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CONSISTENCY IN GENERALIZED ISOTONIC REGRESSION!

By TiM RoOBERTSON AND F. T. WRIGHT
The University of Iowa

Suppose T is a partially ordered set and that associated with each ¢ in
T we have a distribution with ‘‘location parameter”” m(t). In this paper we
discuss consistency properties of estimates of () which are isotonic with
respect to a partial order. The results extend results in the literature, some
of which are contained in Brunk (1970) (Estimation of isotonic regression
in Nonparametric Techniques in Statistical Inference, Cambridge University
Press, 177-195), Cryer, et al. (1972) (Monotone median regression in Ann.
Math. Statist. 43), Hanson, et al. (1973) (On consistency in monotone re-
gression in Ann. Statist. 1), and Robertson and Wright (1973) (Multiple
isotonic median regression in Ann. Statist. 1).

1. Introduction. Recently, in the literature, several estimation problems have
been considered which fall within the following framework. T is an index set
with partial ordering « and m(.) is a real-valued function on 7' which is iso-
tonic with respect to . {(7,, X,)} is a sequence wheret, e T;n = 1,2, --. and
{X,} is a sequence of independent random variables. (m(+) is to be thought of
as a regression function and a value of X, as an observation at 7,. The distri-
bution of X; depends on 7, at least through m(z,).) We wish to estimate m(-).

In Section 2 we investigate consistency properties of certain estimators 7,(+)
of m(+) which satisfy our order restriction. The techniques used to prove these
results are like some of those in Hanson, Pledger and Wright (1973), Cryer,
Robertson, Wright and Casady (1972), and Robertson and Wright (1973). In
Section 3 we discuss the application of these results to several examples and
discuss the relationship of these results to those in the literature.

2. Consistency. The estimator of m(.) generally depends on (t, x,),
(ts X5), - -+, (t,, x,) through another sequence of functions, {M,}. We assume
that M, is real-valued and its domain is the Cartesian product of n copies of
T x R where R is the set of real numbers. We assume that M, has four proper-
ties which we enumerate with letters of the alphabet.

(a) Ift, 1, --.,t,are fixed elements of T then M,[(¢, x,), (fs X5), + * -5 (tns Xu)]5
thought of as a function of (x,, x,, - - -, x,), is a Borel measurable function from
R™ to R.

(b) M, is symmetric in the sense that if p(.+) is any permutation of the inte-
gers from 1 through n then M,[(f,0) X,)s (Fpers Xp)s ** 5 (Fpnys Xpm)] =

M,[(t; x1)s (T35 X3)5 + = o5 (Las X,)]-
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ISOTONIC REGRESSION 351

(c) With ¢, ¢, -, t, fixed elements of T and c a constant we have M, [(¢,, x,),
v (b Xg)y = ooy (B X,)] — € = M [(f, X, — ©), (fy, X3 — €), + -+, (£, X, — ©)].
(d) Ift, 1, ---, ¢, are fixed elements of T and x, < y,;;i=1,2, ..., n then
M (25 X1)s (Fas X3)s =5 (Las X)] S ML[(15 11)s (B35 Ya)s =+ =5 (Fs V)]

In some of the examples discussed in Section 3, M, [(#;, X)), (fs X,), + - 5 (2,5 X,)]
is a solution to a certain optimization problem. We do not mean for (a) to imply
in these problems that the solution is unique but only that we have a procedure
for selecting one of the solutions so that M, [(¢, X)), (t,, X)), - -, (¢,, X,)] is
measurable and thus #,(f) is a random variable for each r.

If {j(1), j(2), - - -, j(n)} is the set of all indices for which a certain condition
c(j) is satisfied then we let M{X; ¢(j) holds} denote the random variable,
M,[(t;0 Xjw)s (Fas Xiw)s =+ +» (Fiars Xjimy)]-  Condition (b) ensures that this
symbol is well defined. Finally, we remark that (c) and (d) are satisfied by
location statistics.

Let . be the complete g-lattice of subsets of T induced by our partial order-
ing (i.e., Le & if and only if x  y and x € L imply that y € L). We shall refer
to members of .~ as upper layers and use the symbol L, exclusively, to denote
upper layers. If z;e{t, ¢, ---, t,} we define our estimator ,(+) at ¢; by:

2.1) m,(t;) = max,,,. minL,,tj M{X;i<nt,elL—L}.

It is easy to see that 7,  ¢; implies #71,(t;) < m1,(t;) and one can usually extend
m,(+) to all of T in several ways so that 7,(.) satisfies various “‘smoothness”
conditions as well as being isotonic.

In most of the examples which have been considered in the literature, M, has
the following additional property:

(e) If t,t -, thy, €T then M, [(t;, X)), (£ X3)s s (bmins Xmyq)] 1S De-
tween (not necessarily strictly) M,[(f, X;), (£ X5)s * « + (ts Xm)] @nd M [(2,,41,

Xm41)s (Imazs Xma2)s ** > (Imgns Xman) |-

If we assume the averaging property (e) in addition to (a) through (d) then, using
an argument similar to the one described in Robertson and Wright (1973), one
can show that m,(t;) = m,(t;) where

m,(t;) = minL,Nj max;,,, M{X;i<n t,elL—L}.

However, it is easy to see, by considering trimmed means (Example 4) that 7,(+)
and m,(+) are not necessarily equal if we do not assume the averaging property,
(e). On the other hand, 77,(+) is isotone and our consistency theorems also apply
to m,(+).

Before presenting our consistency results we mention an example which has
received considerable attention in the literature. Suppose the distribution at ¢ is
normal with unknown mean, m(f), and known variance ¢*(r) and m(t) is known
to be isotone with respect to . If we choose

M, [(t15 X1)s (fg5 Xa)s =+ o5 (Fas X,)] = [ 21 (/o@D - [ 201 (x:/07(1:))]
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then the resulting r,(+) provides the maximum likelihood estimator of m(.) (cf.
Example 2.4 of Barlow, Bartholomew, Bremner and Brunk (1972)). Itisasimple
matter to verify conditions (a) through (e) in this situation.

We first consider the case where « is a linear ordering on T (i.e., for all
s,teT,s L torts). This includes the reals, and in fact any subset of real
numbers, with the usual ordering. For n fixed we assume the distinct observa-
tion points are labeled so that s, € s, € --- <« s, and we extend 72, to all of T
as follows: m, () = m,(s;) for s, K t L s, #tand i=1, ...,k —1; m,(t) =
m,(s,) for t £ s5,; and m,(f) = m,(s,) for s, € t. The proofs of the following two
theorems will be given simultaneously.

THEOREM 2.1. Let M, ( ) satisfy conditions (a) through (d); let T be a linearly
ordered set; let | be such that for each ¢ > 0

(2.2) there exist s, and s, with s, L t; & s, and max (m(t;) —
m(sy), m(sa) — m(1;)) < e

and

(2.3) cardfk: t; K t, K s} =card{k: s, K t, € t;} = o0
and for each ¢ > 0

(2.4) P[sUpy <, M [(trays Xpay — M(Es1))s «* +s

(Tstars Xpamy — M(tsmy))]| Z €] — 0
as N — oo uniformly for all one-to-one functions, f, mapping {1,2, ...} onto
{1,2, .--}. Then m,(t;) —, m(t;).
Through the remainder of this section, f will always be used to denote one-
to-one mappings from {1, 2, ...} onto {1, 2, -..}.

THEOREM 2.2. If we assume the hypotheses of Theorem 2.1 with (2.3) replaced by
(2.5) liminf, card{k <n:t; ¢, K s,}/jn >0 and
liminf,  card{k <n:s, <1, K t;}/n >0
and if in addition we assume for each ¢ > 0, there exist positive constants C and p

with p < 1 such that
(2.6)  P[IM,[(t70)s Xpa) — M(t70))s + < s (s Xpmy — M)l Z €] < Co”

for all n and f, then for each ¢ > O there exist positive constants C, and p, with
0, < 1 such that

Pl (1)) — m(t;)| = <] < Cyp;"

Proors. Fix e > 0 and fix j so that ¢; has the properties guaranteed in the
hypotheses of Theorems 2.1 and 2.2. Choose s,¢ T so that 7; £ s,, m(s,) —
m(t;) < e, and card {k: t; K t, € s,} = oo or liminf,  card{k <n:t, € t, €

s,}/n > 0 depending on the theorem considered. For n = j,

(2’7) lﬁn(t]) - m(t]) é maxr(tj M{Xk: k é n’ r << tk << Sa} - m(sa) + €.
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Using (c), (d) and the fact that m is isotonic we see that the right-hand side of
(2.7) can be rewritten

max, ., M{X, —m(s,): k S n,r< 6, £s,}+¢
smax, ., M{X, —m(t): k=nr < s}+e.

For each n > j, let f be chosen so that f restricted to {1, 2, - .., n} is a permu-
tation of {1,2,...,n} and t; = 1,45 ty0) Kl K 0 Ll K803 13>
Lpagany D v o0 D by A0d 1 £ L ) and 5, K Ly g0y K 000 K Hpgyy and s, #
Iy(r,+1- We Observe that f may depend on n and we define Y, , = X, — m(t;4,)
for k =1,2, ..-.. Then

(2'8) 'hn(tj) - m(’j) = maxlnSksn Mk[(tf(l)’ Yl,n)’ (tfm’ Yz,n)’ Tt
(trays Yeu)] + €

We now complete the proof of Theorem 2.1. By (2.4) there exists an N such
that

P[supycn IM[(t70)s Xpay — M(Es0))s =+ o (pnys Xpowy — M)l Z €] < €

for all f. Since [, — co we may choose n, such that [, = N for n = n,. If
n = n,, Pmax, oo Mi[(f50) Y1) (trms Yan)s =+ o5 (fr0s Yia)] > €] < ¢ and so
P[m,(t;) — m(t;) > 2¢] < e. Similarly it can be shown that P[m,(t;) — m(t;) <
—2¢] < e. So m,(t;) —, m(t;).

For the proof of Theorem 2.2 we note that since [, > 0 for all » > j and
liminf,  card{k < n: t; € t, K s,}/n is positive there exists a positive constant
dsuch that [, > d - n for all n > j. Using (2.7) and the hypotheses of Theorem
2.2, Plri(t;) — m(1;) > 2¢] < C Dforam 0 < Clo(1 — p)]7(0")" for n 2 j and
it is clear that one can choose a C* so that this probability is bounded above by
C*(po*)" for all n. The quantity P[m,(t;) — m(t;) < —2¢] is treated similarly.

We now prove three corollaries which give more global results.

COROLLARY 2.3. Let the hypotheses of Theorem 2.1 hold and let T' — T. If for
each ¢ > 0 there exsists a finite set of observation points each satisfying (2.2) and
(2.3), say 7, K 7, K -+ - L T, such that

if teT’ then v, Lt L7, andif teT, 7, Lt L 7y, and
(2.9) Ty FEtFE T,y with i=1,...,1—1, then max (m(f) —
m(z;), m(z;y,) — m() < e,
then sup, ... |, (t) — m(t)] —, 0.

Proor. Let ¢ > 0 be fixedand let 7, € --- « 7, be as in the hypotheses of the
theorem. If re 77, 7, K t £ 7,4, and 7, = t = 7, thensince i, is isotone |71, (1) —
m(f)| £ max (|,(7;) — m(z,)|, |#,(7;41) — M(7,41)]) + . Hence sup, ., |/7,(f) —
m(f)| < max,,, |m,(r;) — m(z;)] + ¢. The conclusion follows immediately.

COROLLARY 2.4. Let the hypotheses of Theorem 2.2 hold and let T' — T. If for
each ¢ > 0 there exists a finite set of observation points satisfying (2.2), (2.5) and
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(2.9), then for each ¢ > O there exist positive constants C, and p, with p, < 1 such
that
P[SUp,.cp. |1, (1) — m()] Z e] < Cypy"

Proor. The proof is similar to the proof of Corollary 2.3.

If one is interested in a 7" which cannot be “covered” with a finite number
of observation points as in Corollary 2.4, then the following result may be of
use. This would be the case if T = T’ = (— oo, o0) with the usual ordering and
m(t) were not bounded. We now assume the underlying probability space is
complete.

COROLLARY 2.5. Let the hypotheses of Theorem 2.2 hold and let T' C T. As-
sume that for each ¢ > O there exists a countable set of observation points satisfying
(2.2) and (2.5), say Ty, Ty, T_y, Tyy T_y, + -+ SUch that if t€ T’ then 7, L t L 7,4, for
some i and if teT', v, Lt L 7y and v, 5+ t = 7, then max (m(f) — m(z,),
m(t,,,) — m(t)) < e. Then P[m,(t) — m(t) forall te T'] = 1.

Proor. For each ¢ > 0 let {r,(¢)};2_.. be the sequence of points hypothesized
in Corollary 2.5. Asin the proof of Corollary 2.3, if r, K t L 7,4, T, =t # T,
and te 7" then [, (1) — m(t)| < max (i, (r)) — m(z)], [, (Tiss) — M(zi)]) + .
Hence [#,(f) — m(t) for all te '] © N, N [P.(z(v™Y)) — m(z,(v™?))] and the
desired conclusion follows immediately since the conclusion of Theorem 2.2
implies r,(t;) —, s. m(t;).

We remark that in Theorem 2.1, if {X, — m(z,)} is a sequence of i.i.d. random
variables then

Mn[(tl’ Xl - m(t1))» (taa Xz - m(tz)), ] (tm Xn - m(tn))] a.s. 0

implies that (2.4) holds uniformly for all such f. The hypotheses regarding the
convergence of M,[(tq), Xy — M(trw)))s =« s (Lriny> Xpmy — M(Esy))] Will be
discussed further in connection with specific functions M, (+) in Section 3.

Theorem 2 of Hanson et al. shows that a condition stronger than (2.2) is
needed to obtain strong consistency in the mean regression case.

In Brunk (1970), Hanson, et al. and Cryer, et al. consistency results were
obtained when T is a finite interval of real numbers and M, is either the mean
or median function. If T = (a, b) with @ < b, m is continuous and the sequence
{t.} is dense in T, then Theorem 2.1 and Corollary 2.3 hold with 7" = [c, d]
where a < ¢ < d < b. Furthermore, if every nondegenerate sub-interval of
(a, b) eventually contains at least some positive proportion of the observation
points, then Theorem 2.2 and Corollary 2.4 hold with 77 as above.

The results of this section can also be applied to T = (— oo, oo) with the usual
ordering. Conditions (2.2) and (2.3) hold if m is continuous and {z;} is dense.
Furthermore, if each nondegenerate interval eventually contains at least some
positive proportion of the observation points, then Theorem 2.2 and Corollary
2.4 hold with T” any finite interval of real numbers. Also Corollary 2.5 holds
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with T’ = (— oo, o0). One might wonder if there exist sequences which satisfy
liminf,  card{k < n:a <1, < b}/n > 0 for all a < b. It is possible to actu-
ally construct such sequences; however, the following argument would appear
to be of interest. Let F(x) be a distribution function which assigns positive
probability to every nondegenerate interval. If U;, U, - - - is a sequence of inde-
pendent random variables each having distribution function F(x) and if F,(x) is
the empirical distribution function based on U;, - - -, U, then sup_., ;... |F,(b) —
F(b)| converges almost surely to zero and so SUP_..,cpco [Fo(b) — F,(@a—) —
Fla, b]| converges almost surely to zero. Hence there exists a null set outside
of which card {k < n: a < U, < b}/n— F[a, b] > 0 for all a < b.

While Theorem 2.2 does show that m,(¢;) —, . m(t;), the hypotheses are ap-
parently more restrictive than necessary for this conclusion. It seems clear that
Theorem 2.2 could be modified to give strong consistency by replacing (2.6)
with

=1 SUP,; P[Supy <, | M, [( 50y, Xpy — m(tp))s -+ -5
(Frinrs Xpoy — MEym))]| = €] < 00 forall «>0,

but it is not clear if such a result would be even reasonably tight. However,
considering the mean regression case it appears that the results given thus far in
this section are in some sense tight. In Brunk (1958, 1970) consistency results
were obtained by considering permuted sums of random variables. It would be
interesting to know if his results could be extended to more general functions
and thereby obtain strong consistency results with weaker hypotheses than in
Theorem 2.2.

Our consistency results when the ordering is not linear will be confined to
E, with the ordering (x,, x,, - -+, X;) € (J15 V5 *+ +» ;) if and only if x; < y, for
i=12,...,p and B =2. We consider the two cases T = E, and T =
T14., (0, 1). Assume that s,, s,, - - -, 5, are the distinct observation points among
tty -+, t,. We let m,(f) be any of the isotone extensions of 1, from {s,,
S5 + - -, 5} to all of T. Before stating the results for E, we prove a lemma.

Note that points 0 < x; < x, < -+ < x, < 1 determine a partition of (0, 1)
as follows: [, = (0, x), I, = [x;, x;,,) for j=1,.-.,v — 1 and I, = [x,, 1).
Also I(i(1), i(2), - - -, i(B)) = II4-, L, partitions T = TJ4_, (0, 1) into (v + 1)*
disjoint sets. In a similar fashion x, < x, < --. < x, determines a partition of
E,. We let &2 denote the collection of sets of the form R = 7%, X @)= *
2is-1=0 Liipr=ac, . ia-1 1(1), i(2), - - -, i(B)) where 0 < n(i(1),- - -, i(f—1)) <
v 4+ 1 and I(i(1),i(2), ---,i( — 1),v 4+ 1) = @ for any i(j) =0, .--,v and
j=1,--,8— 1.

Let L be an upper layer and for eachi(j) =0, ---,vandj =1, ..., 8 — 1 de-
fine n(i(1), - - -, i(f — 1)) to be the smallest i(8) for which (x;.,, ;3,5 - - =5 X;5) € L
and n(i(1), - - -, i(8 — 1)) = v 4 1 if no such i(B) exists or if i(j) = 0 for some
j=1,...,8— 1. Let R(L) be the member of &7 associated with this function
n(+). Corresponding to each R(L) there is a function n(.) = 1 and based on it
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we define a function n’(i(1), - -+, i(8 — 1)) = n(i(1) + 1, .-+, i(f = 1) + 1) — 1
if i(jy<wvforj=1,2,...,8—1and n'(i(1), ---,i(f — 1)) = 0, otherwise.
Let F(R(L)) denote the member of &2 corresponding to n’(.). It can be seen
that R(L), F(R(L)) e & for each L e % but we will not use this fact in our
arguments.

LEMMA 2.6. If L is an upper layer R(L)y C L C F(R(L)) and the number of
1i(1), - - -, i(B)) in F(R(L)) — R(L) is O((» + 1)*~%) as v — co.

ProoF. If(y;, - -+, y,) € R(L) then (y,, - -, y,) € I(i(l), o, i(B)) withi(j) > 0
for j=1,..-,8—1 and v+ 1 >iB) = n(i(1), ---,iB — 1)) > 0. Hence
(Ksars Xaas ***» Xatp-1)» Xnci,oonip-1n) € L a0d y; = X, for j =1, ..., B. Since
L is an upper layer, (y;, - -, y,) € L.

Let (yy, -+, y,)e L and (yy, - -+, y,) € I(i(1), - - -, i(B)). If i(j) = v for some
J=1,...,8—1 then (y, -+, y,) € F(R(L)). So we assume i(j) < v for j =
1, .-+, B — 1and show that n'(i(1), - - -, (8 — 1)) < i(B) which implies Ds =+
¥s) € F(R(L)). Suppose i(8) < m(i(1), - -, i(B — 1)) = n(i(1) + 1, - --,i(B — 1) +
D)~ Lot i(B) + 15 () + 1, i — 1)+ 1) — 1 v, Then y, < xupun
forj=1, ..., fand so (x;4,1, - - +» X;541) € L but this contradicts the definition
of n(.).

Since R(L) ¢ L c F(R(L)) we see that n'(i(1), --., {8 — 1)) < n(i(1), ---,
i(f — 1)) for all i(j)=0,..-,v and j=1,...,8—1. The number of
I(i(1), - -+, i(B)) in F(R(L)) — R(L) is bounded above by

Z’{m:o e Zz(ﬁ 1)=0 Zt(ﬁ) =n (1,(1'1()‘9 z(p -1)) 1
= D=t Dig-n=on(i(1), - -+, i(B — 1))
- Zza);o o DiGro=o [0G(1) + 1, - -5 0B — 1) 4 1) — 1]
= vt 4 (v + Decard {(i(1), - -+, i(B —1): 0 Zi(j) < v
for j=1,...,6—1, and i(j)=0
forsome j=1,...,8—1},
= vl (v 4 D[(v 4+ 1At — 1],
The desired conclusion follows from the fact that 1 — (1 — 1/x)#~* ~ (8 — 1)/x.

THEOREM 2.7. Let M, satisfy (a) through (d) and let m(t) be continuous. If for
every nondegenerate rectangle J C T, liminf,  card{k < n:t,eJ}/n>0; if

n—oo
there exists a sequence c, — O such that for every positive integer v there are points
X, < Xy < «+- < X, which partition T as above and an integer n(v) such that for

n=n()andi(j) =0, ---,vandj=1, ..., 8
(2.10) card{k < n: t, e IG(1), - -, iBY}n (v + )P + ¢,

and if for each ¢ > O there exist positive constants C and p with p < 1 such that
(2.6) holds for all n and f, then for each j and ¢ > O there exist positive constants
C, and p, with p, < 1 such that

Pllh,(t;) — m(1;)| =2 e] = Cip"
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Proor. Fixjand lete > 0and n = j. Choose s, with each coordinate of s,
strictly greater than the corresponding coordinate of ¢; and with m(s,) —m(t,) <e.
Set L = {teT:t <K s,}. Using (c), (d) and an argument like that given in the
first part of the proof of Theorem 3.1 of Robertson and Wright (1973), it can
be shown that

m,(t;) — m(t;) < maxg,, M{X, —m(t,): k < n el — L} +¢.
With v fixed and to be chosen later, partition T into the (v + 1)# sets I(i(1), - - -,
i(B)). Let &, = {R(L): Le £}, let F(R(L)) be defined as in Lemma 2.6 and

let J =Ly n{t:t; Kt}. We observe that F(R(L)) depends on L only through
R(L) and hence

m(t;) — m(t;) < max, M{X, —m(t,): k <n,t,e(L—L)UJ}+e¢
< maxp. , MaX,cpp_p M{X, —m(t,): k< n t,e(RUA—L)UJ}+e.

Hence P[r#,(t;) — m(1;) > 2] < Ype g Lacrm-z PIM{X, — m(t): k < n, 1€
(RU A4 — L) U J} > ¢] for n sufficiently large. Now there exists a positive con-
stant ¢’ such that card {k < n: t, € J} = ¢’n for n sufficiently large and hence for
each Re &%, and 4 C F(R) — R, using (2.6) we have P[M{X, — m(t,): k < n,
t,e(RU A — L) UJ>e} < C The cardinality of 5%, is a constant depend-
ing only on v, say d,. According to Lemma 2.6 we may choose a constant d so
that the number of /(i(1), - - -, i(8)) in F(R) — R is bounded above by d(v + 1)#~*
forallvand R € &%,. Using (2.10) we see that for sufficiently large n, P[#,(t;) —
m(t;) > 2] < C - d, - 20m T raney 0P pon — . expn(d(v + 1) In (2) +
de,(v + 1)*7'In (2) + ¢’ In (p))}. If we choose v so that d(v + 1)™'In (2) <
—(¢’ In (p))/4 then for nlarge enough thatdc, - (v + 1)~'1In (2) < —(c’ In (0))/4
we have P[m,(t;) — m(t;) > 2¢] < C-d, p," with p, = p”. A similar treatment
of P[m,(t;) — m(t;) < —2e] completes the proof.

We comment that the S-dimensional analogue of (27) of Hanson, et al. could
be substituted for (2.10) in Theorem 2.7 and the proof given holds with only
minor modifications. We have chosen (2.10) because it can be shown that
“almost all” sequences {¢,} generated from certain distributions satisfy this prop-
erty, but it is not clear that they satisfy (27) of Hanson, et al. in the case § = 2.

Let F(u) be an absolutely continuous distribution function which assigns
positive probability to every nondegenerate sub-interval of (—co, co) let
Uy Uy «++5 Uy, Uy, - -+, Uy, - - - be a sequence of i.i.d. random variables each
having distribution function F(u). (The case where F(u) has support (0, 1) is
similar.) Denote the j/(v + 1) quantile of F by x;for j =1, ..., v. So for each
v this determines a partition /(i(1), - - -, {(8)) of T. Using the results by Kiefer
(1961) and the fact that the probability of a rectangle []%_, (a;, b,] can be ex-
pressed as sums and differences of values of the associated distribution function,
we see that there exists a constant C, such that

P[lim,_,, sup (2n/In In (n))} sup,;, , [card {k < n: (Uy, - -+, Uyy)
e l(i(1), -+ i(f) — (v + D) =Cl = 1.

N—00
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So almost surely the sequence #, = (Uy, - - -, U,,) satisfies (2.10). A similar argu-
ment shows that almost surely lim inf,_,, card {k < n: (U, - - -, Ug)eldin >0
for each nondegenerate rectangle J.

We now prove two corollaries which give more global consistency results in E 5

COROLLARY 2.8. Let T' = _1[a, b] where —co < a < b < oo in the case
T'=E;or0<a<b<1inthecaseT =T[4, (0,1). If the hypotheses of Theo-
rem 2.7 hold then there exist positive constants C, and p, with p, < 1 such that for
each ¢ > 0, P[sup,.,. |, (1) — m(1)] > ¢] < C,p,"

PRroOF. See the initial part of the proof of Theorem 5 of Hanson, et al.

CoROLLARY 2.9. If the hypotheses of Theorem 2.7 hold, then P[,(f) — m(t) for
allteT] = 1.

Proor. The result follows immediately from [7,(f) — m(¢) for all re T] =
[7,(t;) — m(z;) for all j].

3. Examples. Suppose w(.) is a weight function defined on T such that
w(f) =2 d > 0 for each teT. In the normal regression problem discussed in
Section 2, w(f) = [o*(f)]"'. Define the weighted empirical distribution function,
Fo(+), by

Fu(x) = Diaw(t) - [Z5aw)] ™ Tew (X)) -
In our examples M, will depend on the r,’s and X,’s through F,(+) and verifica-
tion of (a) through (d) is routine.

ExampLE 3.1. Let

M,[(t; %), (12 Xo), -+, (1 X)] = § X dF(x) = (Do w(1)) ™ Lhea w(t))X; -
Van Eeden (1957), Brunk (1958, 1970) and Hanson et al. discuss consistency
properties of this estimator. We assume for this example that E(X,) = m(z,)
for all n and observe that if F(y) — 0 as y — co and {3 y|dF(y)| < o where
F(y) = sup, P[w(t,)|X, — m(t,)] = y] then Lemma 3 of Hanson, et al. shows
(2.4) holds since w(r) is bounded away from zero. Notice that if w(z) is also
bounded above and {X, — m(z,)} is a sequence of identically distributed random
variables this requirement is equivalent to E|X, — m(t,)| < co. Also we observe
that if F(y) — 0asy — oo and {3 e*|dF(y)| < co for some = > 0 with F defined
as above then Lemma 5 of this same paper ensures that (2.6) holds.

In this case where T = [0, 1] with the usual ordering we see that Corollary
2.3 essentially contains the first conclusion of Theorem 1 of Hanson et al. and
extends it to obtain weak consistency when w(r) is not necessarily constant, and
the observation points are dense. Furthermore, in this case, Brunk (1970)
obtained strong consistency assuming that every nondegenerate sub-interval
eventually contains some positive proportion of the observation points. His
argument was modified in Hanson et al. to weaken the moment requirements
on the sequence {X,}. It isinteresting to observe that part two of Theorem 1
of Hanson et al. can be extended to the case where w(f) is not constant by using
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the argument given by Brunk (1970) for Theorem 4.1 and Lemma 2 of Hanson
et al. applied to {w(z,)[ X, — m(¢,)]}. Specifically this shows that sup,,, [#,(f) —
m(t)| converges almost surely to zero if 0 < a < b < 1, every nondegenerate
interval eventually contains at least some positive proportion of the observation
points, F(y) — 0 as y — oo and { ydF(y) < co. As a final comment in this
case we note that Corollary 2.4 essentially contains Theorem 4 of Hanson et al.
and Corollary 2.5 gives consistency results when 7' = (— oo, c0).

The primary contribution of this paper to the isotonic mean regression prob-
lem is the extension of Theorem 6 of Hanson et al. to Euclidean space with
dimension higher than 2 and the substitution of (2.10) for their condition (27).
We conclude this example by mentioning two unresolved questions concerning
consistency in the isotonic mean regression problem when T is not linearly
ordered. Can strong consistency be obtained with conditions like a first moment
on the X;’s? Are the rates presented in Theorem 5 of Hanson er al. tight?

ExaMpLE 3.2. Let M, [(t;, X)), (t2 X3)s « - -5 (8., X,)] = min{x: F (x) = 1}. M,
is a weighted sample median. The 7, derived from this M, would seem to be
of interest because it provides a solution to the following minimization problem.
Let s, 5,, - - -, 5, be the distinct elements among ¢,, t,, - - -, ¢, and label the X’s
among the first n taken at an observation point s; by X;,, X;,, -+ X;, with
i=1,2, ...,k Itisargued in Robertson and Wright (1974) that 7%,( ) mini-
mizes Y%, w, Y17L, |X;; — m(s;)| among all isotone m. This can be interpreted
as follows: 1, is one of the closest isotone functions to the data in this weighted
1, sense.

Let F; denote the distribution function of X; and assume that

3.1 foreach ¢ > 0 thereisa y > 0 suchthat inf; F(m(z;) +
e —%=r and § —sup; Fy(m(t) —¢) =7

and that w() is bounded above as well as away from zero. We now show that
under these conditions (2.6) holds. Fix f and consider

P[Mn[(tf(l)’ Xfm - m(tm))), tt (’fwm Xf(n) - m(tf('n)))] > 5]
= P[0T W(tpao) oo, etf(X gy — M(53)))] 251 W(Ep0y) < 3]

Let Z;;) = I _w,a(Xfq — m(ts;)). This probability can be bounded above by
P w(tsa)(Z sy — EZpw) < —Orn]. Since w(t,,))(Z sy — EZy;) are bounded
above uniformly in f, Lemma 5 of Hanson e al. may be used to complete this
argument. The term P[M,[(t;4), Xy0) — m(tr0))s <+ (Epnys Xpny — M(Epm))] <
—e¢] is handled similarly.

In this setting with the above assumptions, Corollaries 2.4 and 2.8 provide
generalizations of Corollary 2.4 of Cryer et al. and Corollary 3.2 of Robertson
and Wright (1973) in that weighted medians and Euclidean spaces of dimension
greater than two are considered.

Percentiles other than the median also fall within this framework. See Casady
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(1972) and Section 4 of Robertson and Wright (1973). In fact, the smallest and
largest order statistic satisfy the requirements placed on M,,.

ExaMpLE 3.3. Let M,[(4, X)), ---, (t,, X,)] be the midrange of X, ---, X,,
that is, the average of the smallest and largest item. The arguments given in
Chapter 3 of Ubhaya (1971) for Lemma 2 and Theorem 3 of Section 4 show that
the 77, corresponding to this M, provide a solution to the following minimiza-
tion problem: minimize max, ;< 1< <a, | X;; — m(s;)| among all isotone m, where
k, n, and X;; were defined in Example 3.2. It should be noted that the solution
is not necessarily unique, but this solution would seem to be of particular inter-
est in this setting because consistency properties of the midrange have been
studied extensively.

If X, — m(t,) is a sequence of independent, identically distributed, symmetric,
bounded random variables then it is well known that (2.6) holds and hence we
have conditions on the sequence {z,} which ensure that 7, is consistent in this
case. However, if the random variables are not bounded, but instead we assume
P[X, — m(t;) = y] ~ M {7 exp{—Cx?} dx with p > 1, then as a consequence of
Theorem 4.5 (with k = 1) of Barndorff-Nielsen (1963) we know (2.4) holds and
so 1, is weakly consistent for m if m and {¢,} satisfy the conditions of Theorem
2.1 or Corollary 2.3.

We conclude with an example of a function M, which does not have the
averaging property, (e).

ExAMPLE 3.4. We consider the trimmed mean as an estimator of the mean
of a truncated distribution. We make several simplifying assumptions. Take
w(¢) = 1 and assume that F, is the distribution function associated with ¢ and
0 < @ < 4. We assume that F, is symmetric (not necessarily about zero), that
it is continuous at its ath and 1 — ath percentiles and that these percentiles are
unique. Let m(f) be the mean of the distribution at ¢ truncated at these percen-
tiles (m(f) is, in our specialized case, the point of symmetry). Suppose that
{X, — m()} are independent and identically distributed and let X, < X, <--- <
X,, be the order statistics corresponding to X;, X,, - - -, X,. Wedefine: M, [(¢,, X)),
(ts X3), « + o5 (8, X,)] = n(a)™ Yocfead | X, where n(a) = n — 2[na] ([na] denotes
the largest integer in na). It is easy to construct examples illustrating that M,
does not satisfy condition (e) and that the associated #,(+) and #,(+) are not
necessarily equal.

The probability in (2.4) and (2.6) reduces to considering P[n(a)™'| 32, Z, X
Ly, v, (Z)| = €] where Z, Z,, ... are independent each having distribution
which is symmetric about zero and U, and V, are the [na] + 1thand n — [na]th
order statistics of Z,, Z,, - .-, Z,, respectively. Let {, be the common (1 — a)th
percentile of the distribution at ¢ centered at zero (i.e., shifted by m(z)). The
probability of interest is bounded by

Pln(a)™ - |71 Z; - (v, v, (Z:) — Ti_ep (2} = /2]
+ Pln(@)™ | X3 Zs - Tig e a(Z0)| Z €/2] -
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The second term converges exponentially fast to zero (i.e., there exists constant
C and p such that 0 < p < 1 and the probability is bounded by C - p") using
well-known results about sums of independent, uniformly bounded random
variables with zero mean. The first term is bounded by

Pln(a)™ » Dt |Zil + Li-cpiarato,v,a(Z0) 2 €/2] -

Suppose 6 > 0 and intersect this event with the event [U, ¢ (—={, — 9, —§, + 9),
Voe (€, — 0,8, + 0)] and its complement. The probability of the complement
converges exponentially fast to zero using well-known properties of (U,, V).
The probability of the intersection of the two events in question is bounded
above by

Pln(a)™ - X1, |Z,] - Tttt vt tpra(Z) 2 ¢/2] .

Now, using the continuity of F,(+) at the percentiles we can choose 9 sufficiently
small that the mean of each term in the sum is bounded by ¢/4. The exponential
convergence of this probability to zero then follows from the previously men-
tioned results about sums of independent random variables. Thus (2.6) is satis-
fied and Theorems 2.1 and 2.2 give consistency results for isotonized trimmed
means.

Our assumptions in this example are unnecessarily restrictive. It seems clear
that the symmetry and continuity assumptions on F, and the assumption that
{X, — m(t,)} are identically distributed may be relaxed. However, the unique-
ness of the percentiles does seem to be necessary.
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