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INVARIANT NORMAL MODELS

By STEEN ANDERSSON
University of Copenhagen

Many hypotheses in the multidimensional normal distribution are
given or can be given by symmetries or, in other words, invariance. This
means that the variances are invariant under a given subgroup of the gen-
eral linear group in the vector space of observations. In this paper we define
aclass of hypotheses, the Invariant Normal Models, including all symmetry
hypotheses. We derive the maximum likelihood estimator of the mean and
variance and its distribution under the hypothesis. The value of the paper
lies in the mathematical formulation of the theory and in the general results
about hypotheses given by symmetries. Especially the formulation gives
an easy simultaneous derivation of the real, complex and quaternion version
of the Wishart distribution. Furthermore, we show that every invariant
normal model with mean-value zero can be obtained by a symmetry.

1. Introduction and summary. In the statistical theory for the multidimen-
sional normal distribution symmetry hypotheses in the covariance play a fun-
damental role. Anderson [1], Consul [8], James [10], Votaw [16], Wilks [15],
Arnold [2], and Olkin and Press [14] have investigated some special cases, but
a general theory seems not to exist. (Compare however Maclaren [13]). In this
paper we define a class of statistical models for the multidimensional normal
distribution in terms of conditions on its mean and covariance. These models will
be called invariant normal models and include in particular all models specified
by symmetries of the covariance, as well as the linear models for the mean.

Let &2 be the real field and let GL_(<#%) denote the group of all regular
N x N matrices. For g € GL (27), g’ denotes the transposed matrix. .&_(#"),
denotes the set of N X N regular covariance matrices (positive definite matrices).
S (2"), is closed under addition and multiplication by positive constants. For
a family P £ & (#"), we define L P) = {ge GL_(#")|VOecP: g'0g = 0},
ZA(P) is a subgroup in GL ,(Z#"). If I, denotes the identity N X N matrix, then
ZA{1,}) is the orthogonal group O, in GL _(#"). Conversely, for a family
G C GL _(#") we define FA(G) = {0 € & (#7),|VgeG: g'8g = 0}. F(G)is
also closed under addition and multiplication by positive constants. Now we
can establish the following definition. A family P & &7_(2"), is said to be
reflexive if (Z(P)) = P. It is trivial to see that every family of the form (G)
for a family G < GL_(#") is reflexive. The family of covariance matrices
arising from n independent observations from a normal distribution on Z? with
mean value zero and unknown regular covariance is a well-known example of a
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reflexive family on 27", Such a family is said to have a real covariance struc-
ture and the corresponding model is called a mean-zero real normal model. The
real covariance structure on 2*" is given by

P.ez’ = {Z ®a I, e yﬁ(%pn)r , Ze yg(%z’)r} s

where
0 . . .0
0
@1, = .
. . 0
o . . . 0 X
APg) = I, ® 5 g€ GL(F"™)|g € 0,}, where g = (g,,) and
glllp ¢ ¢ ¢ glnlp
Ip ®g g =
gnllp ¢ ¢ ¢ gnnlp

Clearly FA(AP)) = P_,.

The group homomorphism II: 0, — GL (<2*") defined by I(9) =1,® ¢
is an example of a group representation of the group O, on the vector space
G over Z. P, is precisely the family of regular covariance matrices invari.
ant under II, which is thus another way of characterizing the families we are
investigating.

We shall now define two more examples of reflexive families. First let &
denote the field of complex numbers represented by {x + iy|x, ye #} and
i* = —1. Define Re (x + iy) = x and I(x + iy) = y.

Let #(Z7), denote the set of conjugate symmetrical positive definite p x p
matrices of complex numbers. For A € &, (£7), the real (2p) X (2p) matrix

|:Re (A4) I(A4) :|

—1(A) Re(A)

is symmetric and positive definite. Let & (2), denote the subset in . o (F™),
of elements constructed in this way from elements in F(E?),.

Similarly, let 52 denote the division algebra over .2 of quaternion numbers
represented by {x + iv + jw + ku|x, v, w, ueZY), P=p=~K=—1, ij=
—Jji=k,jk = —kj = iand ki = —ik =j. Define Re(x + iv + jw + ku) = x,
I(x 4+ v + jw + ku) = v, J(x + v + jw + ku) = wandK(x+i1)+jw—|—ku) = u.
S (F£7?), is defined in the same manner as FAE"),. For Ae F, (FF7), the
(4p) X (4p) matrix

Re(4)  I(A)  JA)  K(A)
—I(A) Re(d) KA) —J(A)
—J(4) —K(A) Re(4) I4)
—K(4) J(A) —IA) Re(d)
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will be symmetric and positive definite. .7 ("), is defined in the same manner
as F _(F#*),.

The family of covariance matrices arising from n independent observations
from a normal distribution on .Z2%[92*7] with an unknown covariance in the
family .7 (#*),[-F .(#"*?),] and mean value zero is also an example of a
reflexive family on #*?[Z2***]. Such a family is said to have a complex
[quaternion] covariance structure and the corresponding normal model is called
a mean-zero complex [quaternion] normal model.

In this paper it will be shown that a family of regular covariance matrices is
reflexive if and only if it is a finite product of families of regular covariance
matrices with each factor possessing a real, complex or quaternion structure.
A mean-zero normal model is called reflexive if the family of regular covariance
matrices is reflexive. We can then state the result above as: A mean-zero normal
model is reflexive if and only if it is a finite product of models with each model
being a real, complex or quaternion normal model. For a reflexive normal
model we derive the maximum likelihood estimator and its distribution.

The normal models arising from a family of normal distributions on &%
which are invariant under a subgroup G in the symmetric group &, of order N
are in the literature called symmetry models. Some examples are the following:

(1) G = &, gives the normal model for complete symmetry, Wilks [15].

(2) G the cyclic subgroup in &, gives the circular stationary normal model,
Olkin and Press, [14].

(3) G=F, x -+ x Sy, where BV =P x ... x F is called the
compound symmetry normal model, Votaw [16],
and

(4) G = S,, where #¥ = 2" ® " is another normal model for compound
symmetry.

All symmetry normal models are special cases of the following general formu-
lation of a mean-zero normal model.

Let G be a group and I1: G — GL (") a group representation. The mean-
zero normal model arising from the family FAII(G)) & & ,(#"), is called a
mean-zero invariant model. A mean-zero invariant model is reflexive and there-
fore a product of real models, complex models and quaternion models. Since
the representation theory plays a fundamental role, we shall make a few com-
ments about that. A representation II on 27 is called irreducible if {0} and 2%
are the only Il-invariant subspaces in 2" and II is called reducible if #" is a
direct sum of I-invariant subspaces and the restrictions of II to the subspaces
are irreducible.

Since the decomposition of a reducible representation in irreducible parts is
not unique, it is a better idea first to decompose the representation in the iso-
tropic representations (a representation is isotropic if it is a direct sum of equiv-
alent irreducible representations). This decomposition is unique. An isotropic
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representation decomposes in a unique way in tensor products (with respect to
different division algebras) of the identity representation and an irreducible
representation. This decomposition of a reducible representation in a direct sum
of tensor products is unique. The decomposition of II is not easily expressed in
terms of the canonical basis in 2" and it is therefore more convenient to replace
Z" by an abstract finite dimensional vector space E over 2. This formulation
seems to be unusual in multivariate analysis. Usually one works with a vector
space with a fixed basis (<#") or with a fixed inner product. In such a formu-
lation the positive forms and the positive linear mappings are usually confused.
But these two objects transform in a different way if the transformation of the
underlying space is given by a nonorthogonal linear mapping. Also one cannot
distinguish between results which depend on the choice of inner product and
those that do not. This is one of the reasons that a general theory for covariance
models seems to be lacking.

The existing literature contains many examples of normal models and it is the
purpose of this paper to give a general formulation of a family of statistical
models containing these examples as special cases in which the estimation problem
can be solved. We will give a formulation, using simple algebra methods and
the theory of invariant measures.

Now we can reformulate the definitions. Let E be a finite dimensional vector
space over &2 and let GL_(E) be the group of regular linear mappings on E.
& (E), is the positive definite forms on E. Notice that it does not make sense
to talk about the unit form in S (E),, the eigenvalues of a positive form in
& (E), and the orthogonal subgroup in GL (E), since no basis or inner product
has been chosen. Further, one cannot identify a positive form and a linear
mapping.

We shall now give a short resumé of the paper. In the second section we give
the basic notations and definitions. Section 3 contains a careful treatment of
the more and less well-known theory of sesquilinear functionals on vectorspaces
over %, & or S¢ and the relation to the positive semi-definite forms. In par-
ticular we define a general tensor product of positive forms. The representation
theory and the reflexive families of positive forms are surveyed in the next
section. In Section 5 we define the normal distribution and the invariant normal
model. Further, we find the maximum likelihood estimator and its distribution.
Finally, in the last section we give the results in matrix formulation and illustrate
the theory with some examples.

The general idea of an invariant formulation of the multi-dimensional normal
models arose from H. Brgns, one of the authors of [7]. In the paper [7], Brgns,
Henningsen and Jensen give an invariant definition and treatment of a canonical
hypothesis, which is a class of normal models. This class is with respect to the
covariance structure, precisely all finite products of real normal models. The
canonical hypothesis includes all models treated in Anderson [1], Consul [8],
Olkin and Press [14], Votaw [16] and Wilks[15]. The present paper arose from
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the supposition that all hypotheses given by symmetries of the covariance matrix
were canonical. It turns out that this supposition is wrong. Nevertheless, if
one includes the division algebras " and 57" and generalizes the definition of
the canonical hypothesis in a straightforward manner, one obtains the invariant
normal model that includes all symmetry models. Section 5 is therefore only a
generalization of the content of [7]. The examples in Section 6 were already
treated in a thesis by Jensen.

2. Notation. Let .22 denote the real field, < the complex field and 5# the
division algebra over 2 of quaternions. <7 denotes a division algebra over &%
isomorphic to %, € or 5#. There exists a unique conjugation in & (Bourbaki,
[3], Chapter III, Section 2, No. 4, Proposition 4). This will be written d — d,
de 2. We define Re(d) = §(d + d), de Z. Note that Re(d,d,) = Re(d,d)),
dy, d,e . We use the abbreviation left [right] Z-space for a finite dimensional
left [right] vector space over 7. The scalar multiplication in a left [right] -
space E will be denoted (d, x) — dx [(d, x) — xd], xe E,de Z. L_(E, F)denotes
the linear mappings from the left [right] Z-space E to the left [right] Z-space
F. Since & is an algebra over .7, every left [right] Z-space E is, by restricting
the scalars to 2 < &, also in a natural way an &% space. L_(E, F) can in a
natural way be organized as a C(&Z)-space, where C(<Z2) is the center of Z.
We always consider L_(E, F) as an .“#-space, since % < C(<Z). L_(E, E) is an
algebra over &%. GL_(E) is the group of regular elements in L_(E, E). 1,
denotes the identity mapping of E. We define E* = L_(E, D) and (E_)* =
L_(E, &#); E* and (E_)* are both right [left] Z-spaces by the definitions
(d, x*) — (x — x*(x)d) [(x > dx*(x))] and (d, x ,*) — (x — x , *(dx)) [(x — x , *(xd))]-
The conjugate Z-space E is a right [left] Z-space by the definition on (d, x) —
dx[xd]. For further details see Bourbaki [3] and [5].

3. Positive forms. Let E be a left [right] Z-space.

3.1. DEFINITION. A right [left] sesquilinear symmetric and positive functional
is a mapping B: E x E — <7 with the properties:

@) Vx,x',yeE: B(x + x',y) = B(x,y) + B(x', x) .

(ii) Vx,y,y'e E: B(x,y +)') = B(x,y) + B(x,)') -

(iii) Vx,yeE,VYde & B(dx,y) = dB(x, y) .
[(iii’) Vx,yeE, Yde : B(xd, y) = dB(x, y).]

(iv) Vx,yeE,Vde Z: B(x,dy) = B(x, y)d .
[(iv") Vx,ycE,Vde Z: B(x, yd) = B(x, y)d.]

(v) Vx,yeE: B(x,y) = B(y, x) .

(vi) Vx,yeE: B(x,x) = 0.
A sesquilinear, symmetric and positive functional is called definite if
(vii) VxeE: x#0=B(x,x) >0.

In the case & = %, we call B a positive (definite) form.
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&_(E) denotes the semi-vector space over .5, of right [left] sesquilinear,
symmetric and positive functionals. & (E), denotes the definite elements in
S _(E).

3.2. For Be & (E) we set Q(x) = B(x, x), and we have the identity

Vx,ye E: 2(B(x, y) + B(y, x)) = Q(x +y) — Q(x — )
which shows that B is determined by its values on the diagonal in E X E. We
have
for = .#2; Vx,yeE: B(x,y) = {Q(x +y) — Q(x — ),
for 9 =%,
Vx,yeE,Vde Z:
(d — d)B(x, y)
= 3(dQ(x +y) — dO(x — y) — Q(x + dy) + O(x — dy))
[(d — d)B(x, y)
= $(dQ(x +y) — dO(x — y) — dQ(x + yd) + Q(x — yd))] ,
and
for 9= 257,
Vx,yeE,Vd,ec Z:
2B(x, y)(de — &d)
= Q(x — dey) — Q(x + dey) + dQ(x + ey) — dQ(x — ey)
+ Q(x + dy)e — Q(x — dy)é + dQ(x — y)é
— dQ(x + y)e .
[2(de — ed)B(y, x)
= Q(x — yde) — Q(x + yde) + dQ(x + ye) — dQ(x — ye)
+ Q(x + yd)e — Q(x — yd)e 4 dQ(x — y)e
— dO(x + y)e]
The first two formulas are well known and the last one is easily verified.

3.3. Remark, that & (E) = &, (E).

3.4. DEFINITION. An element ¢ € & (E) is said to have the conjugated 7-
property if Vx,yeE, Vde Z: ¢(dx, y) = ¢(x, dy) [¢(xd, y) = ¢(x, yd)]. Let
& _(E) denote the subsemi-vector space in &7 (E) of elements having the
conjugated Z-property. Remark, & _(E)=F ,(E) and & _(E)=% _(E),
& _(E), denotes the definite elements in & _(E).

3.5. PROPOSITION. Let Be & (E), then Re o Be & _(E). The mapping

R: S (E)— & (E)
B —->ReoB

is a semilinear one-to-one correspondence. R(S,(E),) = F _(E),.
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Proor. Let Ebe a left “I-space. Vx,ye E,Vde Z: Re(B(dx, y)) = Re(dB(x,
»)) = Re(B(x, y)d) = Re(B(x, dy)), which shows that Re o Be .5 _(E). Note,
that in the case &0 = %~ we do not have the identity B(dx, y) = B(x, dy). From
the formulas in 3.2 it follows that R is a one-to-one correspondence. The rest
of the proposition is trivial. The case of E being a right Z-space is analogous.

3.6. Let F be a left [right] Z-space. If 4e & (E) and Be &, (F), then
R(A @© B) = R(A) ® R(B).

3.7. The mapping
0:E*—>(Eg)*, x* — Re o x*

gives a natural isomorphism between the FZ-spaces E* and (E_)*. Let now
B e & (E). The mapping

frt E— E*
Yy — (x = B(x, y))[y — (x — B(y, x))]

is linear and f; is a bijection if and only if B is definite ([5], Section 7, No. 1,
Proposition 2).

In the same way we can define the #-linear mapping f, 5 : E — (E_)*. It
is easy to see that f;, 5, = 0 o f5.

3.8. DEFINITION. Let Be &, (E),. The element B~'¢ &, (E*), defined by
Bl E* X E* >
(%, y*) = B(f57(<*), f57(0"))

is called the inverse to B.

3.9. PrOPOSITION. Let Be &, (E),. Then R(B*) = R(B)™! if we identify E*
and (E )* through 0.

PROOF. R(B)™(0(x*), 0(y*)) = R(B)(fzi,(0(x*)): [2m(0(¥*))) = R(B)(f5~"(x*)
[57(r%)) = Re(B(f7(x%), f57(y¥)) = Re(B7(x*, y*)) = R(B7)(x*, y*).

3.10. Letnow Fbe a right Z-space and L a left Z-space. The tensor product
F®_ L is not in general a Z-space, but only a vector space over the center of
<. We always consider F ®_, L as an Z#-space, since 7 always is a subalgebra
of the center of 7. Remark that FQ_ L =L ®_F.

We shall say that a mapping W: F x L — M, where M is an “-space, has
the Z-property if W is “Z-bilinear and Yfe F,VieL,Vde Z: W(fd, ) =
W(f, dl). Every “#-bilinear mapping W: F X L — M having the Z-property
determines one and only one .Z-linear mapping W’: F®_, L — M with the
property Vfe F,¥le L: W'(f®_l) = W(f, ) ([3], Chapter2, Section 3, No. I,
Proposition 1).

LetXe & (F)and ¢ ¢ & _(L). X and ¢ determine 4 ¢ &, (F)and Be &/ (L)
by £ = R(A) and ¢ = R(B) (Proposition 3.5).
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The mapping
0:(FxLyX (FxL)y— <%
(L Lf, 1) > Re(A(f, f)B(L, I'))
has the property, Vd,ec 2, Vf,f e F,YI,I'e L: 6(fd, 1, f'e,I"y=0(f, dl, [, el’).
From ([3], Chapter 2, Section 3, No. 9, Remarque 2) it follows that ¢ determines

one and only one Z#-bilinear functional p on F ®_, L with the property o(f®_ 1,
f®, 1) =0(f, L, f,I'). Itis easily seen that p e & _(F®,, L).

3.11. DerINITION. The positive form on the “#-space F ®_, L defined above
is called the Z-tensor product of Z and ¢. We denote it T ®_, ¢.

3.12. Remark for & = 2 the above Z-tensor product is the usual tensor
product of positive forms.
The mapping

g: F*®_L* - (F®,_ L)*
[*®5 I = (f &5 I — Re(*(Df*(/)))
defines an Z-isomorphism between the “Z-spaces F* ®_ L* and (F ®_ L)*.
3.13. ProPOSITION. Let Ze & _(F)and ¢ ¢ & _(L). Then £ Q®_ ¢ isdefinite

if and only if ¥ and ¢ are definite. In that case (L Q®_ ¢)™ = X' Q. ¢~ if we
identify (F ®_, L)* and F* ®_ L* through ¢ defined above.
Proor. Let 4 and B be defined by £ = R(A) and ¢ = R(B). The mapping
0,: Fx L—F*®_ L*
(f+ D)= 1) ®s full)
has the Z-property and defines therefore a mapping f, ®_, f5: F®_L— F*®_L*.
From the identity ¢(/.(f) ®.fa() = (/' ®, ' = Re(fu(N/ Vo)) =
(f' ®, I" = Re(A(f, f)B(l, I))) it follows that frg_s = ¢ o (f4 ®, fa)-
Now for I*, * ¢ L* and f*, f,* ¢ F* we have
E R ¢TI ® %, i* ®, 1)
= Re(47(f*, )BT, %))
= Re (AL ) fa (FNBU7HT), f571(07))
= (2 Qs O)(fa B fa)(f* Bz "), (f4 ®s f2) fi* B 1))
= (2 Qs $)([23,4(¢(f* B2 1)) fra o $(/i* B 1))
= Z Bz $)HH* ®, 1), §(fi* B h¥)) -
3.14. Let L, and L, be left Z-spaces and let e & _(F), ¢, € F _(L,) and

¢y € F (L)-
Then

z ®g (¢, D ¢y) = (Z X, $) D (E X, $a)

if we identify F®_ (L, ® L,) and (FQ_ L,) ® (F®_ L,) through the natural
F-space isomorphism.
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3.15. Let L,, L,, ¢,, ¢, be as in 3.14, then (¢, D ¢,)"' = ¢, D ¢, if we
identify (L, @ L,)* and L,* @ L,* through the natural .Z2-space isomorphism.

4. Positive forms invariant under a representation.

4.1. DEFINITION. A representation of a group G on an “%-space E is a homo-
morphism 7 of the group G into the group GL_(E). E will be called the
representation space for . The dimension of = is the dimension of E. If z is a
representation of G, then E is in a natural way a left module over the algebra
RO over A ([4], Section 13, No. 1, Remarque).

4.2. Let 7 and p be two representations of G on the #-spaces E, and E,,.

DEFINITION. A representation-morphism from =z to p is an -linear operator
f from E_ to E, with the property Yge G: fo a(g) = p(9) o f. L(z, p) denotes
the space of representation-morphisms from z to p. L(m, p) is an FZ-space. In
the case 7 = p, L(x, =) will be an algebra over .

4.3. L(m, p) is the same as the <2@-modul homomorphism from the 2-
modul E, to the 2@-modul E,. This ensures the existence of the following
([4]): Isomorphic representation; sub- and quotient representation; kernel, co-
kernel, image, and co-image for a representation-morphism; direct sum and
product; irreducible (simple), reducible (semi-simple), isotropic and disjoint
representations. Note that: z and p disjoint is equivalent to L(z, p) = 0. p
isotropic is equivalent to p isomorphic with a direct sum of isomorphic irreducible
representations (not necessarily in a unique way).

4.4. PROPOSITION. Let & and p be two representations (of G). For fe L(x, p)
and f + 0 we have: « irreducible = f injective, p irreducible = f surjective, and x
and p irreducible = f is an isomorphism.

The proof is trivial See [4], Section 4, No. 3, Lemma 2.

4.5. From 4.4 it follows that two irreducible representations are either disjoint
or isomorphic. Further, if 7 is irreducible, L(x, ) is a division algebra over 2.
L(x, 7) is finite dimensional. From [4], Section 11, No. 2, Theorem 2 it follows
that only the three cases below can occur.

(1) L(x, x) is isomorphic to Z. L(z, n) = {A1,]|1e Z}.

(2) L(m, ) is isomorphic to &". There exists /e L(z, ) with the property
I’ = —1, 50 L(x, w) = {21, + pl |4, pe %}

(3) L(m, ) is isomorphic to 5#. There exists I, J, K € L(x, x) with the prop-
ertiess P = =K= —1,, V= —JI = K, JK= —KJ=I1,andKI= —IK =,
so L(m, w) = {Al, + pl 4+ vJ + 7K|2, p, v, 7 € F}.

We shall say that an irreducible representation z is of type 7, if L(x, ) is
isomorphic with &.

4.6. Let & be a finite dimensional irreducible representation on the FP-space
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L. The mapping (f, x) — f(x) from L(z, =) x L into L gives L a Z-space struc-
ture, (& = L(n, n)). Note that the restriction to the reals in L(w, x) gives the
original .Z7-space structureon L. Let F be aright Z-space. The homomorphism
1, ®,7: G— GL_(F®, L) defined by g — 1, ® _, 7(g) gives a new representa-
tion on the .22 space F ®_ L. The representation 1, ®, r is n-isotropic. The
mapping (d, f) — f o d from & x L(z, 1; ®, w) into L(x, 1, ®,, x) gives L(,
1, ®_ =)a right Z-space structure. The mapping a: F — L(x, 1, ®,, =) defined
by & — (x > h®_ x) is the canonical Z-space isomorphism between F and
L(z, 1, ®_ ). Ifboth Fand F’ are right Z-spaces, the mapping S: L_(F, F') —
L(1, ®_ 7, 1, ®, x) defined by f — f ® 1, is an SZ-space isomorphism. In the
case F = F' it is also an algebra isomorphism. On the other hand, let p be a z-
isotrope representation on the ZZ-space E. Again L(x, p) is a right Z-space.
The mapping 3: L(n, p) ®, L — E defined by f ® x — f(x) is the canonical rep-
resentation isomorphism between 1, , ®_ 7 and p. If both p and p’ are z-
isotrope, the mapping 7': L(p, p') — L_(L(x, p), L(, p")) defined by u — (f—uo f)
isan “-space isomorphism. Inthecase p = o', itisalsoan algebra isomorphism.
For further details see [4], Section 1. From this and [4], Section 3, No. 4,
Proposition 9 follows:

4.7. PROPOSITION. If p is a reducible representation of G on the ZZ-space E,
then p is canonically isomorphic with a direct sum of disjoint isotropic representation
and each isotrope representation is canonically isomorphic with a representation of
the form 1, ®@_ n on the FP-space F ®, L. Here m is an irreducible representation
on the 2-space L of type 2. If o' is another reducible representation then L(p, p')
is F-isomorphic with a direct sum of -space of the form L_(F, F'), where F and
F' come from the isotropic parts of p and o' respectively.

4.8. From this we conclude that it is enough to look at representations of
the form

E = Pqeq (F, ®9,, L)

0= @qu (qu ®9q ﬂq)
where F, is a right ,-space, &, isomorphic with &, € or &, and x, an
irreducible representation of type =7, on the “Z-space L,. Let

E= @q (@teTq eq)
=D, (Deer, Tqt)

be a decomposition of p in irreducible parts, such that 7, = 7., = ¢ = ¢'.
Hence dim,, (F,) = the number of elements in T,.

4.9. DEFINITION. Let 7 be a representation of G on the S2-space E. The dual
of m is a representation 7* of G on the Z-space E* defined by (z*(g9)(x*))(x) =
x*(zm(g~")x) - x € E, x* ¢ E*, g € G. Remark: r is irreducible if type Z < n* is
irreducible of type .
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4.10. DEfFINITION. Let 7 be a representation of G on the “#-space E. A
¢ € &, (E)issaid to be n-invariant if Vg € G,V x, y € E: ¢(n(9)x, 7(g)y) = H(x, y)-
Remark: To ensure ¢ z-invariant it is enough that ¢(z(g)x, 7(g9)x) = ¢(x, x).
¢ is m-invariant if and only if f, € L(x, 7*).

4.11. LEMMA. The null space of a m-invariant positive form is z-invariant, i.e.
defines a subrepresentation.

The proof is trivial.

4.12. Note that the subrepresentation defined by the null space may not have
a complement. Therefore we shall usually assume reducibility of z. Also note
that the existence of a w-invariant positive definite form automatically gives
reducibility of z. )

4.13. PROPOSITION. Letw be arepresentation. There exists a m-invariant positive
definite form if and only if 7(G) is relatively compact.

For proof, see [6], Section 3, No. 1, Proposition 1.

4.14. PROPOSITION. Let m be an irreducible representation. Then either the null
form is the only m-invariant positive form or all m-invariant positive forms different
from the null form are definite and proportional.

Proor. The first two properties follow from Lemma 4.11. To prove that all
m-invariant positive definite forms are proportional let ¢, and ¢, be z-invariant
positive definite forms. Choose a basis for E such that ¢, is the identity matrix
and ¢, is a diagonal matrix. It is easy to see that there exists a 2 > 0, such that
A¢$, — @, is positive but not definite. The result again follows from Lemma 4.11.

4.15. Let = be an irreducible representation on the “#-space L. Hence = is
of type L(x, ). If ¢ is a m-invariant positive definite form on L, the adjoint
mapping with respect to ¢ determines an anti-isomorphism d — d* of L(r, «).
The mapping (I, I') — ¢(dl, dl') defines for all d € Z a n-invariant positive definite
formon L. From Proposition 4.14 it follows that Vd ¢ &' dd* ¢ & < L(r, «).
Since Vde Z: (d + 1)(d + 1)* e &2, it also follows that (d 4 1)(@* + 1) =
dd* 4 d + d* + 1 € &. But from this we have the property Vd e & d 4- d* ¢ .
Since the adjoint mapping on L(x, ) has the properties Yd € & d*d e &2 and
d* 4 de 7%, it follows from [4], Chapter III, Section 2, No. 4, Proposition 4
that d* = d, Vd ¢ &, and therefore also that ¢ € 7, (L)

4.16. PROPOSITION. Let m, and ©t, be two disjoint reducible representations on
the FZ-spaces E, and E, respectively. Let ¢ be a positive form on the FZ-space
E, @ E,. Then ¢ is &, @ m,-invariant if and only if the restriction ¢ |E, of ¢ to E,
is w~invariant, i = 1,2 and ¢ = ¢ |E, D ¢ | E,.

Proor. “If” is trivial. “Only if”: ¢|E, is clearly n,-invariant i = 1,2. ¢ is

m, @ m-invariant = f, € L(z, ® 7,, (7, ® 7,)*). (7, D 7,)* is isomorphic with
n* @ n,* if we identified (E, @ E,)* and E,* @ E,* through the natural .Z-space
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isomorphism ¢. Since z,* and =,* are disjoint we have ¢ o f; = f, @ f,, where
¢, = ¢|E,and ¢, = ¢ | Ey

4.17. PROPOSITION. Let p = 1, ®_ m be a m-isotropic representation of G on
the Z2-space F @, L. Let I’ be a positive form on F ®_, L. Then I is p-invariant
if and only if there exists a ¢ F _(F), such that I' = X ®_, ¢, where ¢ is a =-
invariant positive form on L.

Proor. “If” is trivial. “Only if”: If the only z-invariant positive form on
L is the trivial one it follows that ' = 0 and I' = £ ®_ 0, for £ e & _(F).
Next let ¢ be a positive definite w-invariant form on L. T is p-invariant <
fre L(p, p*). Define Be (L) by ¢ = R(B). We have f, = 0o f;(3.6). If
m* is the dual representation to = on the .#Z-space (L_)* and we define the
representation z,* on L* by n* = ~' o & o 0, m,* will be irreducible of type &
and f, € L(w, m,*). Since p* is isomorphic with 1z ®_, 7, * through ¢ (3.12) there
exists an h e L_(F, F*) such that fi. = ¢(h ®_ f;). It is easy to see that there
exists an 4 € & (F) such that # = f,. From this it follows that I' = £ ®_, ¢,
where £ = R(A).

4.18. THEOREM. Let p be a reducible representation of G on the ZZ-space E.
We identify p with its canonical decomposition p = @,cq (15, ®,, 7,). Then a
positive form I' on E is p-invariant if and only if there for every q e Q exists a
Z,eF,, (F), such that T' = @,cq (2, ®g, Pq)» Where ¢, is m ~invariant on L,.

The proof follows from 4.16 and 4.17.

4.19. CorOLLARY. If p is multiplicity free, i.e. dim_ (F,) = 1 foreveryqe Q
there exists a, > 0, such that I' = @,cq a,9,-

4.20. PROPOSITION. Let p be a representation of G on the Z%-space E. If there
exists a p-invariant positive definite form on E, then p is reducible, i.e. p =
Dqee (1p, s, m,) and for all g € Q, there exists a m -invariant positive definite form
¢, on L,. Let F(o(G)) denote the p-invariant positive forms on the F-space E.
The mapping

0: Xyeq F o,(F)) = F1(0(G))
(Zq)qu - (‘quQ (Zq ®9q ¢q)
is one-to-one. The null space of O((Z,),cq) is Dyeq (N, ®, L,), where N, is the
null space of Z,. O((Z,);cq) = Dyeq (Z, ®,, 9,) is definite if and only if Z, is
definite for all q € Q.

The proof is trivial.

4.21. COROLLARY. Let the situation be as in 4.18. Define Q' = {ge Q| L, has
only a trivial & ~invariant positive form}. The null space of a p-invariant positive
form is then @, cq (Fy @5, L)) © (Dyerer (N B, Ly))s where N, is the null space
of Z,.
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The proof is trivial.
4.22. For a family P £ .&_(E), and for a family T & GL_,(E) we define
HAP) ={9eGL_(E)|Vx,ycE, Y0 e P: 0(9(x), 9(y)) = 0(x, )}
and
AT) ={0e FHE),|Vx, ye E,VgeT: 0(g(x), 9(y)) = 0(x, y)} -
Z(P) is asubgroup in GL _(E) and Z4T) is a subset in . _(E), closed under

addition and multiplication by positive constants.

4.23. The following properties are trivial. P, & P, S & _(E), = ZAP) 2
AP, Ty S Ty & GLG(E) = A(Th) 2 AT), FACLL(E)) = @y AT H(E)) =
{—1g, 1,} and for VZ e F(E),: A(Z}) = A(AZ|1e R,})). P, + @ — Z(P)
is compact.

4.24. DEFINITION. A family P & &7 (E) is called reflexive if Z°(<(P)) = P.

4.25. ProprosiTION. F%(T) is reflexive for all families T = GL ,(E).

PrOOF. A(T) & FA(LAFAT))) is trivial. Since T & L F(T)) we also have
AT) 2 FAAAT)))-

4.26. PROPOSITION. A nonempty family P & & _(E), is reflexive if and only if
there exists a decomposition E = @,cq (F, ®,, L,) and for every qe Q a ¢, ¢
“ , (L,),> such that

q
P = {Dee(Z, ®@q $)|¥qeQ: Eq € "g-@q(Fq)r} .

Proor. For every P C & (E),, &(P) is a compact group. Therefore the
representation of Z{(P) on E defined by the imbedding of <A P) in GL _(E) is
reducible. If P is reflexive then P is defined by invariants under <A P) and the

result follows from 4.20. Conversely, let P = {P,., (Z, ®o, ) |VqeQ: X €
F o (F,)}. Let B e S, (L,), such that ¢, = S2(B,). The orthogonal group
O(B,) in the left & -space L, with respect to B, is irreducible of type 7, in the
F-space L,. Define

G, = 0(B)) if dim, (F,)>1,
=.0(g,) if dim, (F,)=1.
The group representation
quQ Gq - GL;?(E)
(gq)qu - (‘quq (IF,, ®2q gq)
is reducible and defines the family P; therefore P is reflexive (4.25).
5. The invariant normal model.

5.1. Let E be left [right] Z-space. From 3.10 it follows that the .ZZ-space
of bilinear mappings from E* x E* [E* x E*] with the Z-property can be
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identified with (E* ®_, E*)* [(E* ®,, E*)*]. The mapping:

o E®9E——>(E* ®9E~*)*’ [E®9E—> (E_'>!< ®g E*)*]

X ®g ) = (¥* g p* — Re(x*(x)y*(¥)))

is an isomorphism between .Z-spaces. This follows from (3.12) and the natural
isomorphism E = E**(x — (x* — x*(x))). Define P_(E) = {3}, x,®_x,|x, € E,
N=1,2,...}. For #eP_(E) it follows that ¢(d) e & _(E*). On the other
hand, let X e &% _(E*). Let e*, ..., e,* be a F-basis for E*, such that X is a
diagonal matrix with the nonnegative diagonal elements 2, 4,, ---, 4,. For
0= r 2%, @ 4te, where e, ---, e, is the dual basis in the Z-space E to
e*, --.,e,*, wehaveg(d) = Z. Therefore o: P_(E) — & _(E¥*)is a semilinear
isomorphism between the two semi-vector spaces over Z2,. If F is another left
[right] D-space and fe L_(E, F) we define the mapping P_(f): P,(E) — P(F)
by P(f)Z)a X, ®s x,) = XL f(%) ®, f(x,). In the case E = F, GL,(E) de-
fines a transitive left action on P_(E),(= o~ _(E*),)). The existence of a
GL_(E)-invariant measure g on P_(E),, unique up to a multiplicative positive
constant follows from (3.5) and [6], Section 3, No. 3, Example 8.

5.2. Now let E be an “#-space, 2 a Lebesgue measure on E, I' € P_,(E), and
é e E. The function
Gres E— F
x — exp[—3TX(x — §) ®., (x — &)}
is positive, continuous and A-integrable. We define n(I') = §, ¢, . dA.

DEFINITION. The regular normal distribution with variance I' € P_(E), and
mean value £ € E is the theasure

M, §) = n(T) gy, 4
on E. The set of regular normal distributions on E is denoted by . #(E).
5.3. The following properties are well known. If E = E, ® E,, '="r,er,
where T', e P_(E,), and I';e P_(E,), and & = &, @D §,, where §, € E, and &, € E,,

then
N(Fl ®r,§® Ez) = N(Fl’ 52) ® N(Fz’ 52) .

In particular
nl',®T,) = n(T)n(,) .
For fe GL ,(E) we have
SN, &) = NP ()T, f(§))

and in particular
(P 4(f)T) = |det fIn(L) .
Further,
§zxdN(, &)(x) =&
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and
§5 (x — £)®., (x — §) dN(T, &)(x) = T.
5.4. DEFINITION. A Z-normal model on E is a decomposition E = F®,,
(L @ L,) of E together with a parametrized family of regular normal distributions
on E given by the injections

mi FQ L —-FQ,(L®L,)
[Osh—f®5(0,1)
and
“i Po(F), = Po(F @ (L © Ly)),
ZoZR, (0D ¢,
where ¢ € P_(L), and ¢, € P_(L,) are given.

5.5. Since E=FQ,_ (LOL)=(FR,L)®(F®,L,), FR, L, is a subspace
in E. The form of the positive definite form ¢ ® ¢, on L @ L, ensures that L
and L, are orthogonal with respect to ¢ @® ¢,.

In the case L, = {0} we get a mean-zero Z-normal model.

In the case &' = %, F @, L, is usually called the regression (or mean) mani-
fold. Usually one has chosen a basis in L and L, such that ¢ and ¢,, and there-
fore also ¢ @ ¢, are represented by the identity matrix.

5.6. We shall now find the maximum likelihood estimator for the problem
defined in 5.5., and its distribution.

The regular normal distribution N(e.(Z), »(£)) defined by the parameter (Z, &) €
P_(F), X F ®,, L, has the density

P20 * Proene:
FR,LYD(F®,L)—> A
(%)) > n(Z R, ¢)7  exp{—HI ®, ¢7)(x B, X)X &, ¢1)
X exp{—3E7 ®, 87Ny — 6 B, (¥ — )}

with respect to a Lebesgue measure 2 ® , 4,, where 1 and 4, are Lebesgue meas-
ures on (F ®,, L) and (F ®,, L,) respectively.
Let B ¢ &/, (L*) be defined by ¢ = Z2(B). The mapping

d:(FxL)yx (FxLy—>F®,F
(fi L f 1) =@y B D)

determined one and only one .Z-linear mapping ([3], Section 3) 0,: (F®, L)® ,
(F®, L) — F ®, F, with the property 0,((f ®, 1) ® (' @, 1) = 8(f, L', 1).
For x e F®,, L define s(x) = 0,(x ® , x). Since (27 ®,, ¢~ )(x & x) = Z7(s(x))
it follows that (s(x), y) is a sufficient statistic for (Z, §). s(x) is usually called
the unnormed empirical variance. s(x)e P_(F) C F®_, F since F®,, L is 72-
isomorphic with L_(L*, F) ([3], Chapter 2, Section 4, No. 2) and a direct calcu-
lation shows that s(x) = P_(x)(¢~"). If dim_ (F) < dim_ (L) then the elements
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of FR,_ L (= L_(L*, F)) of full rank constitute an open dense subset (F ®_, L),.
Hence s(x) e P_(F), with probability 1 (with respect to all the distributions in
the model) and s is a surjection from (F ®_, L), to P_(F),. A direct calculation
shows that s commutes with the natural left actions of GL_(F) on (F®,, L),
and P_(F),. The fact that s commutes with the actions of GL_(F) gives that
the measure v on P_(F), defined by dv(0) = n(0 @, $)'d(s(2))(0) is the GL_(F)-
invariant measure on P_(F),. The following calculation gives the distribution
of s(x).
d(sN(Z ®, ¢, 0)(0) = n(Z ®, $)™" exp {$27(0)}d(s(2))(0)

_ 02 9) gt y5-i0) do
= mexp{ %Z} (0)} dv(0) .

DEFINITION. The measure
dW(E, 3)0) = "B 8) exnt 1310 (o
(B, 9)0) = 5= exp (=42} du(0)
is called the Z-Wishart distribution on P_(F), with parameters (X, ¢).

5.7. PROPOSITION. The maximum likelihood estimator (£, &) for (2, £) in a -
normal model is

(dim, (L@ L)~ - 5(x), y) -

Proor. This proof is copied from [7] with .22 replaced by &Z. The density
of the sufficient statistic (s(x), y) is

n(s(x) ®, ¢) 1yl
W)— exp {—$Z7(s(x))}
1
*AER, )

It is evident that £ = y, and it only remains to maximize

exp{—32 7 Qu 7)Y — ) B (v — )} -

n(s(x) ®, ) exp {—3Z7Y(s(x))}

nE ®, H)n(E D, fr)
(59 ®y (8 D) oo 1z, L
S AC e, o ey PR e

[n(s(x) ®,, ¢,)]* does not depend on Z, so the problem is reduced to the problem
of maximizing the density of the Wishart distribution with parameters (2, ¢ ® ¢,).
We consider therefore the mean-value zero Z-normal model given by E =
F®,_,(L® L,)and
vt Py(F), > P,(F Q. (L ® L),
2oL, (D¢

The sufficient statistic # = s(z) will have a Wishart distribution with parameters
(2, ¢ @ ¢,). This is an exponential family and the maximum likelihood estimator
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is defined by the equation (W = W(Z, ¢ ® ¢,))
Sp_um, 0dW(0) =1t.
Now
(N=NZ®,($®¢) 0)
Spoum, 0dW(0) = (g 5(2) dN(z) = (2 0404,(2 ® 5 2) dN(z) .
Forfihe Ly(F®, (LD L), F), {5 (f®M)(2®52)dN(2) = (f®4 1) §£(2®
2)dN(z) = (f ® 5 B)(Z B (¢ D ¢1))-

This relation can be extended by linearity, and
Lo(FQu (L L), F)® g La(F @y (L Ly, F)
= Ly((F®y (LO L)@, (F R, (L® L), F®, F)
being a surjection, we get
SPQ(F), 6 dw(0) = ®¢®¢I(Z R, (¢ D ¢y) = dim_, (L © L)) - z.
Hence £ = ¢/[dim, (L @ L,)] in this problem.
From this the result follows.

5.8. DEFINITION. An invariant normal model on an ZZ-space E is a decom-
position E = @,cq (F, ®5, (L @ Ly,)) of E together with a parametrized family
of regular normal distributions on E given by the injections

e (’quQ (Fq ®2q qu) - @GSQ (Fq ®@q (Lq ® qu))
(fq ®9/q llq)qu - (fq ®9q (0’ llq))qu

and

et @qeq Poy(Fo)r = Pa(@qeq (Fy By (L @ L)),
(Eq)qu - (‘quQ (Zq ®@q (¢q @ ¢1q)) ’
where for every g€ Q, ¢,€ P, (L,), and ¢, € P, (L,,), are given.
5.9. THEOREM. Let an invariant normal model on the F%-space E be given as in
5.8. Define
0: yeq (Fy ®ay L) ® (Fy ® g, Lig) = Dieq Pay(Fo) X [Dyee (Fy O, L17)]
(X Yo)geo = ((dim g (L, ® Lig)sy(Xe)ge o> (Vadoeo) -

If Vge Q: dim L, > dim F, then © is the maximum likelihood estimator in the
invariant normal model and the distribution of ©(x), x € E is given by

(®qu W(Eq’ ¢q)) ® (®qu N(Eq’ Eq ®9q ¢1q)) °
Proor. Since the model splits into a product of independent <7 ,-normal

models the result follows from 5.6 and 5.7.
The following theorem shows why the name invariant normal model is chosen.

5.10. THEOREM. Let 7 be a representation of a group G on the 2-space E. The
mean-zero normal model arising from the family of regular normal distributions with
mean value zero invariant under T is a mean-zero invariant normal model (see 5.8).
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Proor. Let 4 be a Lebesgue measure on E and let ¢ 2 be a regular mean-zero
normal distribution with variance X on E. It follows from 5.2 that ¢44 is in-
variant under z if and only if P (z(9))Z = Z forevery g e G. But P_(n(9))X = X
if and only if X is z*-invariant (4.9 and the isomorphism in 5.1). If the model
is not empty there exists a 7*-invariant positive definite form on E. 4.20 gives
that 7* and therefore also 7 is reducible. The decomposition of E with respect
to = and the parametrization in 4.20 gives that the model is a mean-zero invariant
normal model.

6. Matrix formulation and examples.

6.1. The case & = 57

Let 1,1, /, k be a basis for the Z2-space 2 with the properties i* = j? = k? = —1,
ij = —ji=k, jk = —kj =i, and ki = —ik = j. Every element d ¢ & can be
written uniquely asd = p + qi + rj + sk, r, s, p, g€ F. d = p— qi — rj — sk.
We have Re (d) = p, I(d) = q, J(d) = r, and K(d) = s.

Let F be a right and L a left Zspace. Let Z e .5 _(F*), and ¢ € & _(L*),.
Let 4 e &, (F*), and Be & (L*), be defined by £ = R(A4) and ¢ = R(B). The
formulas in 3.2 give (d = i and e = j) that

B(x, u) = ¢(x, u) + P(x, iu)i + ¢(x, ju)j + o(x, kn)k , x,uelL*
and

A(y, v) = X(y, v) + Z(yi, v)i + 2(), v)f + Z(k, )k, y,ve F*.
1(4), J(A), K(A), I(B), J(B), and K(B) are all antisymmetric .Z2-bilineary forms.

(Z Qs )y By X, v @, u) = Z(y, v)P(x, u) + Z(yi, v)p(x, iu)
+ (), v)$(x, ju) + Z(yk, v)p(x, ku),
VQ,x,v®, ue(F*®, L*).
Letfi, .-, fnresp. 1, ---,1l, be abasis for Fresp. L, such that B = I, (identity
matrix of dimension n) with respect to /,*, ..., [.* (the dual basis to [, - - -, L,).
Since the “#-dual basis to B-baSIS [, + + s frus frls o0 ks [y - s fmds frks oo,y
[uk fOT Fis fi*, oo, £, fi¥i, oo, fuXi, %), « oo, fuXis fi¥k, - - -, fu*k in F*, and
analogous for L only, we have ¢ = I,, and
Re(4) —I(A) —JA) —K(A)
+I(A) Re(d) —K(A) +J(A)| (4 isthe matrix of 4 with
+J(4) +K(4) Re(d) —I(A)( respectto fi*, .-, f,*)
+K(A) —J(4) +I4) Re(4)
with respect to the “Z-basis above.
z 0
z n-times

=

I®, ¢ = : \ 4 nm columns and rows
0 \

h>
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with respect to the #Z-basis

f1*®_@ll*"’ f1*®9n’f1 ""fl P n’

fm*®zll*"' fm ®@n ’fm*® o fm o L*,
ﬁ g]ll""afl l*afl ® kll’""fl*®@kln*

fm* ®gjll*’ ° "fm)'< ®_@jln*’fm* ®g kll*’ . ”fm* ®.@ kln* .

In the case 7 = & we get with an analogous notation ¢ = I,, and

P> 0o -
Re (4) ) Xﬂ-times 5 .
e — I O nm columns
2= [ I(4) Re (A):| 2®,¢ = \ and rows
0 .

p>

and for & = %
A 0
Kn-times
¢6=B=1, Z2®,¢ = TN nm columns and rows
0
A
2= A

6.2. We shall now give the estimation in the case of a fixed basis. We take

the case with mean value 0 (n = m).
G =
Let

ml?

. . . k
Xﬁ, ° X Xlll’ ] X;m va ] inv Xua . X

Xl;n ° X Xllfn’ ° an’ Xln’ .t Xg;»n’ Xln’ ° Xk

mn?

be the coordinates with respect to the 2-basis

f1®gll, "‘:fm®gl1,f1i®glp "‘:fmi®glp

f1®gl¢,,,”’,fm 9n’f11®g1n’ ")fmi®gln’
fl] ®gll’ ""fmj@gll’ f1k®glv ""fmk®gll

JiJ @l s fu] B mflk@gln» o fuk Qg 1,
in FQ,, L.
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We set
X" = (X;:u);;:l,...,n; k4 Xl = (Xffu)y=l, eeymy 9
p=1,--,m. u=1,---,m.
X = (X) vt ms > XE = (Xp)ueryoomi
p=1)eeem. petlm.

and the maximum likelihood estimator £ for X is given by

Xr(XrY + Xi(X0Y +
Xi(X3Y + X¥(X*Y

XE(X5) — Xi(X¥kY +
Xi(Xr) — Xr(Xiy

Xi(X*) — Xk(X5) +
Xi(Xr)y — Xr(X7)

Xi(X0y — X¥(XiY +
Xk(XTY — Xr(XEY

Xi(X*y — XH(XiY +
XX — Xi(Xry

Xr(XT) + Xi(X5) +
Xi(X3Y + XH(XPY

Xi(X0) — X4(Xiy +
Xh(XTY — Xr(XEY

XE(XTY — Xi( XY +
Xr(X3) — Xi(Xr)

XE(X3) — XXy 4
Xr(Xiy — Xi(Xr)

Xi(X3Y — Xi(XiY +
X'r(XIc)I — Xk(Xr)/

Xr(Xr) + Xi(X5) 4
Xf(Xj)'+Xk(Xk)'

Xe(X7) — Xi(Xk) + "
Xi(Xr)l — X'r(Xz)l

X0y - Xi(Xiy +

Xr(Xk)l — Xk(Xr)l

Xi(XkY — Xk(XY +
Xi(Xr)y — Xr(Xsy

Xi(X#y —XH(XiY +

Xr(X) — Xi(Xry

Xr(XY + Xi(Xiy +
Xi(X9Y + X*(X*)

In the case & = & we get with analogous notation
1 { XT(XT)I + Xz(Xz)l ’ Xl(Xr)l — Xr(Xl)l
2n | X7(XY — Xi(X'r)lv‘ X7(X7TY + Xi(XPy

(N7

and for & = <#
s =1 xuxy.
n

The second and the last estimation problem is well known (see [1], [9], [10] and
[7D)-

6.3. In the Introduction we suggested that our invariant normal model con-
tains examples from the literature of normal models given by symmetry and
(or) independent observations from the same normal distribution. From the
matrix formulation above it follows that the real complex and quaternion normal
models (see the Introduction) are invariant normal models. Mean-value zero
normal models given by symmetry are also invariant normal models. This fol-
lows from 5.10. For mean value different from zero all the examples given in
the Introduction are still invariant normal models. To illustrate this we must
translate the formulation in the papers to the invariant form in 5.7. We will
give two examples of this.

6.4. ExampLe. (Wilks [15]). Let (X, ---, X,) € &2* be an observation from
a p-dimensional normal distribution with mean-value zero and regular covariance
matrix given by

o 2 A7
A
=
A
2 . A o]
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This situation arises from the hypothesis that the distribution of (X, - - -, X})
is independent of permutations of the elements X,, - - -, X,. Interms of represen-
tation theory the hypothesis is that the normal distribution on 2* is invariant
under the representation

r: Ak) — GL_ (")
0= (x5 5 %) = (Ko ***5 X))
where S(k) is the symmetric group of order k. This representation splits into a
direct sum of two irreducible representations in the following way
Fr=L DL, (=(F#Q,L)®(#R, L)),
T=mx,Pmr,
where L,={(x,, - - -, x,) € FZ* | x,= - - - =x,}, Ly={(%y, - - -, x,) € FZ*| 1k, x,=0},
n, =n|L,and =, = x| L,. Since there is a natural basis in Z2* we can identify
(#*)* and Z2*. Hence I' has the form &2¢, ® &,’¢,, where ¢, and ¢, are given

by ¢,(x, x) = x* x = (x, - -+, x) and ¢y(y, y) = Ly y = (Ju -+ -5 yi) With
¥ ,y; = 0. The transformation of the parameter is given by &? = ko® 4
k(k — 1)2, £} = ¢* — 2. Hence the model is transformed into a product of two
well-known trivial models.
If we now have n independent observations X, - .-, X, from the normal dis-
tribution above we get a family of normal distributions on the space Z*" =
F*® , F#"; the above decomposition of #* gives the decomposition

F = [‘%®9? (Ls ®9? %n)] ® [%®ﬂ (Lo ®ﬂ ‘%n)] s
I'®,1, =['®5 (9.5 L) D[’ D (4B, 1)] -
Again we get a product of two well-known trivial models.
Let now the normal distribution for X; have the mean value pe #*, i =
1, .-+, n. Then we have the decomposition: N
F = BQ 5 (Le®s V) D (L, B, V)
B (FZQH(Li®s V) (LB Vo)) s
IR =5§" (6. Qs /) D (4. O 9.)) D & - (3 Rz ') D (6 X » 8.))
where V,, V,, ¢/, ¢,/ is defined in an analogous manner as subspaces in 2" and
positive definite forms on these. The mean value is then parametrized by the
subspace (L, @, V,) ® (L,Q, V,) = F#* R, V,(dim_, V, = 1). Thisagainisa
product of trivial well-known models. If ¢ = (g, ---, ¢) and the mean-value
structure is given by g, = --- = g, we have the decomposition:
F" = BRH (L V) D (LB, V) D(ZQ, (LR, F"),
F ® In = E12((¢e ®.§? ¢0’) @ (¢e ®.Q ¢e,)) @ 522(¢0 ®.Q In) ¢
The mean value is then parametrized by the subspace L,Q V, in Z2* ® #" = Ak,

6.5. ExampLE. Arnold [2]: For the sake of convenience we will only treat



INVARIANT NORMAL MODELS 153

the case where the mean value is zero. The case of mean value different from
zero can be treated as above (6.4).

Let (X, ---, X,) be interchangeable p-dimensional observations from a p-
dimensional normal distribution. The covariance-matrix for the pk-dimensional
. observation is given by

X A . . . A
A

I' = .
. . A
A . . . A Z

where X is positive definite and A is symmetric such that T is positive definite.
In Arnold [2] this is called pattern A,. Since the covariance is given by in-
variance under the representation
7,1 F(k) — GL (2"*)
0> ((Xus =+ v Xaps =+ o5 Xpas = 05 Xpp)
= (Ko ** s Xops = s Xatord> ** *> Xatirp))
the model is an invariant normal model and therefore splits into a product of
well-known trivial models. The decomposition is given by
F = B Q F = (F? Q4 L,) D (F?Q, L)
T,=[L,8r=(Q,m)P(,Q,m,).
The family of covariance is therefore
{(E:®s $) © (B: ® s $0) | By By € F5(27),} -
The transformation of the parameter is trivial given by
E, =kZ + k(k — 1A, E, =X —A.

So the model splits into a product of two real normal models.

Now this generalization by Arnold [2] of the model of Wilks [15] was already
treated by Votaw [16] in 1948. If one writes the observation (X, .-, X;) =
X+ Xipr <+ s D, (PR .,ka) as (X, - -5 Xip» ...,le, ...,ka) wegetthat
the model of Votaw (see the symmetry model (4) in the Introduction. In short,
we can say that Arnold uses the isomorphism #? ® Z* = #*@ --- © F*
(k-times) and Votaw uses the isomorphism #?® Z* = FBrD .. D HF
(p-times).

6.6. Other examples can be found in McLaren [13]. In the paper by Olkin

and Press [14] irreducible representation of a complex type occurs, but only
with multiplicity one.
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