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THE RATE OF CONVERGENCE OF CONSISTENT
POINT ESTIMATORS!

By James C. Fu
University of Toronto

The rate at which the probability Py{|t, — 6| = ¢} of consistent estima-
tor ¢, tends to zero is of great importance in large sample theory of point
estimation. The main tools available at present for finding the rate are
Bernstein-Chernoff-Bahadur’s theorem and Sanov’s theorem. In this pa-
per, we give two new techniques for finding the rate of convergence of
certain consistent estimators. By using these techniques, we have obtained
an upper bound for the rate of convergence of consistent estimators based
on sample quantities and proved that the sample median is an asymptotic-
ally efficient estimator in Bahadur’s sense if and only if the underlying
distribution is double-exponential. Furthermore, we have proved that the
Bahadur asymptotic relative efficiency of sample mean and sample median
coincides with the classical Pitman asymptotic relative efficiency.

1. Introduction and summary. Let 27 be an abstract sample space with a
Borel field <& and o-finite measure ¢ on <. Let {P,: § € O} be a family of
probability measures on <%, where the parameter space © is an open subset of
the real line. We assume, for each ¢ € ©, that P, has a density function f(. | ).
Let s = (x,, Xx,, - - - ad inf) be a sequence of independent identically distributed
(i.i.d.) random variables with common probability measure P,, where ¢ belongs
to O.

Let ¢, be any consistent estimator, and let a(z,, ¢, 6) = Py{|t, — 0| > ¢} for
¢ > 0. It has been proved ([1], [2] and [4]) that the following inequalities hold:

(1.1)  liminf, % log a(t,, ¢, §) = —inf, {K(0", 0); |0" — 6] > ¢},

and

(1.2) lim inf,_, lim inf, . e_:'; log a(t,, ¢, ) = —3K(6) ,

where K(¢’, 6) is the Kullback-Liebler information of P, with respect to P,, and
I(6) is Fisher’s information of P,; and that the maximum likelihood estimator
9n is asymptotically optimal in the following sense; i.e.,

1

(1.3) lim,_, lim,_,, — log «(8,, ¢, ) = —41(0) .
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In general, the rate at which the probability a(z,, ¢, §) tends to zero for a con-
sistent estimator is very difficult to obtain. The main tools available at present
for finding the rate are the Bernstein-Chernoff-Bahadur theorem [3] and Sanov’s
theorem [6]. In Section 2, two new techniques for finding the rate at which
a(t,, ¢, ) tends to zero are introduced, and a generalization of Bahadur’s
inequality is obtained. Section 3 studies the rate of convergence of certain
consistent estimators for the location parameter, and proves that the sample
median is an asymptotically efficient estimator in Bahadur’s sense if and only
if the underlying distribution is double-exponential. Section 4 shows that the
Bahadur asymptotic relative efficiency of the mean %, and the median x,;, coin-
cides with the classical Pitman asymptotic relative efficiency for the location
parameter.

2. Main theorems.

THEOREM 2.1. Let t, be an estimator for 0 having density function f,(t | 0) which
satisfies the following conditions:

(A) foreach 8, f,(t|0) is continuous and mode(s) of f,(t|6) approach 6 as n — oo;

(B) foreach 8, r(t, 0) = lim,_,, n="log f,(t|0) is continuous in t at 6 + ¢;

(C) there exists a sequence {a,} such that

Pﬂ{lt'n _ 0] g ¢+ an} —
falbn £ ¢]0)

lim,_,, —1— loga, =0 and lim sup, .. _!_ log
n n

Then
@.1) lim,_.. L log a(t,, ¢, ) = max (r(6 + ¢, 6), K8 — <, 8)) .
n

Proor. Let 0 be an arbitrarily small positive constant. It follows from con-
ditions (A) and (C) that the inequalities
(2.2) 0fa(0 + ¢+ 0|0) < Pyft, > 0 + ¢} < (a, + e™)f,(0 + ¢|0)
and
(23) 0 —e—8|0) S Pyft, < 0 — ¢} < (a, + €)fo(0 — ¢]0)
hold for all n sufficiently large. Since 0 is arbitrary the result (2.1) follows
immediately from condition (B) and equations (2.2) and (2.3). [J

If the parameter space © is bounded then the result (2.1) holds without con-
dition (C).
In many statistical estimation problems, the log-likelihood ratio statistic

A (t.(s s S', 0) = _1_10 fn(tn(s)loi)

{60520 = 5108 9 10)
of a consistent estimator ¢, usually converges (under P,,) almost surely to some
nonzero positive constant, say, R(¢’, ¢). The following theorem shows, for
certain types of consistent estimators, that the rate at which a(z,, ¢, 6) tends to
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zero is the same as the rate at which exp[ —n infy, {R(0', 0); |6" — 0| > ¢} + o(n)]
tends to zero.

THEOREM 2.2. Let t, be a consistent estimator having density function f,(t|6)
and satisfying the following conditions:

(D) forevery 0, 6' € © there exists a constant R(0', 0) such that lim, _, 2,(,(s),
0',0) = R(0', 0) a.s. [P, ];

(E) foreach n, A,(t, 0', 0) is a non-decreasing function of t if ¢’ > 0, and is
non-increasing if ¢’ < 6 (monotonic likelihood ratio).

Then
(2.4) lim”_,m_l_ log a(t,, ¢, 0) = —inf,, {R(¢', 0): 'lé’ — 0] > ¢}
n
= —infy, {K(¢',0): |0’ — 0] > ¢}.

Proor. The inequality part of (2.4) is an immediate consequence of Theorem
4.1 of Kullback [5], condition (D) and Fatou’s lemma.
It follows from condition (D) and the consistency of the estimator ¢, that

(2.5) lim inf, 1 log a(t,, ¢, 0) = —inf,, {R(¢",0): |0' — 0] > ¢}.
n
It follows directly from condition (E) that
(2.6) lim sup,,ﬁ_l_ log a(t,, ¢, 0) < —inf,, {R(0', 0): 10" — 6] > ¢}.
n

The equality part of (2.4) follows from (2.5) and (2.6). []

THEOREM 2.3. Let t, be a consistent estimator for 0 based on k statistics
uy(S), Ug(S), +  +, uy(s). Assume that uy(s), ---, u,(s) have joint density function
fultty, + -+, u, | 0) which satisfies the following condition

(F) for every 0, 6’ € ©, there exists a constant R(0', 0) such that

. 1y fultyy e 1| 0) ,
lim,_,, — log L=t k = R(¢', 0) a.s. [Py]
O Ly e 1,0) ’

asn — oo. Then
@.7)  lim inf,,_m_,ll_ log a(t,, ¢, 6) = —inf,, (R(', 0): |0 — 0] > ¢}
= —inf, {K(0',0): 10" — 6] > ¢}.
Proof. The proof is the same as the first part of the proof of Theorem 2.2.

It is well known (Kullback [5]) that K(¢’, 6) is a locally convex function of §":
i.e., K(0', 0) = 11(6)(0" — 6)* + o((0' — 6)*). In many cases, R(¢,0) is also a
locally convex function of ¢’ and there exists a positive constant §(¢) such that
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R0, 0) = 3B(0)(0" — 6)* + o((6' — 6)*). If this is the case, we may conclude
(2.8) lim,_,lim inf,_ _21_ log a(t,, ¢, 0) = —3B8(0) = —31(9) .
&n

3. The rate of convergence of certain consistent estimators for the location
parameter. Let {x;;: i =1, ..., n} be the ordered observations of a sample of
i.i.d. observations (x,, - - -, x,) from a common population having density func-
tion f(x — ) with location parameter # ¢ ©. We assume f(x) satisfies the follow-
ing conditions: (a) f(x) > 0 forall x, and f(c0) = lim,_, f(x) = 0, (b) f(—x) =
f(x), () f(x) is continuous and piece-wise differentiable, and (d) f has finite
Fisher’s information I(f) for the location parameter. This family of densities
covers Normal, Logistic, Double Exponential, and Cauchy, of interest in both
statistical theory and practice.

For every f satisfying conditions (a) through (d) we define, for 2 ¢ [0, ],

A=4 , =)
3.1 L 2) =2 [_f_(____ =)y
(3.1) B D) R
where 1 — 2 = F~!(1 — 2) is the (1 — ) 100-percent population quantile.
Let 1, bea consistent estimator based on k sample quantiles, say, x, ,,- - -, X3,
where 0 =2, <A=4=4, -, 4, =4 =1 —-2A=Z 4, =1and 2€][0, §].

THEOREM 3.1. If the condition
(G) SUPgizs [A4s — Az = 0 as k— o

is satisfied, then

. . .. 1
(3.2) lim,_, lim_,liminf, yo log a(t,, ¢, 0) = —1B(f, ) = —3I(f) .

PrOOF. Let f, (X, « -+, X, | 0) be the joint density function of the k sample
quantiles. It follows from the consistency of sample quantiles that

lim

_1_ 10 fn(x(ll)s MR ] x(lk) Ie,)
n Salxags ==+ Xy |0)
= R(¢’, )
(3-3) = N8 (& — A)log (F(4, + 0|0') — F(4,4 + 6]06"))
— log (F(4; + 0|0) — F(4;_, + 6]0))},
a.s. [P, ], where 6 = ¢’ — @ and 4, = F,~(2,). For d sufficiently small, Taylor’s
expansion of R(#’, ) about ¢’ in the neighborhood of 8 is

(3.4) R, 6) = ?gﬁ(f, 2, k) + o),

where

Bfs 4, k) = f”<i 19) , ,a = 219) 4 s <f(ii|02) :f;@_,w»{
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The result (3.2) follows immediately from Theorem 2.3, condition (G), the mean
value theorem, and equation (3.4). []

THEOREM 3.2. Let x,, be the estimator for the location parameter 0; then
(3.5) lim,_, lim, —1_2 log a(x,, ¢, 0) = —2f*(0) .
ne

Proor. Since ¢ is a location parameter, the random variable y = F(x|#6) is
uniformly distributed in [0, 1] for all 6 € © and a(x,, ¢, 0) = P{|y,, — 4| > 0},
where 0 = F(0 + ¢|0) — F(0|0) = F(6|0) — F(6 — ¢|8). The result (3.5) fol-
lows from Theorem 2.1 and the following Taylor’s expansion:

lim, .. L log a(xy), e, 6) = log 2 + } log F(6 + ¢ |8)(1 — F(6 + ¢|6))
n
= —2f%0)e* + o(c?) . 0
THEOREM 3.3. The median x,,, is asymptotically efficient in Bahadur’s sense; i.e.,
. . 1
(3.6) lim,_, lim, _,, — log a(x,, &, 0) = —3I(f) »

if and only if the underlying distribution is a double exponential distribution with
density f(x) = $1}(f) exp{—P(f)|x]}-
Proor. It follows from the definition of B(f, 2) that 8(f, 2) is a non-increasing

function and I(f) = B(f> A) = 4f*(0) for all 2¢[0, 4]. If I(f) = 4f*0) then
B(f 2) = I(f) for all 1€ [0, 4]; i.e., for all x > 0

) « (1C)* ge — 1
+ dé = 1I(f) .
= A 5 70 (/)
The necessity part follows directly by solving the above integral equation. The
sufficiency is an immediate consequence of Theorem 3.2. []

REMARK 1. All the results in this section could be obtained under a different
set of regularity conditions (e.g., existence of moment generating function) by
using Bahadur’s technique.

REMARK 2. Theorem 3.3 may also be proved via the Cauchy-Schwarz in-
equality.

4. A measure of asymptotic relative efficiency for consistent estimators of
the location parameter. Let ¢,V and 7, be two consistent estimators for 6.
We denote 8, = lim,_,lim,_,, (’n)~* log a(t,”, ¢, 0) for i = 1, 2. For the case in
which one of the quantities 8, or 3, is nonzero (i.e., at least one of the estima-
tors £,V or ¢, converges exponentially to #), the ratio

._ABI
4.1 L= B,>0
4.1) € 3 By >

2
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serves as a meaningful measure of the asymptotic relative efficiency of z,®
relative to ¢, (Bahadur’s ARE).

THEOREM 4.1. Assume that the moment generating function ¢(r) = §=,, e**f(x) dx
exists for t in an open interval around zero. Then
1

20?

2

(4.2) B(6) = lim,_, lim,_, 1 log a(z,, ¢, 0) = —
ne

where ¢* = >, x*f(x) dx.

Proor. Since # is a location parameter we can assume that § = 0. Let
P(t, ) = e"*¢(t) and p(e) = inf,,,e~*¢(¢). The existence of ¢() for ¢ in an open
interval around zero implies there exists a unique 7(e) = (¢/a®)(1 + o(1)) such
that p(e) = ¢(z(¢), ). From Bahadur’s theorem and the expansion of log ¢(z, ¢),
we obtain, for ¢ sufficiently small:

@.3)  lim,_. L loga(z,, ¢, 0) = log p(e) = log ¢(z, <)
n

= K(@)e(e) + ki) = 1 o(ee),

where k,(¢) = —¢ and k,(¢) = o® + ¢*are the first two cumulants of x — ¢. This
completes the proof.

THEOREM 4.2. The asymptotic efficiency of X, relative to the median x,, is
(4.4) €s,0)(0) = (49%X0))7" .

Proor. This result is a direct consequence of Theorem 3.2 and Theorem 4.1.

We recognize the result (4.4) as the classical measure of asymptotic relative
efficiency of x, with respect to x,, based on their asymptotic variances. It shows,
in this case, that the classical Pitman measure of asymptotic relative efficiency
and the ARE defined by (4.1) coincide.
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