypotheses H,, by Theorem VI. 2.1 of Hajek and Sidék (1967),
fulfillment of (b) under K,(0) is evident. Let Z, ,(fy) denote the (r, s)th element
of the double sequence Z(fy). The usual contiguity argument shows that the
random matrix {Z, , ;1 <r < L,1 < s < M} converges in distribution under
K,(0) to the random matrix {Z, (fp); 1 < r < L,1 < s < M}asv — co. This
establishes (a) and completes the proof.

Proor or THEOREM 3. To justify expansion (2.8), it is sufficient to show that
the relation

(3.2) C, = lim, _ x" [_P[S>“x] _ yipe C,,x"‘]
P[X%I(nll) > x]

is satisfied for every integer m > 1. Let p,(x) and p(x|n,) denote the densities
of S and of y}(n,) respectively. By Hoeffding (1964), slightly extended,

(3-3) Po(x) = [ L5 Apx™* 4 O(x~™)]p(x | )

for every integer m > 1, the {4,} being defined by (2.5). In particular, (3.3)
implies the validity of (3.2) for m = 1. Assuming that (3.2) holds for every
integer m < r, we will show that it also holds for m = r 4 1.

Write y* in place of y}(n,;). By Cauchy’s mean value theorem, for every
x < y there exists w € (x, y) such that

B P(S > x) — P(¢* > x) Ko Cix7]
(3-4) = YRS > ) — PO > y) Nin Gyl
+ (P > %) — P(¢* > y)}
= 11(w) =+ Iz(w) >

where

L(w) = (r + DWIP(S > w)[P(* > w) — X1, Ciw']
(3-5) X [P(* > w)[p(w | ny,)]

Lw) = wp,(w)[p(w|nu) — X Aiw™] + Zise (4 — Cwr+i-

+ [P(* > w)[p(w| )] Xiime €W .

A calculation using the inductive hypothesis, (2.10), Hoeffding’s expansion (3.3),

and the recursion defining the {C,} shows that I(w) + I(w) = C,,; + o(1).

By first choosing x and y sufficiently large, then letting y — oo, we obtain (3.2)
form =r + 1.

Expansion (2.9) may be proved as follows. From (2.3) and (2.4), D(x|S, b) =
2irs 07,,07,,0(x| S},). By slight extension of Hoeffding (1964),

(3-6) 9(x|8f) = [ X3 Bux~* 4+ O(x~™)]p(x | nyy + 2)
and, for every (r, s) # (1, 1),
3.7 g9(x|SF) = [ Dmt A(r, )x7* + R, (x|r, 8)]p(x|ny) ,
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where the remainder terms R, (x|r, 5) are individually O(x~™). To complete the
proof of (2.9), it remains to show that sup, ,).q.1, [Ru(x|7, 8)] = O(x~™).

Let H, (x), h, ,(x) denote, respectively, the distribution function and density
of the random variable &, , = S}, — xj(n,). Following Hoeffding (1964), we
express R, (x|r, s) as the sum of three terms,

Jrs = V02 1(1 = ()™ — T3 (= Do =)(/%)"]
(3-8) X exp(y[2) dH, (y) ,

o = N3 (1 — (p[x))"1"* 7" exp(y/2) dH, ,(y) »

Jore = =35 [ZES (=D (™) (/) exp(y/2) dH, (3) »
where 0 < 0 < 1. On the one hand, |/, , | and |J,, | are bounded from above
by a constant multiple of x-™E[é™, exp (£, ./2)], and sup,, a1, E[E™, exp (€, ./2)]
is finite. On the other hand, |/, , | is bounded from above by a constant mul-
tiple of x=™ sup,,, [y™** exp(y/2)*, ,(y)], which implies, after a short argument,
that sup, ,.a,1 [s,rs] = 0(x7").

Proor oF THEOREM 4. The definition of ¢, through P[S > ¢,] = « and ex-
pansions (2.8), (2.10) imply that for small «

(3.9 a ~ 2Cyp(c,|ny) -

For each (r,s), let {e,(r,s);0 < a <1} be a set of constants such that
lim,_,[(n,, — ny)log(c,) + (c. — e,(r,5))] = 2log (L), where L = 2"rs="0/2
C,I'(n, ,/2)/T (ny/2). From (2.10)and (3.9), P[T, ,>e,(r,5)] ~ 2p(e,(r,5)|n, ) ~ a.

Let M, = max [d,(r, 5), e,(r, s)] and let m, = min [d,(r, 5), e,(r, s)]. By the
mean value theorem, there exists u, € (m,, M,) such that

|P(T'I‘,3 > ma)/P(T'fys > Ma) - 1| g (Ma - ma)P(ua | n'r,s)/P(T'r,s > ua) *

Because of (2.10) and the previous paragraph, this in turn implies lim,,_, [d,(r, 5) —
e,(r, 5)] = 0. Hence, lim,_,[d (7, 5)/c,] =1. The theorem now follows readily
from (2.11) and (2.12).

Acknowledgment. I am grateful to Michael Stephens for helpful conversa-
tions concerning the asymptotic power of goodness-of-fit tests.
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