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DIRECT PRODUCTS AND LINEAR MODELS FOR
COMPLETE FACTORIAL TABLES!

By SHELBY J. HABERMAN
University of Chicago and University of California, Berkeley

Direct products are used in some problems involving balanced factorial
models for analysis of variance. Problems considered include demonstration
that least squares estimators are minimum variance unbiased linear esti-
mators when mixed models are considered, determination of the covariance
structure of least squares estimators, calculation of expected values of sums
of squares and mean squares, and determination of the distribution of sums
of squares and least squares estimators under the normality assumption.

1. Introduction. Direct products provide a powerful tool for the examination
of linear models for balanced factorial tables of the form Y = {Y, .., : i;e [,
Jj=1,...,d}. These operations have value in characterization of classes of
linear models, in computation of least squares estimators, and in investigation
of the behavior of models with random effects.

In Section 2 of this paper the basic properties of direct products are reviewed.
Since properties of linear manifolds and of orthogonal projections have consider-
able importance in the analysis of variance (see Kruskal (1961, 1968)), emphasis
will be placed on the properties of direct products of linear manifolds and of direct
products of orthogonal projections.

In Section 3 familiar models for analysis of variance are described in terms of
direct products. Balanced factorial designs are considered in which nesting may
be present and in which the observation vector has a permutation-invariant co-
variance operator. In these models, the least squares estimator is shown to be
the minimum variance unbiased linear estimator, and the distributional proper-
ties of least squares estimators and mean squares are examined. Results in this
section concerning expected mean squares are related to work by Kempthorne
and Wilk (1955, 1956), Cornfield and Tukey (1956), Scheffé (1956a, 1956b), and
Zyskind (1962). Derivations for general balanced factorial designs are more ex-
plicit and somewhat simpler, however, than those presented in these papers.

In Section 4 results of Section 3 are applied to a generalized version of the
pigeonhole model of Cornfield and Tukey (1956). An explicit proof is provided
for the general results presented in that paper.

2. Properties of direct products. Direct products are closely related to tensor
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products, Kronecker products, and outer products (see Good (1958), Halmos
(1958, pages 40, 41, and 174), and Eaton (1970)). For the purpose of this paper,
a direct product may be defined by considering an index set  which is a Cartesian
product of sets /;, where j is in a finite nonempty set B. Thus I = ;.5 ;.
Alternatively, I may be written as [] {/;: j e B}. Similar conventions will be
used with other product and summation notation in this paper. Normally I,
will be the set 7; of integers i such that 1 < i < r;, where r; is a positive integer.
The set B will normally be d, where d is a positive integer. If x9 = {xi} e R,
the set of real /-tuples, for j € B, then the direct product x = &) {x'9: j ¢ B} is
defined as the element of R’ such that coordinate {i;: j € B} of x satisfies the
equation
Xiijjen) = Iljes xé;) .

The operation (¥) is a multilinear mapping from ] {R?;: j € B} to R’ (see Loomis
and Sternberg (1968, pages 306-308)); that is, if j* ¢ B and if x'¥ ¢ R7 is fixed
for j = j*, then (¥ {x'?:je B} is a linear function of x*. If B, and B, are
nonempty disjoint sets such that B, U B, = B, then

21 [®yen, ¥V @ [@yen, ¥] = [Dsen, ¥ ] O [ e, x7'] = Rjen 7
If any x9 is 0, then X) {x©’: j € B} is 0. It is sometimes convenient to extend
our definition of direct products to empty sets B through the convention that if
B is empty, then X) {x'¥: j € B} is the scalar 1. It should also be noted that the
convention is used that if the sets By, k € C, are disjoint and have union B and
if i;e I; for j € B, and k € C, then the coordinate {{i;: j € B,}: k € C} is equal to
{i;: je B}

If Q; is a linear manifold in R’; for each j € B, then the direct product ) {Q;:
J € B} is the linear manifold spanned by the direct products ) {x'¥’: j € B}, where
x9eQ; for jeB. If Bis empty, ® {Q,:je B} is the real line R. If B, and B,
are disjoint sets such that B, U B, = B, then

(2.2) [®je31 Qi] ® [®je32 Qi] = Qijen Qj .
If some Q; is the trivial linear manifold {0}, then ) {Q,: j € B} = {0}.

If A4; is a linear transformation from R’i to R’; for each j e B, then the direct
product (X) {4;: j € B} is the linear operator with domain and range R’ such that
if x*2 ¢ R%; for j € B, then
(2.3) [Rien 4] Qjen ¥ = Ryen A%

The basic properties of direct products are summarized in the following
lemmas. Most lemmas and corollaries are similar to results in Halmos (1958)
or Haberman (1974), so most proofs are omitted.

LEMMA 1. Suppose that for each je B, {x*i?: k;e p;} is a basis of a linear
manifold Q; C R'i. Then

S = (®jen x*9: k€ pjy j € B}
is a basis for Q = Q) {Q;: j € B}, and Q has dimension ]| {p;: j € B}.
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ReMARK 1. If Q; is the trivial linear manifold {0}, then p, = 0, p, is empty,
and the basis is empty.

COROLLARY 1. The space R’ is equal to (X) {R'i: j e B}.

LEMMA 2. If (+, +), is the conventional inner product on R for any finite set J, then
(2.4) (Qisen X7 Qjen YN = Ilien (X7, Yy,
for all x'9 and y'9 in R, j e B.

LeMMA 3. Suppose that Q;, and Q;, are linear manifolds in Ri for j € B. Then
(2.5) [®ses Q] N [®jep Lia]l = Rjen (R N Q) -

COROLLARY 2. Suppose that Q;,, k € C, are linear manifolds in R'i for je B.
Then

(2.6) Nico ®jen Lie = Rjen (Mieo Lin) -
CorOLLARY 3. If Q,,, k € C, are linear manifolds in R'; forj € B and if for some
JeB,

(2.7) Neec Qik = {0},
then
(2'8) nkeo ®jt—:B ij = {0} .

CoROLLARY 4. If for je B, Q;, and Q;, are linear manifolds in R'i such that
Q,, C Q,,, then
(2.9) Rjen Qi C Rjen Lia -

LEMMA 4. Suppose that for j e B, Q; is the direct sum of the pairwise disjoint
linear manifolds ijj C R, k;es;, s, =1. If Q= ®{Q;:]e B}, then

(2.10) Q= D{Rjen Qir,;: kellen s}

RemMARk. If V;, je C, are linear manifolds in a vector space V such that
V;nV, ={0}if j + j’, then the direct sum of these linear manifolds is defined as
@{V;:jeCl= {2 x?: xPeV;, jeC}.

The linear manifolds ¥, j € C, are said to be pairwise disjoint (see Hoffman and

Kunze (1961, pages 154-155)).

LEMMA 5. Suppose that Q;, and Q;, are linear manifolds in R'; for j e B, and
suppose that for some j* € B, Q ., and Q;., are orthogonal. Then Q, = @ {Q;,: j € B}
and Q, = ® {Q;,: j € B} are orthogonal.

COROLLARY 5. If in Lemma 4, the linear manifolds Qj, , k; € 5;, are pairwise
orthogonal for j € B, then Q is the direct sum of the pairwise orthogonal linear mani-

folds @ {Qy,.: je B}, kel {s;:] e B}
LEMMA 6. Suppose that Q = Q) {Q;: j € B}, where Q; is a linear manifold in R"i
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for j e B, and suppose that B,, k € §, s = 2, are nonempty pairwise disjoint sets with
union B. Forkes, xeRY, andicl, let

Tix =X, .
Then Q is the set of x in RY such that if i* ¢ (B — B,) = [ {I;: j € B — By}, then
{Tanix: 1" € (B} € Qjen, L -
REMARK. This lemma is used in the next section to examine constraints in

models for analysis of variance. To illustrate the meaning of the lemma, suppose
that Q, is the set of x* € R% such that

Zilell x%) =0
and suppose that Q, is the set of x® ¢ R such that x{ is constant for i,e I,.
Then by letting B, = {1}, B, = {2}, and s = 2, one finds that Q, ® Q, consists
of those x such that
Dier, Xis, = 05 ely,

and such that for a given i, € [, x, ;, is constant over i€ I,
PrOOF. Suppose M, is that set of x such that
{Tisinx: '€ I(B)}e @ {Q;: ] € By}
for all i* ¢ I(B — B,). Then it is necessary to show that
Q = ni=1 Mk .
By Corollary 2, it is sufficient to demonstrate that
M, =[®{Q;:/eB}]®[®{Ri:jeB — Bi].
To show that M, is included in N, = [R {Q;;je B}]] ® [ {R'i: je B — B}],
note that any element x of ) {R”s: j € B} may be written as
3 {T ot s 7 € I(B) ® 3(%): i* € I(B — By},
where 0(i*) € ¥ {R%i: j € B — B,} satisfies
o,(i*y=1 if i;=i%* for jeB — B,

=0 otherwise.

If x e M,, then each summand is in N, and therefore xe N,. If xe N,, then x
can be written as

ZAa(*) ® o(i*): i* e I(B — By)}
where for i* € (B — By), a(i*) e ® {Q, jeB,}. Since
T in[a(i) @ 0())] = a,(i) if =i,

=0 if i,
for all i* ¢ I(B — B,), one has

{Tiryx: "€ l(By)} = a(i*) e ®{Q;:j € Bi} -

Thus x € M,. Therefore N, = M,. The lemma now follows. []
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LeEMMA 7. The following relationships hold if forj € B, A; and C; are linear trans-
formations from R'i to R'i and E(I;) is the identity transformation on R'i:

(a) ®jcpA; =0if for someje B, A; = 0.

(b) Rjen E(J;) = E().

(©) [®jes 4l[®jes Cil = @jes (4;C;)

(D) [Rjer A;]* = Rjep A;*, where A;* is the adjoint of A;.

(€) P(RjepA;) = Rjes F(A;), where F2(A;) is the range of A;.

(f) [®jen As1x = Tier % Qjen A;09% forall x € R, where fori; e I, i/ e I;,
and j € B, 5;;}":" is0ifi/ +i;and 1if i) =i,

Proor. Results (a), (b), and (c) are straightforward generalizations of results
in Halmos (1958, page 96). To prove (d), note that for x; and z; in R, j € B,
Lemma 2 implies that

([Rjes 451 Rjen Xjs RjenZ) = (Rjer4;%5 Qjen 2;);
= Mjen (A% 23)1;
(2.11) = [lien (% 45%2)s;
= (®jen X Qjen 42
= (Rjen X [Rjen Ai*] Djen i) -

To prove (e), note that if x; e Z2(A4;) for j € B, then for each j € B, there exists
z;€ R’i such that x; = A4;z;. Thus

(2.12) Rien*; = [Rijen 4] Djen zi € B(Qjen 45) -
Conversely, if x e 2(® {A4;: j € B}), then for some k and z,¥, je B, lek,

(2.13) X = [®jes A;] Dt Qien 2,V = Nl Qe 4,2, € Qe F(A)) -
Thus (e) must hold.
Result (f) follows from the definition of ) {4,: j € B} since
X = Dier X Rjep 095 . 0
LemMA 8. If the orthogonal projection on Q; is Py forj € B, then the orthogonal
projection Py on Q = Q) {Q;: je B} is ® {Py,: j € B}.
REMARK. In the case B = {1, 2}, this lemma is given by Rao and Mitra (1971.
page 119).
Proor. Note that since
[@jes Pnjlz = Qjen Pann,-
= ®jeB Pnj s
[@jeB Pnj]* = ®jeB Pﬁkj
= @jeB Pnj P
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and
FAQjen Pnj) = Qjes %(Pnj)
= Qjes s
& {Py, : j € B} is the orthogonal projection on Q (see Halmos (1958, page 146)). []

LemMA 9. If for some subset C of B, X is a random variable on R''® with mean
¢ and covariance operator Y, then for any constant z € R*~9, X ® z has mean
¢ ® z and covariance operator ||z||} 5_¢, L ® Pypane)-

REMARK. As in Kruskal (1961), the covariance operator J; is the linear trans-
formation such that for # and v in RI‘®,

Cov [(#, X), (v; X)] = (, XL V)rcc) -
Proor. If v e R"? and w e R"®~%, then (v ® w, X ® z), has expected value

E('v Qw, XQ Z)I = E[(’U, X)I(C’)(w’ Z)I(B—C)]
(2.14) = (¥ re(Ws D1z-c)
—w®w, 1 ®2),
and variance
(2'15) Var (1) Qw, X® 7)) = [(W’ z)ma_c*)]2 Var (’U’ X))
= [(W; 2)1z-0) S (¥s L V)1cy -

Since

(2.16) P = (_w’_z)z(c') z,
et (2, 2) 10

it follows that

@.17). Var @ ® w, X® 2); = [12|os(¥» Poenter®) 150V X2 ¥)rccy
= HZlB(C)(/U ® w, [2: ® Pspan‘z)]fv ® W)I .

These results imply that X ® z has expected value # ® z and covariance operator

”Z”%(C) I ® Pspan(z) . D

3. Direct products and models for analysis of variance. In the models con-
sidered in this paper, factors j e B are present, where B is a nonempty set of d
elements. Factors are divided into sets D,, k € §, s = 1, such that for k ¢ 5, all
factors je D, are completely crossed. For any k > 1 such that k < s, a set
S, C k — 1 exists such that the factors in D, are nested within all factors in N, =
U {D,: e S,} and completely crossed with the factors C, = {D,: le k — 1 — S,}.
If k = 1, one may define C, and N, as the empty set 5. It should be noted that
if D, C N, and D,, C N,.,, then D, C N,,,. The possible factor levels are de-
scribed by finite index sets I, j e B, with r; = 1 elements, where each factor
jeD,, kes§, has levels {i;,: j’e N, U {j}} € (N, U {j}).

For each i € I, an observation Y, is taken for which factors j € D,, k € 5, are at
levels {i; : j'e€ N, U {j}}. This observation is assumed to satisfy the equation

— 4 @
(3.1) Yy = Zlaes Aipiencan T e eijpienen »
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where &7 and & are nonempty classes of subsets of B such that if 4e % U &,
then for 1 < k <5, 4 n D, + @ implies that 4 n N, = @. The set N(4) is de-
fined as the union of 4 and J {N,: A n D, # @, 1 < k < s}.

The vectors @ = {a,: i € I(N(A))}, A € 57, are fixed effects such that a‘e
w(A), where

(3.2) (A4) = [@jea (PPH] @ [@ {R'3: ] € N(4) — 4}]

and A9 = {1: i; e I} is the unit vector of R’i. By Lemma 6, a“ ¢ w(4) if and
only if a“ satisfies the constraints

(3.3) Dlattipelui; =ik Vje NA) — {j*}} =0

for all j* € 4 and i* € I(N(A) — {j*}).
If Ge &, then e = {e,%: i € I(N(G))} is a vector of random effects with mean
0 and covariance operator

Xo = ZA{b(G, G)Pye: G C N(G)}
(3-4) = 2L {50, O)[®{Q;: /e G'Y]
Q[ {P;:]eN(G) — G'}]: G’ C NG)},
where {6(G, G'): G’ C N(G), G ¢ ¥} is included in some set O,
(3.3)  AG @) =[@{{H"}:je Y B[R {span (A"} : je N(G) — G'}],

P, is the orthogonal projection on span {49}, and Q; = E(I;) — P, is the orthogo-
nal projection on {A?}*. It should be noted that Corollary 5 implies that the
linear manifolds A(G, G’), G’ C N(G), are mutually orthogonal. By Lemma 8,

(3.6) RIY@) = @ {A(G, G'): G' < N(G)} .

Since J; must be nonnegative definite, 5(G, G') = 0 for G’ ¢ N(G), and b(G,
G') > 0 for G’ C N(G) if and only if Y, is positive definite (see Halmos (1958,
pages 153 and 156)). In the case where 5(G, G') = g, for G’ < N(G), it follows
from Halmos (1958, pages 147-148) that

(3.7 Le = 05"E(NG)) »

the covariance operator when Var (e,f) = o, for i € I(N(G)) and Cov (e, €%) = 0
for i e I(N(G)), i’ € I(N(G)), i + i'.

In general, (3.4) is equivalent to the assumption that the covariance structure
of e is permutation invariant in the sense that for each G’ < N(G) there exists a
¢(G, G') such that if i € I(N(G)), i’ € I(N(G)), i; = i; for jeG’, and i; # i/ for
J € N(G) — G, then Cov (¢, ef) = ¢(G, G'). To prove this assertion, first suppose
that (3.4) holds. Since

(3.8) e = (€% Qj;en)0) 1w »

where ‘9% is defined as in Lemma 7 for j € Band i; € I;, Lemma 2 then implies
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that
Cov (e, €f)
(3.9) = (Rjene 09, Lo Pjena 0w
= X {&(G, G")II {(87, Q;0'7%"),,: je G"}]
X [II (892, P;09"%37), 2 j & N(G) G"}]: G" < NG)} .
Since

P;34i) = _1_ A

r;

it follows that if i; = i}/ for j € G’ and i; i} for j € N(G) — G’, then
¢(G, G') = Cov (ef, €%)
(3.10) = 2 {s(6", 6")5(G, GIII{(1 — 1/r):je G’ n G"}]
= [II{r;: /e N(G) — G' n G"}]: G" C N(G)},
where s(G’, G”) is 1 if G”” — G”" n G’ has an even number of elements and s(G’,
G") is —1 otherwise. Similar calculations may be used to show that whenever
Cov (e, €§) = ¢(G, G') for all ie I(N(G)), i’ € (N(G)), i; =i; for jeG and
i; # ij for je N(G) — G’, then (3.4) holds with
(3.11)  b(G, G") = 3 {c(G, G")s(G", G') [[ {r; — 1:j € [N(G) — G']
n [NG) — G"]}: G” < N(G)} .
To place the discussion in the remainder of the section on a more concrete
level, it is useful to consider the following example.

ExampLE 1. Scheffé (1959, pages 276-278) considers an experiment in which
factors 1 and 4 are completely crossed, factor 2 is nested within factors 1 and 4,
factor 3 is completely crossed with factors 1, 2, and 4, and factor 5, which rep-
resents random error, is nested within the remaining four factors. In the model
considered, D, = {1,4}, D, = {2}, D, = {3}, D, = {5}, S, = {1}, Ss = @, S, =
{1, 2, 3}, and Y satisfies

Vi, = €% + i) + i) + ad + el + el + el + )
+ iiz:isu + eiizgz:) + ei1i2i3i4i5 ’
where
Tigal = Fn,all = Ynalld = s, et = 0.
Thus & = {®, {1}, {3}, {1, 3}} and & = {{4}, {2}, {1, 4}, {3, 4}, {2, 3}, {1, 3, 4},
{5}}. The vectors e!¥, !, e!t4), 4], ¢®3) ¢34 and e all have mean O, and
it is assumed that

1,4} {3,4} —_ 1,3,4}) 1,3,
:11=1 eili,i) - 213-1 e1.31,4) Zia 1 zlizz3z4 Zza leilzau, Z"l 161(’1131:)
=0.
To obtain these constraints, one may assume that (G, G’) = ¢4 if G € & and

{1,3} n G C G’ and b(G, G') = 0 otherwise. The model in this example belongs
to the general class of models for which B is divided into sets B, and B,, where
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the factors je B, are fixed in advance and the factors j e B, are regarded as
sampled from an infinite population. In such models, any 4 e .o satisfies the
condition that N(4) C B, and for any Ge &, N(G) n B, + @, b(G, G') = o/’ if
G'e N(G)and B, n G C G’, and (G, G') = 0if G’ — N(G)and B, n G ¢ G'.

3.1. The mean and covariance operator of Y. The vector Y may be written as
(3.12) Y=, Q[R{r?:je B — N(A)}]
+ Zeer Q[ (A je B — NG)}] .
By Lemmas 8 and 9, Y has expected value

(.13) #=acs @ Q[Q{1V:]e B — NA}
and covariance operator

L= Zoex[II{r;:j€B = NG} Le ®[®{P;: )€ B — NG)}]
(3.14) = Yigew Larcne 8(G, G {r;:je B — NGHI®{Q;: /e G'}]
®[®{P;:jeB — Gl
= Xocs d(G’)PA(G') ’
where
(3.15) d(G") = ¥, {b(G,G") [ {r;: je B— N(G)}: G’ C N(G),Ge ¥}
and

(3:16)  AG) = [®ee (K9} 1@ [® {span (1) : j e B — G'}].
To describe the vector ;2 more thoroughly, suppose that if 4€. %" U &, then

(3.17) Q(A) = w(4) @ [® {span {9 : je B — N(A)}]
= @{AA): 4 C A4 C NAY,

where the linear manifolds A(4’), 4 C A’ C N(A), are orthogonal (see (3.2),
(3.16), and Corollary 5). Consider the following theorem:

THEOREM 1. The linear manifolds Q(A), A € &7, are mutually orthogonal.

Proor. Since the linear manifolds A(4), 4 C B, are mutually orthogonal,
(3.17) implies that it is only necessary to show that if 4, e %, 4,¢e %, and
A, # A,, then there exists no 4’ ¢ B for which 4, ¢ A’ € N(4,), i =1 or 2.
To do so, let k be the largest integer, 1 < k < s, such that 4, n D, + 4, n D,
and suppose that 4, € 4’ C N(4,), i = 1 or 2. Either one of the two sets 4, N D,
and 4, n D, is empty or neither of the sets is empty. In the first case, suppose
A, n D, = @. Then in order for A’ to contain 4, and be contained in N(A4,), it
must be the case that for some k¥’ > k, D, ¢ N,, and 4, n D,, + ¢. However,
for such a k', A4, n D, = A, n D, but 4, n N,, 5 A, n D, + &, a contradic-
tion. If neither 4, n D, nor 4, n D, is empty, then N(4,) n D, = A, n D, and
NA4)ynD,=A4A,nD,. Thus A . nD,c A'nD,c A4,n D, and A4, N D, C
A’ n D, C A4, n D,, which implies that 4, n D, = 4, n D,, a contradiction. []
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Given this theorem, it follows that z ¢ Q, where

(3.18) Q= Due, AA)
=@{AA): AC A C NA), de .57} .

Conversely, if 4 e Q, then yu satisfies (3.13) for some unique a“ e w(A), Ae 7.

The covariance operator Y] is always permutation-invariant in the sense that
Cov (Y,, Yy) = ¢/(G') if G’ C B, i; =i} for jeG', and i; + i/ for je B —G'.
Whether J determines {6(G, G')} depends on the size of the set ©. If Y is per-
mutation-invariant and p € Q, then Y satisfies (3.1) for some choice of & and O,
for one may let ¥ = {B}and }}, = Y.

3.2. Least squares and Gauss-Markov estimation. If Y is assumed. to be a
multiple of the identity operator E(I), then the least squares estimator 4 = P,Y
of 4 is well known to be the minimum variance linear unbiased (Gauss-Markov)
estimator of y (see Kruskal (1961)). Animportant feature of the models examined
in this section is that 2 has the property that if 4Y is a linear estimator of y such
that Ax = x forall xe Q, and if e Q and J] satisfies (3.14) for some {6(G, G'):
G’ C N(G), Ge £} e 0, then for all xe R,

(3.19) Var (x, fi) < Var (x, AY).

Following Eaton (1970), 2 may be called a Gauss-Markov estimator of s.

To verify that 4 has the desired property, it suffices to show that Y Q, the.
image of Q under ¥, is included in Q whenever Y satisfies (3.14) for some
{6(G, G')} € ©. This claim follows since if x € A(A’), 4 C A’ C N(A), then (3.14)
implies that

(3.20) Lx =dA)x.
This observation has been made previously by Kruskal (1968) and Eaton (1970)
for the case in which B has a single element 1 and
Y, = a® 4 e,
where E(e') = 0 and J; = J],, has the permutation-invariance property that
Cov (Y,, Y,)) = po* for i i’ and Var (Y,) = o*forie I = I,.

3.3. Sampling properties of least squares estimators. The mean and covariance
operator of i are easily found by reference to Rao (1965, page 438), (3.14), and
(3.18). Since

(3.21) Py =3 {Pyuy: AC A C N(A), Ae 7},
the mean of 2 = P,Y is ¢ and the covariance operator P, Y P, satisfies
(3.22) Py X Py = X {d(A)Pyi: AC A" C N(A), Ae 7} .

To examine least squares estimators of the fixed effects a4, 4 ¢ .97, the well-
known observation is used that the least squares estimate of a linear functional
(x, p); of p is (x, fi);, which is equal to (x, Y), if x € Q (see Kruskal (1961)).
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Since whenever z ¢ R¥¥4) for some 4 € %, (3.13) and (3.16) imply that

(2, @) 1wy
(3.23) = (QQ{#":je B — NAW, ! Q[ {h7: ] e B — MAN]),
IT{r;:je B — N(4)}
=(@®[Q{h?:jeB — NN Paco):/IL {r;: ] € B — N(A)}
= Pon? @@ {H?:je B — N, p),/I1 {r;: ] e B — N(4)},
it follows that the least squares estimator of (z, a4),y ), is
(Poa? @[ {12 je B — N(AN, Y),/I1 {r;: J € B — N(A)}
(3.24) = (Pyny?> ¥ pwany
= (2, Pos 7" ) rivcan »
where P¥4 = (P : ' ¢ IN(A))} is the vector of averages of Y, such that
i; =i for je N(A). In general, if i’ € I(4), A C B,
(3.25) V4= {Y,iieli} X (B — AYI[{r,:jeB — A}.
Given Lemma 7, Lemma 8, (3.2), and (3.24), the least squares estimator a* of

a# may be written

AA VN4)
@t =P, Y

(3.26) = [®jea (B(I;) — Py)1 ® [® {E(I)): j € N(A) — A}JY¥
= {Z{IT{(—=D:jeNA) — AV jea: AT A C N(A}:
i € I(N(A4))} .

Thus the least squares estimator of (z, a4), .y, 18 (Z, @)1 weay -
By (3.24) and Lemmas 2 and 8, (z, @4),y.4,, has expected value (z, a*);v4)
and variance

(3.27) Pow? @R :je B— NAY, X [Ponz ®[Q (12 € B— N(AY)),
[T1 {r;:/ € B — N(A)
— 2 {dANPy 4, a2 [iwan s A C A" C N(A)} .
1L {r;:jeB — NA)}
Since the covariance operator of @4 is determined by Var (z, @4) for z ¢ RV,
it follows that @“ has expected value a# and covariance operator
(3.28) Cov (a4) = 21 A)Pruan: AC A € NA)}
II{r;:je B — N(4)}
In this formula, it should be noted that
(3.29) (AT {r;:j € B — N(4))
= 3 {b(G, A)/T] {r;: je N(G) — N(A)}: Ge &, A' C G}.
If d(A')=d(A) for AC A’ N(A), then Cov (@4) is [d(A)/T] {r;:] € B—N(A)}IP,4)-
To complete the description of the covariance structure of the estimators &4,
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A e &7, it should be noted that these estimators are uncorrelated. To prove this
assertion, note that if z;, ¢ R?“¥41) and z,e R*W4), where 4, and A4, are in &,
then the covariance of (z,, @41) and (z,, @) is

(Pw(Al)Zl Q[ {#?:je B — N(A)},
L (Posyz @[ (A9 : j € B — N(A})),
(3.30) + [II{r;:je B — N(AYII {r;: j e B — N(4z)}]
= (0 ®[®{r:je B — N4,
Pouy XL Paup{2: @ [@ {11 j e B — N(A)H)),
+ [II{r;:je B — N(ANIL {r;: je B — N(4)}],
which is 0 since Theorem 1, (3.14), and (3.17) imply that Py, X Pyes, = 0.

If Y has a multivariate normal distribution, then the estimators &4, 4 € ., have
multivariate normal distributions and are independent.

ExaMmpLE 2. To illustrate the sampling results in this section, consider the
experiment described in Example 1. Since M(@) = @, N({1}) = {1}, N({3}) = {3},
and N({1, 3}) = {1, 3}, it is only necessary to compute d(®), d({1}), d({3}), and
d({1, 3}) to describe the covariance structure of the least squares estimators.
Since N(2)) = {1,2,4}, N({4)) = {4}, N({1,4)) = (1,4}, N(3,4)) =34},
N({2,3}) ={1,2,3,4}, N({1,3,4})={1,3,4}, and N({5) =1{1,2,3,4,5),
(3.15) implies that

(3.31) d(D) = ryryoly, + nnrnrol, +
(3.32) d({1}) = ryryoty + nrrol,, + ol
(3.33) d({3}) = nrrols, + rolys + oty
and

(3.34) ;d({l’ 3D) = rots s + oy, -

By (3.22), the covariance of i is

d(@)PA((Z)) + d({l})PA((li) + d({3})PA((3)) + d({l’ 3})PA([1,3}) 2
while (3.28) and the fact that A(4, 4) = w(A) for 4e % imply that

N ol a? a?
(3.35) Var (@%) = Il 4 T 4 T
nrr, r, nrrsrrg
2 (22 2
A — 1% 1,4 O
(3.36) Cov (a") = {_ % 9 lp
rr, I rrsnr
2 2 2
(3.37) Cov (a%) = {Zlon 4 Thar Ol Lp .
I, nrr, nrrry
and
2 2 2
g g g
A3 — | 92,8 {1,3,4) 5)
(3.38) Cov (@ )_{ + + }PM,S,).
7, r, IR
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Within the general class of models described in Example 1, one has
(3.39) dA") = X {o T {r;:jeB— N@G)}: B,n GC A’ C NG),Ge &}

for Ac A" N(A), Ae & U ¥. Given Ae .7, d(A4’) is constant for all A’
such that 4 © 4" C N(A4). To prove this assertion, it is sufficient to show that
for Ge &, B, n G C A C N(G) if and only if B, n G < N(A) C N(G).

If B, n G c 4 c N(G), then the relationship 4 C N(A) implies that B, N G C
N(A). Foreach D,, 1 <k <s, An D, + @ implies that G n D, D> A n D, or
G n D, = @ and D, C N, for some &’ such that G n D,, = @. In either case
NA)ynD,=AnD,c NG)n D,. If An D, = @ butD, C N, for some k’ such
that 4 n D,, + @, then G n D,, #+ @ or for some k", D,, € N,,,and G n D,,, +
@. Ineither case N(4) n D, = D, = N(G) n D,. Thus B, n G C N(4) C N(G).

On the other hand, if B, N G C N(A) C N(G), then the relationship 4 c N(A)
implies that 4 C N(G). For each D,, 1 <k < s, An D, #+ @ implies that
B.nGnD,cAnD, If AnD,= @ but D, C N,, for some k' such that
ANnD, + @,thenG n D, + @ or for some k", G N D,,, + @ and D,, C N,...
In either case, B, N G n D, = @. Thus B, n G C A C N(G).

Since d(A’) is constant for 4 ¢ A’ C N(A4) for a given Ae ., (3.17) and
(3.22) imply that the covariance operator of # is

ZAGM d(A)PO(A) 4

and for 4 e &7,
Cov (a*) = .d(A) P,
IL{r;:jeB — N(A)}
(3.40) = [ {o /I {r;: ] € N(G) — N(A)}: B, n G C A C NG),
Ge TP,y -

3.4. Sampling properties of sums of squares and mean squares. AsKruskal (1961)
notes, the sum of squares for the factorsin 4e . U ZisSS, = ||Py,,Y]||,* and
the corresponding mean square MS,, is SS,/dim Q(4). If 4 %7, then the argu-
ment used in (3.26) may be used to show that

(3.41) SS, = Il {r;:j € B — N(A}|@*|[7war
and

(3.42) MS, =TJ[{r;:jeB — N(4)}é?,
where

(3.43) G, = a[7 v

[ {r:je NA) — A Tea (r; — 1)
If Aec &, Ag¢ 7, it is still the case that

(3.44) SS, = I {r;:j€B — NAYIPuty 77|t ixear »
where P, ,, Y74 satisfies the last two equations of (3.26). If

||Pw(A)YN(A)||§(N(A))

(3.45) 3. . ;
[II{r;:je N(A) — AN I ea (r; — 1)
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then
(3.46) MS, = [[{r;:je B — N(A)}é..

The sum of squares and mean squares may be used to estimate the covariance
operators Cov (a4), 4 € %, and to test hypotheses concerning at, Ae &7, and
Cov (¢%), G ¢ &. In this section, expected values of SS, and MS, are computed,
and the distributions of these statistics are determined under the assumption that
Y has a multivariate normal distribution.

The following theorem provides expressions for E(SS,) and E(MS,) for
Ae 7 U Z. As explained in Section 4, this theorem explicitly proves and
generalizes results of Cornfield and Tukey (1956).

THEOREM 2. If Ae 57, then
(3.47) E(SS,) = X {d(A) Tjen (r; — 1) A C A" C N(A)}

+ [I[{r;:jeB— NNz v
and

_ s [AAII{L = 1r;ije A’ — A}]. '
(3.48)  E(MS,) = ¥ { e AcAc N(A)}

+ [I1{r;:je B — N(AD}o s,

where

(3.49) ol = Il ]17 v can )
[I1{r;:jeN(A) — AN IL;ea(r; — 1)
IfGe Y, G¢ 7, then

(3.50) E(SSg) = 3 {d(G") Tljeq (r; — 1): G C G’ C N(A)}

and

_ v [d@II{1 —1/r;:jeG — G}]. ,
(3.51)  EMS,) = ¥ { D T GG c N(G)} .

Proor. To compute E(SS,) for Ae & U &, observe that (3.17) implies that
(3:52) E||Poa Yl = El|Paca(Y — o)l + 1Pacarell*
= S HEIPyun(Y — s A C 4" NA} + [Pacorlls” -
By (3.14), P,4,(Y — p) has covariance operator d(A)P,,. If Ae 57, (3.13)
and Lemma 2 imply that
(3.53) 1Pacopll? = llat @ [® {492 j e B — NI
= [II{r;:jeB — N(AHlle*||zavean »
while if A€ &, A ¢ 57, then

(3.54) [Pacall =0 -
Since by Lemma 1 and (3.16),
(3.55) dim A(4") = [Jjen (r; — 1)

it follows from (3.52) and Rao (1965, page 180) that (3.47) and (3.50) hold.
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Since by Lemma 1, (3.2), and (3.17),
(3.56) dim Q(4) = [[Tje (r; — DL {rs* J e N(4) — 4},
(3.48) and (3.51) follow. []
COROLLARY 6. If Ac ¥ and d(A') = d(A) for A c A" C N(A), then
(3.37) ESS,) = [Msea (rs — DI {r;: j € N(A4) — A}]d(4)
+ [IL{r;:J € B — N(AHlla*|[zvean

and

(3.38) EMS,) = d(4) + [ {r;; /€ B — N(A)}lo,* .
If Ge &, G¢ 7, and d(G') = d(G) for G C G’ C N(A), then
(3-59) E(SSg) = [ILjeq (r; — DIIL {r;: j € N(G) — G}] d(G)
and

(3.60) EMS,;) = d(G) .

If Y has a multivariate normal distribution, then the sampling properties of
SS, are summarized by the following theorem.

THEOREM 3. If Y has a multivariate normal distribution, then the sums of squares
SS,, Ae & U &, are independent and SS,, Aec & U &, is distributed as the sum
S {dAN(A'): A A C NA)},
where the y*(A"), A < A" C N(A), are independent noncentral chi-square random

variables with T] {r; — 1: j € A’} degrees of freedom and noncentrality parameter
(A", If Ac &, A¢ 7, then 0(A") = 0. If Ae 7, then

(3.61) o(A’) = [1I {r;: j € B — NCAN|IPacu,an@*|[ivcan/d(A’) -
If d(A') = d(A) for A c A" C N(A), then SS,/d(A) has a noncentral chi-square dis-

tribution with [I] {r;: je N(A) — A} II {r; — 1:je A} degrees of freedom and
noncentrality parameter y(A). If Aec &, A¢ 7, then y(A) = 0. If Ae 57, then

(3-62) r(4) = [11 {r;: j e B — N(AH[la*|[7ycan/d(A) -

Proor. The first formula follows from Rao (1965, pages 150-153) and (3.55)
since
(3.63) Pacny Y1l = ZAllPsan Yl 4 A" C N(A)},
where P, ,,,Y has covariance operator d(4")P,,.,. If Ae &7, P, ,,,Y has expected
value P, , ,ha? @ [Q {h9:je B — N(A)}], while if Ae &, A¢ &, P, ,,Y has
expected value 0. The independence of the SS,, 4 e % U &, follows from Rao
(1965, page 152) since Py, ) Yo Pou, is O whenever 4, # A,. If d(A4') = d(A) for
A C A" C N(A), then it follows from Rao (1965, page 147) that the sum SS ,/d(A4)
of the y*(4’), A © A’ C N(A), has a noncentral chi-square distribution with

(3.64) Y {Iljew (r; — 1): AC A' C N(A)}
= [II{r;:jeNA) — A 1 ea(r; — 1)
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degrees of freedom and noncentrality parameter

(3.65) T {o(A): A A  N(A)} = 7(A) . i
ExampLE 3. In Example 1, the covariance operators of @2, &', @, and a'*%

may be estimated by noting that by (3.39) and (3.60),

EMS,) _ _d({4}

(3.66)
nrrnr nrrrry
= _G%?_)_ + ﬂ 0?6)
nnr, r, IR AN
(3.67) EMS,,.) _ 4(1, 4}
Iy ryr3hyry
— 9l + Tl + ol
nr r, IS
(3.68) EMS;,,) _ 4(3, 4D
nrnr nrhrs
— 0'?8,4) + 0‘?2,3) + 0‘?6) ,
r, nryr, nrr T
and
(3.69) E(MS(I,&A)) — d({1$ 39 4})

s LT
— oha + Tl 5. + ol
r2 r4 r4 r2 r4 rb

(see Scheffé (1959, pages 286-287)).

4. Application to the pigeonhole model. In this section, the results of Section
3 areapplied to a general version of the pigeonhole model of Cornfield and Tukey
(1956). In this model, a table Z = {Z,.: i;* e 7;*, j € B} is given, where I;* con-
tains r;* > r; > 1 elements. The observed levels of the factors of the table Y =
{Y,:i;eF; je B}are chosen by random sampling from the levels of the factors
of Z so that
(4'1) Yi=Z.,
where (i) = {r;({i;: j'e{j} U N,}): je D}, ke §}. For each je D,, ke 5, and
{i;:JeN} {e;{ih: J e{j} U N if eFyy iy =i V) € Ny} is a random sample
without replacement from the integers of r*.

fY={GcB:G+@,6NnD,=porGNN,=@,1l <k<s}, then Y
satisfies
(4.2) Yi=a® + Jlges eﬁ'j:jezv(an )
where the e, G € &, have expectation 0, are uncorrelated, and satisfy
(4.3)  Cov(¢f) = a5 Z{II{l —ry/r*:Je GN[NG) — G'|}Pra: G C N(G)}

for some o,2. Thus Y satisfies (3.1).
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To show that Y has this form, it is first necessary to show that E(Y,) is constant
foralliel =[] {f;: jeB). Sinceificlandi*el* = [[{r;*:jeB},

(4.4) Ple(i) = i*} = ] en 7"
4.5) EY)=0a?= Y ucnZus/lljenr;*-
To define e for Ge &, let h,'? = {1:i*er*},
(4.6) 04(6) = [Qjee (A} ] Q[ (R j € N(G) — G}],

@7 A(G) = [®yer (1} ®[® {span (k) : je B — G},
and
(4.8) 2,(G) = 0,(6G) ® [ {span {h,"}: j € B — N(G)}]

=@ {A,(G): Gc G’ c NG)}.
Observe that if G’ C B, then G C G’ C N(G) and G ¢ Zif
(4.9) G=G@ —-U{GNN,:GCnD,#+@,1<k<s}.
Given Theorem 1, it follows that from Corollaries 1 and 5 that
(4.10) R = @ge, 2,(G) -
As a consequence
(4.11) Z = 3lges Po0rZ

= Zioer & Q[ {1 je B — NG},

where as in (3.25) and (3.26),
(4.12) e, = P, 29,
and for ie I*(G) = [] {r,*: je G} and G C B,
(4.13) Zf =Y {Zu:i*ei' X I*(B— G)}/II {r;*:je B — G}.
Given e,% G e &, ¢ may be defined by the equations
(4.14) ef =eS zq>
where Ge 7, ie I(N(G)), and (G, i) = {r,({i;: j'e{j} U N,}): je D, n N(G),

ke s}. Given (4.1), (4.11), and (4.14), Y satisfies (4.2) for the given choice of
e, Ge L.

It isnow necessary to show that the e are uncorrelated, have expectation 0, and
satisfy (4.3). To show that E(ef) = 0 for G ¢ &, note that for any i* ¢ I*(N(G)),
4.15)  Plr(fiy: ) e{j} n N)) =i* VjeN@G)} = 1[I {r;*: je NG)}.
Thus for i € I(N(G)), G e &,

(4.16) E(ef) = Lld: i* e M(NG))}
II {ry*: j e N(G)}
_ (® {9 j e NG)}, PosrZ™ ) pvweny .
II {r;*: j e N(G)}

By (4.6) and Lemma 2, E(ef) = 0.
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To show that the e are uncorrelated, suppose that Ge 2, G’ 2, and G + G'.
Suppose that k' is the largest integer such that G n D,, # G’ n D,,, and choose
j” so that j” € G’ n Dy, but j” ¢ G. Given ¢ ,({if’: j' e {j} U N,}), i;" €F;s j€ Dy,
j #j", ke s, the conditional expected value of efef’, i € I(N(G)), i’ € (N(G")), is

1 ; o g S s . ok TR
—— g D {eSn i = ({fy ) e (YU N, # T T € D ke s, i er*}s

rk,

which by Lemma 6, (4.6), and (4.12) must be 0. Thus the unconditional ex-
pected value of e % is also 0. Since E(e,”) = E(ef’) = 0, Cov (e, €¢') is 0 and
e’ and e are uncorrelated.

To determine the covariance structure of e¢ for G € &, suppose that i € I(N(G)),
i’ € N(G)), i; = i; for je G' and i; # i; for j € N(G) — G'. Suppose first that
N(G) — G ¢ G'. Then forsome;"” € Dy, k'€ 5, N,, ¢ G', and the conditional ex-
pected value of efef given z,({i}': j' € {j} U Ni}), i, €Fj je Dy, 1 +J", kes,is

r_'*_g Z {er*e*t" l = Ta({l j’ .I € {.]} U Nk})
i % = ;({i5: J e {J} U N, T qu",jeD,,,kef,i,,er ¥ ikker)
1 . g e o TF
@.17) [ Bt i = ey e U) 0 M) e |
i
X [ T et 170 = 5 €GN0 N 57 € |
=0.
Thus E(eS¢) = 0. If N(G) — G c G’ and j” € N(G) — G', then j" e G and the
conditional expected value of eSS given 7,({i,: j € {j} U Ni}), i €F, je D,
J#J', kes, is
1 ; S s
Z {e*t*e*t**: i* = T;i({lj’ : .]' € {]} U Nk})’
r; X r* — rx—1
i =i/ J e/} U M)
(4.18) jeD,, kes, it er®, ikrer®, it # it

1 1 ' 2 0. g .
ot — T {efneho: i* = (i) e (J} U N
J J
i = T,-({l 1J e} v N
jeD,, kes, i ,,_1*,’,"er*}

Therefore,

(4.19) E(efet) = —— !

* _
r;

- Eleet)

where i/ = i} for je N(G), j # ", and i;”" = i;. By induction,

(4.20) E(eel) = [H {— P 1_

-

jeN©) - Gﬂ E(eSy
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where

.21 E(ef) = |

|Pw*(G’)ZN(G)||§*(N(G)) .
II{r;*:jeN@G)}
Thus € has a permutation-invariant covariance structure. If
2 = ”Pwn((G)ZN(G)”%*(N(G)) ,

(L {r;*:je N@G) — GH I {r;* — 1:je G}
then (3.11) implies that
(4.23) Cov (e%) = ¥ {b(G, G")P,(g.¢,,: G C N(G)},
where for G’ C N(G),

b(G, G")

=o' 2 { Mo (7 55) | {- g2/ 80) - 07}
X [T {r; — 1: € [NM(G) — G'] n [N(G) — G"]}]
(4.24) s(G", G"): N(G) — G c G" N(G)]-

= 0| Toeo (o) [ {1 = Z2= 1t j e 6 0 [NG) — 67
r 1

ri* i
X[H{l-}- 1 :jeGnGﬂ
ri*—1
=0 [[{l —ry/r;*:jeGn[NG) — G'}.
Hence (4.3) holds.
By (3.26), the grand mean @? = Y7 is the Gauss-Markov estimate of ?. By
(3.15) and (3.28), the variance of Y2 is

(4.22) o4

(@) 2 i
4.25 =3 {o 1 —r;r*:jeG
(4.25) [, ) € B 2 Ao II {1 — ryfry*: j € G}]
X (I {r;:je B — NG)]: Ge T} .
Special cases of this formula are given in Wilks (1962, pages 228 and 231).

To find expected mean squares MS;, G e &, note that since 4 C N(G) is
equivalent to N(A4) C N(G) for A e & and since A € N(G) implies that N(4) —
A c N(G) — G, it follows that for any 4’, 4 C 4’ C N(A),

(4.26)  d(4) = T A{o 1L {1 —ryfry*:jeG 0 [NG) — A]}]
X [II{r;:jeB — N(G)}]: A c N@G),G' e Z}.
By Corollary 6,
(4.27)  EMS;) = T {op[II{1 — ryfrj*:je 6" 0 [N(G') — G]}]
X [I1{r;:jeB — NG)}]: G NG'),Ge T}.
This equation is explicitly derived by Cornfield and Tukey (1956) in the case of
the r X c table with n observations per cell and in the case of the r X ¢ X s table
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with n observations per cell. The general rule provided by (4.27) is stated but
not explicitly proven.

(1]
[2]
(3]
[4]
[3]
(6]
(7]
(8]

[]

[10]
[11]
[12]
[13]
(14]
[15]
[16]

[17]
(18]

REFERENCES

CoRNFIELD, J. and TUKEY, J. W. (1956). Average values of mean squares in factorials.
Ann. Math. Statist. 27 907-949.

EAToON, M. L. (1970). Gauss-Markov estimation for multivariate linear models: a coordi-
nate-free approach. Ann. Math. Statist. 41 528-538.

Goop, I. J. (1958). The interaction algorithm and practical Fourier analysis. J. Roy. Sta-
tist. Soc. Ser. B 20 361-372.

HABERMAN, S. J. (1974). The Analysis of Frequency Data. Univ. of Chicago Press.

HaLMos, P. (1958). Finite-dimensional Vector Spaces. Van Nostrand, Princeton.

HorrMmaN, K. and KuNzg, R. (1961). Linear Algebra. Prentice-Hall, Englewood Cliffs, N. J.

KEeMPTHORNE, O. and WiLk, M. (1955). Fixed, mixed, and random models. J. Amer. Sta-
tist. Assoc. 50 1144-1167.

KEeMPTHORNE, O. and WILK, M. (1956). Some aspects of the analysis of factorial experi-
ments in a completely randomized design. Ann. Math. Statist. 27 950-985.

KruskAL, W. H. (1961). The coordinate-free approach to Gauss-Markov estimation, and
its applications to missing and extra observations. Fourth Berkeley Symp. Math. Sta-
tist. Prob. 1435-451. Univ. of California Press.

KruskaL, W. H. (1968). When are least squares and Gauss-Markov estimators identical?
A coordinate-free approach. Ann. Math. Statist. 39 70-75.

Loowmrs, L. and STERNBERG, S. (1968). Advanced Calculus. Addison-Wesley, Reading, Mass.

Rao, C. R. (1965). Linear Statistical Inference and Its Applications. Wiley, New York.

RAo, C. R. and MrtRa4, S. K. (1971). Generalized Inverse of Matrices and Its Applications.
Wiley, New York.

ScHEeFrE, H. (19562). A “‘mixed model”” for the analysis of variance. Ann. Math. Statist.
27 23-36.

ScHEFFE, H. (1956b). Alternative models for the analysis of variance. Ann. Math. Statist.
27 251-271.

ScHeFFE, H. (1959). The Analysis of Variance. Wiley, New York.

WILKs, S. S. (1962). Mathematical Statistics. Wiley, New York.

ZyskIND, G. (1962). On structure, relation, 7, and expectation of mean squares. Sankhya
Ser. A 24 115-148.

DEPARTMENT OF STATISTICS
UNIVERSITY OF CHICAGO
118 EAST 58TH STREET
CHICAGO, ILLINOIS



