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ON ASYMPTOTIC DISTRIBUTION THEORY IN SEGMENTED
REGRESSION PROBLEMS—IDENTIFIED CASE!

By PauL 1. FEDER

General Electric Company

This paper deals with the asymptotic distribution theory of least squares
estimators in regression models having different analytical forms in dif-
ferent regions of the domain of the independent variable. An important
special case is that of broken line regression, in which each segment of the
regression function is a different straight line. The residual sum of squares
function has many corners, and so classical least squares techniques cannot
be directly applied. It is shown, however, that the problem can be trans-
formed into a new problem in which the sum of squares function is locally
smooth enough to apply the classical techniques. Asymptotic distribution
theory is discussed for the new problem and it is shown that the results are
also valid for the original problem. Results related to the usual normal
theory are derived.

1. Introduction. Frequently in regression problems, a model is assumed which
supposes that the regression function is of a single parametric form throughout
the entire domain of interest. However, in many problems it is necessary to
consider regressions which have different analytical forms in different regions
of the domain. An important special case is that of broken line regression, in
which each segment is a different straight line. Dunicz [5] provides an example
in which such a model naturally arises in a chemical process. Sprent [23]
gives examples from agriculture and biology where such regression models are
appropriate.

One class of segmented models consists of functions where each segment is in
the form of a linear model. Robison [21] gives procedures for obtaining con-
fidence intervals when the regression function is one polynomial, y,(f), fort < =
and a second polynomial, p,(¢), for ¢ > =, with y,(r) = p,(r). However he as-
sume that it is known between which observation points r lies, and furthermore
does not restrain his estimate of z to lie between these appropriate observation
points. Quandt [19, 20] discusses methods of estimating the coefficients of
segmented regression functions and heuristically obtains from sampling experi-
ments a sampling distribution of the likelihood ratio statistic for the test of no
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switch in the form of the regression. Farley, Hinich, and McGuire [6, 7] pro-
pose a routine screening procedure to detect parameter instability in time series
regression models.

In recent years mathematicians interested in approximation theory have de-
voted much attention to the theory of spline functions. Spline functions consist
polynomial segments. They are continuous and usually continuously differenti-
able; however, they have discontinuous higher order derivatives at the change-
over points between the polynomial segments. The class of spline functions is a
considerable extension of the class of polynomials. Splines have been found very
useful for approximation and interpolation. See Greville [10] and Schoenberg
[22] for details. In the theory of spline approximation, the change-over points
between segments (or knots) are chosen merely for’ analytical convenience,
whereas in segmented regression theory, the change-over points usually have
intrinsic physical meaning in that they correspond to structural changes in the
underlying model. However, the technical problems are the same in both situ-
ations. Poirer [17] relates spline theory and segmented regression theory. He
develops tests to detect structural changes in the model and to decide whether
certain of the model coefficients vanish. However, he makes the simplifying
and restrictive assumption that the locations of the change-over points between
segments are known.

The principal difficulties in the estimation problem occur when it is not known
between which consecutive observations of the independent variable the change-
over points lie. If for each k it is known that z,, the kth change-over point,
lies between the successive observations ¢;,, and ¢,,,,,, then the fitting problem
is relatively simple. For each admissible set of change-over pointsz, ..., z,_,,
one obtains separate least squares fits (functions of z,, ---, r,_,) within each
segment, subject only to the restraint of continuity at the change-over points.
This can be readily accomplished by the use of Lagrange multipliers. One then
chooses that set of admissible z,’s for which the best fit is obtained. This is
not too difficult a job computationally if the set of admissible z’s is relatively
small. On the other hand, if the restraining region is large, the problem is very
likely to reduce to that of fitting separate regressions in each segment, without
imposing any of the constraints. The asymptotic distribution theory then de-
pends on the magnitudes of ¢;,,,, — t;,, as compared with n~%.

In 1966, Hudson [14] considered the problem of obtaining computational
procedures for the least squares fit of a continuous, segmented, linear regression
function when no prior knowledge is assumed regarding the location of the
change-over points. Bellman and Roth [1] applied dynamic programming
methods to this problem. In the present paper, asymptotic distribution theory
of the least squares estimates is discussed for models such as those considered
by Hudson.

In 1965 and 1972 Sylwester [24, 25] considered the case of two straight line
segments and one unknown change-over point. In 1967 Feder [8] treated the
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case where all the segments are dth degree polynomials differing only in their
linear term. The present paper updates these results to treat a considerably
larger class of models. Feder [9] considered the problem of likelihood ratio
testing in segmented regression models. He showed by example that the asymp-
totic null distribution of the likelihood ratio test that a two-segment model in
fact consist of just one segment is not unique but depends on the spacing of the
independent variables. Hinkley [11] considered the case of two straight line
segments and reports, on empirical grounds, that the asymptotic normality of
the estimates of (r,, - - -, 7,_,) derived in this paper may not be an adequate
approximation for moderate sample sizes. He presents an informal argument
to derive alternative approximations. Hinkley [13] considered the problem of
estimating and making inferences about the point of change of distribution in a
sequence of random variables, which is related to the problem of the present
paper.

For reasons of simplicity and to avoid peripheral issues, this paper confines
attention to the case in which all segments of the regression function are in the
form of linear models. However the techniques employed should suffice, by use
of appropriate Taylor expansions, to handle many cases in which the segments
are nonlinear.

2. Definition of the model and summary of results. Consider an r phase,
segmented regression function of the form

(& 1) = f1(0 1) for A= 2t
2.1 = f2(0, 1) for 7, <t<r,
=1(0,1 for 7, , £t<B=r,

This can be compactly represented as
(2:2) #(§; 1) = Z5=1 1055 DI(2)
where I,(#) is the indicator function of the interval [r;_, r;). Itisassumed that
©(§; 1) is continuous at ¢ = 75j=1,--., r— 1. In this model, 4 and B are
known constants (assumed 0, 1 without loss of generality) and 6,, ---, 8,
Ty -+, T,_; are unknown parameters. Boldface symbols will represent vectors
and matrices. Let@ = (8,,---,0,),7 = (v}, - -+, 7,_,), and § = (@, 7). Assume
that for each j, 6; = (0, - - -, 0,¢;) is a K(j) dimensional vector and that there
exist known functions (), - - -, f;x.;(?) such that
(2-3) [i(051) = L&D 05 fir(t)
where {f;,(#)} are linearly independent functions on the interval [z;_,, z,].

In addition, it will be assumed that there exists an s < oo such that any linear
combination of the functions { f;,(#)} has at most s sign changes in derivative on
the interval [0, 1]. This condition is satisfied by most functions usually encoun-

tered, such as polynomials, sines and cosines, and exponentials.
Let O denote the set of “admissible” vectors @. That is, © is the collection



52 PAUL I. FEDER

of @’s which lead to functions u(§; ) satisfying the continuity restraints. For
each @ € © consider the set of z’s (depending on @) which lead to functions
©(§; ) satisfying the continuity restraints. Form the vectors § = (@, z(0)) =
(0, 7). Let E denote the set of these §’s and let U = {¢(§; r): § ¢ E}. Through-
out the discussion attention will be confined to #°’s in © and to §’s in E.

For given n, assume that n observations, X,,, - --, X,, are taken where

(2'4) Xni = #(e; tni) + eni *

Assume that the observation errors, e,;, are independently and identically distri-
buted with E(e,,) = 0, Var (e,;) = ¢% unknown, and Ele,[***® < oo for some
0 > 0. Let ¢ = (§, ¢% and let © = (8,*, ---, 0,9, 1,9, ..., z®,, 6,*) denote
the true state of nature.

Asymptotic properties of the least squares estimators of ¢ will be examined.
Since the change-over points 7,, ..., @, are unknown, the derivation of
asymptotic properties is considerably more involved than one might at first ex-
pect. For each fixed 7, the estimate & (a function of z) is chosen to minimize

(2.5) 5(§) = % 2 (X — (8 1)

subject to the continuity restraints. The residual mean square then can be
expressed as §(z). It is necessary to obtain the minimum of this function.
There is no guarantee that s(§) possesses asymptotically even one continuous
derivative in the neighborhood of z®. For instance, if f;(8,; ) = a; + b,t,
b; # b,,,, then 5(§) and 5(z) possess discontinuities in the ¢ derivatives along
t; = t,, for each i, j.
Consider for example the simple 2 phase model where p(§;7) = ¢ for 0 <
t < randtforr <t < 1. (See Fig. 2.1.)
Here, 6 is the scalar ¢ and r = ¢. From equation (2.5)

1 1
S(e) = S(c, c) = ""T Ztniéc (an - c)2 + ';‘ Zt,,”;>c (an - tni)2 .

péit) S(f)

(O 100 SO N IS T Y N Y S}
Tt y L

"y

taitnz tai tnj~H tan

FiG. 2.1. FiG. 2.2.
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Thus for all ¢’s between ¢, ;and ¢, ;,,

os(e) _
e T

2 o
— 2 X =),

It is seen (Fig. 2.2) that there is a discontinuity in derivative at each observation
point, z,,.

The classical derivations of asymptotic normality of maximum likelihood
estimators assume that the log likelihood function (or equivalently s(§)) asymp-
totically behaves like a paraboloid in some neighborhood of §®. (See Cramér
[3], page 501, for instance.) Hence the classical arguments are not directly
applicable here. The method of approach and results of this paper are outlined
below.

1. It is shown that @, the unrestricted least squares estimator (l.s.e.) of ¢, is
consistent under suitable identifiability assumptions, which tacitly assume that
no two consecutive f;(8,; t) are identical. (See Theorem 3.6.)

2. If f; and f;,, are identical, the parameter space is overspecified since the
regression function does not depend on z;, which therefore cannot be estimated
consistently. However, it is shown that under certain circumstances, with large
probability as n — oo, the fitted regression function will reflect this situation.
(See Corollary 3.22.) One segment can then be deleted from the model and the
regression function recomputed in the reduced model. For the remainder of
the summary it is assumed that no two adjacent f;’s are identical.

3. Under suitable identifiability condltlons, 6_69 =0 (n-*(log log n)*) and
(2, — ;)™ = O,(n~¥(log log n)t), where 0 and #, are the l.s.e.’s of 8 and 7,
and m;, is the lowest order s-derivative in which f, j“” and f{9, differ at t = z-j“”.
(See Theorems 3.16 and 3.18.)

4. If w is a subset of B and §® ¢ @, the closure of w, then statements 1, 2,
and 3 apply equally well to ¢, = (§,, 9,%), the Ls.e. among all § € o.

5. A pseudo problem is formed by deleting o(n/log log n) strategically placed
observations near the true change-over points. It is observed that 1, 2, 3, and
4 are still valid in the pseudo problem. (See beginning of Section 4, in particular
Theorem 4.1.)

6. Let é* = (5* £*) denote the l.s.e. in the pseudo problem It is shown
that under identifiability assumptions 6d—6v=0 (1Y), 6« —8=o0 H(n7Y),
(2% — 7,0 = 0,(n7}), (8, — v;0)" — (T; — t;0)"i = o,(n” 4). This implies
that @ — @ = O,(n}), (£; — 7,)™ = O,(n"*), and that #, 6~ have the same
asymptotic distribution. (See Lemmas 4.3, 4.12, and 4.16.)

7. The asymptotic distribution of 0*, £* is obtained by “classical” methods.
(See Lemmas 4.4, 4.8, and Theorem 4.15.)

8. Several examples are presented that illustrate the results.

9. Several unresolved problems are mentioned.

Much notation is used in the later sections. Some of the notation frequently
used is set out below for ease of reference,
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g = K1) + KQ2) + --- + K(r)

t=(thty - s 1) or t=(tyty -5 1)

o= pEt) = (8 1), w(§ 1), -5 p(E5 1)

p” = pEt;  A=pEt)

v=u& ) =p(E ) — pEV ) =p0) — ) =r—

pni = y(e; tni) ’ ﬁni = p(é; tni)

el = maxogec (@) or [l Bl = (T £E 1))

0 = (01’ A 0r) ; 01’ (61'1’ Ty 0,1'K(j))

© = {admissible 8’s} ; ={(0,7(0);0c0}; U= {u&;1;&ckE
2-:(1'1:"’,1-1‘—1); 5=(0,T)§ 502(5,0‘2)

0™, 0 = “true” states of nature; P,=P at =67, =170
E(O) — (0(0), 2-(0)) ; ¢(0) — (e(O), 0-02)

€ = (0, ?) = least squares estimator (l.s.e.) of &

m |l

é = (éw, £,) = Ls.e. restricted to o C E

éx = (é*, £*) = least squares estimator in the pseudo problem (see Sec-
tion 4)

€ * = (6,*,2,%) = restricted Ls.e. in the pseudo problem

f05 0= ZED 00 fu()s  ful) =fas  [i0;750 =0 =1,

X = p(§5 1) + €mi

Ee,, =0; Var (e,;,) = d*; Ele,;|*"*® < oo forsome 4 >0

H,(s) = distribution of {¢,}; H,(s) >4 H(s) as n— oo0;

H,(4) = §, dH, (s)

D*(h, j, k) = D* = the kth left and right t-derivatives respectively of
(6,250 at t=7c. If D*=D-, their common value is
denoted as D.

n* = sample size in the pseudo problem; n** =n — n*

Y * = summation over the n* terms of the pseudo problem; > ** =
Zia— ¥

The calculus of O, and o, (Definition 2.1 below and discussed rigorously by

Pratt [18]) is used throughout the paper without any explanation. Loosely speak-
ing, one can operate with O, and o, in asymptotic calculations as with O and o.

DErFINITION 2.1. (O, and 0,). A sequence of random variables {Y,} is said
to be

(a) 0,(1) if for every ¢ > O there exist constants D(e) and N(¢) such that
n > N(e) implies P[|Y,| < D(e)] = 1 — ¢;

(b) o,(1) if for every e > 0, 6 > 0 there exists a constant N(e, 9) such that
n > N(e, 0) implies P[|Y,| < d] =1 —e.
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(c) A sequence of random variables {Y,} is said to be O,(r,)(o,(r,)) if the
sequence {Y,/r,} is O,(1)(0,(1)).

3. Consistency and rate of convergence of 6 The questions of consistency
and rate of convergence of 6 to &© are considered in this section.

At the outset, the nonstatistical notion of identifiability of the regression func-
tion immediately arises. That is, assuming no observation errors, at which ¢
values must x(§; 1) be observed in order to uniquely determine it over the entire
interval [0, 1]? It will be shown that under suitable identifiability assumptions
0 converges to 8 at the rate O,(n*(log log n)!) and z; converges to 7, at a rate
determined by the number of z-derivatives in Wthh f#(0;°; t) and fj (0850
agree at t = 7.

It will be assumed throughout that f,(6,; #) and f;,,(0},; t) agree in m; — 1
t-derivatives at t = 7, but differ in the m;th. Further, it will be assumed that
fi and f;,, each have continuous left and right m th r-derivatives at t = 7,
j= 1,2, v, F — 1.

DEerINITION 3.1. The parameter @ is identified at p® by the vector t = (¢,
t, + -+, 1) if the system of k simultaneous equations g(§;t) = £ uniquely
determines .

LemMMA 3.2. If 0 is identified at p'™ by t then there exist neighborhoods N, T
where N is a (k-dimensional) neighborhood of ¢ and T is a (k-dimensional) neigh-
borhood of t such that

(a) for all (k-dimensional) vectors gt € N and t' € T such that p can be represented
as p = p(§; t') for some & € B, @ is identified at g by t'

(b) there exists a constant, C, such that the transformation 6 = 6(g; t') satisfies
the Lipschitz condition ||0, — 0,|| < C||g, — p,|| whenevert’ € T and pe, = p(§,; t'),

= p(§,; t') are both in N.

Proor. Since @ is identified at p® by t, it follows that for any possible choice
of parameters z,, - -+, r,_, (and consequent segments {[z,_,, 7;),j =1, ---, r})
consistent with 8, for each j there must exist K(j) components ¢;;, - - -, t,x;
within the segment (tj_1 7;) N (2, 7;2) such that the K(j) by K(j) matrix

Aty - -5 tixe), With (i, k)th element f; ,(¢;,), is nonsingular. By continuity,
the 7;,’s may be perturbed slightly without disturbing the nonsingularity of A ;.
Assertions (a) and (b) follow directly from the properties of nonsingular linear
transformations

ReMARK 1. Nothing has yet been mentioned about the determination of
Ty, -+, T,_;. The r’s may or may not be uniquely determined once @ is known.
This will be discussed at length later on.

REMARK 2. The proof of Lemma 3.2 shows that if @ is identified at g by
t =(t, 1, -+, t,), then k = g and there exists a g-dimensional subvector t of t,

such that @ is identified at g by t.



56 PAUL I. FEDER

REMARK 3. In order that @ be identified at £ by t it is necessary that no
two adjacent segments of p(E“” t) be identically the same.

REMARK 4. Since u(§; 1) effectively depends on g parameters (actually q +
r — 1 parameters related by » — 1 continuity restraints), it must be observed at
a minimum of ¢ points in order to be identified. It is clear from the linear inde-
pendence of the f;,’s that the placement of K(j) distinct observations between
each pair of consecutive change-over points 7, {7}, is necessary and sufficient
to identify . In particular, if the n observatlons are equally spaced and no
two adjacent segments of x(§?; r) are identical, then for n sufficiently large a t
exists such that @ is identified at g© by t.

Let H,(s,) — H,(s,) = n~*{number of observations in (515 5,]}. Assume that the
t,; are selected to satisfy the

Hypothesis. H,(s) — H(s) in distribution, where H(s) is a distribution function
with H(0) = 0, H(1) = 1.

DEFINITION 3.3. A center of observations is a point of increase of H.

The principal result of this section is that 6 — 6@ = 0,(n *(log log n)}) if there
is a vector t whose components are centers of observations and which identifies

0 at p®.
Lemma 3.5 below implies that x(§; r) must be near p(§; ¢) for at least one
value of ¢ close to each center of observations. The consistency of & is a con-

sequence of this.
Condition (*) of Lemma 3.4 guarantees that the least squares estimator 0 is

contained in a sphere with center and with radius d*.
LEMMA 3.4. Suppose that there exists an ¢ > 0 such that for every K > 0 there
exist d(K), n(K) such that d > d(K), n > n(K) imply
(*) inflg.10-00 >0y Ha{t: & 1) — (85 0] > K} > e
Then there exists a d* such that
lim,_, Pif||f — 09| < d*} =1.
Proor. Take K = 3¢,/¢t. For n > n(K), d > d(K), and ||6 — 6| > d,
inf, 7, (X, — #(§; 1,0))* = inf 237 (e, — Vai)® -
The triangle inequality implies
2 (e — va)' 2= (2 V) — (D et
= (T AH(EZ ) — AT )] + I e
> (3 ) 3a0nt — 20,0t + o,(nh)] + X € .

The last inequality is a consequence of condition (*). Note that the o,(nt) term
does not depend on @. Thus, if d > d(K), n > n(K),

Z (e"i - Uni)z = ”*(Z Ufu‘)i(”o + 0,,(1)) + Z efbi as n— oo
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where o,(1) is independent of §. This implies that with probability approaching
lasn— oo, 3 (e, — v,4)" > 3 €, uniformly for all @ such that ||@ — 69| >
d(K). In other words, (with the inf restricted to such 8),

lim Pifinf, 33 (X, — p(§, 1)) > Del} = 1.

Since the least squares estimator § minimizes the residual sum of squares function
it follows that with probability approaching 1 as n — oo || — 69|| < d(K). []

Lemma 3.5. If 1, is a center of observations, & > 0, 7 > 0, and condition (*) of
Lemma 3.4 holds, then

PO{Lu(é; 1) — w(§Y; 8| = forall t suchthat |t —t| <8} —0.

Proor. Let S denote {#: || — 8| < d*}. Let & denote the least squares
estimator of & with @ restricted to S. Lemma 3.4 implies that with large prob-
ability as n — oo, 6 the unrestricted least squares estimator, is equal to e, the
restricted least squares estimator. We utilize Theorems 1 and 4 of Jennrich [15]
to discuss the behavior of &.

Since #, is a center of observations, the number of observations in the interval
[to — 0, 1, 4 0] is An + o(n) for some 2 > 0. Let F = {v: |»(&; £)| = » for all ¢
with |t — ¢| < d and ||@ — 6| < d*}. Now

Z (Xni - #(e; tni))2 = Z (eni - yni)z
:Ze?m_*_zp _zzenzm’
If veF, then 3 v}, = Ap’n[1 + o(1)] where o(1) does not depend on @.
Furthermore, the arguments of Theorems 1 and 4 of Jennrich [15] imply that
n~' 3 e,;v,; converges to 0 in probability uniformly for @ ¢ S, since S is a com-

pact set. Thus inf, ., 3 (€,; — v,,)* = 3] €%, + Apn + o,(n). Since the least
squares estimate minimizes the residual sum of squares, it follows that

T (K — & 1,0 £ 5 Xy — 2675 1,)) = X €2,

Thus, with large probability as n — oo, u(é, t) is not in F. Since & — é with
large probability as n — oo, it follows that with large probability as n — oo,
u(& t) is not in F. That is, |u($ t)| < 7y for some ¢ with |t — 7| < 4. [J

THEOREM 3.6. (Consistency). If (i) Condition (*) of Lemma 3.4 holds, (ii) 6 is
identified at pV by t, (iii) the components of t are centers of observations, then
(3.1) 6 — 89 = o,(1)

(3.2) 3 — gt =o,1).
Proor. Let N, T be (k-dimensional) neighborhoods of g and t within

which the assertions of Lemma 3.2 hold. It follows from Lemma 3.5 that given
€ > 0, with probablllty approaching one as n — oo there exists a t’ ¢ T such that

(& ) e Nand |lp@; b) < «.
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From Lemma 3.2, § = 0(4&;¢') is uniquely determined and
(3.3) 16 — 69| < Cllpf; t) — p(E®; )] < Ce.

Since ¢ is arbitrary, equation (3.3) implies (3.1).
Equation (3.2) follows directly since

B = N (e — 5 S - et =0l 4 0,(1).

On the other hand, 6 = 1/n Y} €2, + 1/n 3, 8%, — 1/n Yl e,,9,,. Lemma 3.4 and
the uniform convergence in probability to 0 of 3 e,,v,, for ||@ — 6| < d*
implies that 6* = o + 0,(1). Thus é* = a2 + 0,(1). [

REMARK. One might expect that any function which satisfies the constraints
of the model and which fits the data better than () has to be close to x(?)
somewhere in the neighborhood of any point 7 around which r(n) observations
are taken, as long as r(n) — co. Lemma 3.5 implies that this is the case if r(n) =
An. However, the following example indicates that this is not true generally.

—+—3 ¥
0 1/20 I/10 1/5 2/5 3/5
FiG. 3.1.

Suppose the model is a five segment broken line and x(§, ¢) is as shown in
Figure 3.1. Suppose that log n observations are taken at each of the eight ¢-
values indicated with hash marks. Further, suppose n observations are made at
t, and n observations are uniformly spread over the subinterval I = (J;, &)-
Let T,, be the t-value in I at which the maximum disturbance, e,,, occurs.
Define f(?) as:

ﬂ(t'm) = #O(t'rn) tn'l, < tnM
= XnM tni = tnM
= #O(tni) Loy <t;< TIT)_
= tolly) Lag = Ly -
Define fi(f) elsewhere by the condition that it conforms to the five segment
model. It may be verified that asymptotically z(f) will fit the data better than

2o(?), po(?) is identified, but fi(r) does not at all resemble p (7).
Suppose §” € @, the closure of the set @ C E. The proofs of Lemma 3.5 and
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Theorem 3.6 directly imply the consistency of ,, the restricted l.s.e. This is
formally stated as

CoroLLARY 3.7. If §”e@ C E, then under the hypotheses of Theorem 3.6
b, —69=o o(1), 8,2 — o = 0,(1), where 8, is the restricted 1.s.e. of 0, and g}
is the restricted 1.s.e. of d®.

Thus far, no mention has been made of the behavior of £. It turns out that
under suitable conditions ¢ converges to z® in probability and the rate of con-
vergence depends on the number of t-derivatives that adjacent segments have
in common at the change-over points z,, ..., ¢{®,.

Let A denote the set of 7’s such that f,(8,; t) = f;,,(0%,; r) and which
lie to the right of all centers of observation involved in the identification of 8;
and to the left of all centers of observation involved in the identification of 8,,,.
(For brevity, one can describe A, as the set of r’s which are compatible, with
respect to 8, 6{),, with the centers of observation.) It will be shown that #;
lies near an element of A, with large probability as n — oo.

It is shown in Lemma 3.8 that if @; and @,,, are close to 8, and 6, respec-
tively, then each element of A; (the set of r;’s compatible, with respect to 6,
0,.,, with the centers of observation) lies close to an element of A ®.

LeEMMA 3.8. Let .47 be any collection of neighborhoods which covers the set A /.
There exist neighborhoods N; and N;,, about 8; and 6), respectively, such that if
0cOandb;ecN;, 0;,,cN,,, respectively, then if ©; is compatible with respect to
0;, 0;,, with the centers of observation, t; must be contazned in an element of 4.

PRroOF. Suppose to the contrary that there exists a collection of neighbor-
hoods .#7; such that for all N, +1 as described in the statement, there exists
0cOwith#;eN;,0;,,eN;,, and such that r;’s compatible with respect to 6,
6, ,, exist outside of the elements of .47;. Then there exists a sequence 8™ ¢ @
such that @, , and ,,, , converge to @, and 8}, respectively and a sequence
{r;..} such that for each n, z;  belongs to no element of .47, is compatible,
with respect to 8,;,, 8;,,,, with the centers of observation, and is such that
1025 Tin) = fi41(@;41,05 Tj,n)- Thus there exists a subsequence of z;,’s which
converges to 7, ¢ A, and which is compatible with respect to ,, 8, with
the centers. By contmulty [0, ty) = fi11(0%; 7,), which contradicts the
definition of A,;. []

An important special case of Lemma 3.8 occurs when A, is the one point
set, {r;}. This suggests

DErFINITION 3.9. The parameter 8 is well-identified at p® by t if

(i) @ is identified at g by t

(ii) foreachj, 1 <j < r— 1, A; is the one point set, {r;}.

The consistency of 7 is then an immediate consequence of Theorem 3.6,
Lemma 3.8, and Definition 3.9. This is stated in Theorem 3.10.

\
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TuEOREM 3.10. If (i) Condition (*) of Lemma 3.4 holds, (ii) @ is well-identified
at p'% by t, (iii) the components of t are centers of observations, then

3.4 @ — @ =o0,1).

Several examples may help to distinguish among the notions of identified,
well-identified, and unidentified. The two phase broken line is well-identified
by the four points pictured in example 1 of Figure 3.2. The two phase parabola-
straight line function is identified by the five points pictured in example 2 of
Figure 3.2. However, it is not well-identified since the change-over point may
occur in one of two places. The two phase parabola-straight line function is not
identified by the five points pictured in example 3 of Figure 3.2. This is because
it is possible to partition the points in two different ways, each in accordance
with different 8’s; namely 1, 2 and 3, 4, 5 or alternatively 1, 2, 3 and 4, 5.
Both of these possibilities are pictured in example 3.

EXAMPLE | EXAMPLE 2

EXAMPLE 3a EXAMPLE 3b
Fic. 3.2.

As a fourth example, if the model specifies a two-phase broken line but the
segments are in reality colinear, then the regression function is nor identified,
since a nonunique segment can be adjoined in such a way that the resulting
function conforms to the model. However if the additional assumption is made
that there are at least two centers of observation within each segment, then the
function is identified, but obviously not well-identified.

It will now be shown that under the identifiability assumptions of Theorem
3.6, 0 — 0 = O,(n"}(log log n)}). It will be shown in the next section that
under a mild additional assumption, 6 — 60 = O, (n%).

We first prove three preliminary lemmas which enter into the rate of con-
vergence argument. Note that notation may differ from that in the applications.
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Let 7" be an inner product space and .27, 2’ subspaces of 2. Suppose x € 27,
ye?,z=x+y, and x*, y* are the orthogonal projections of z onto 27, 2/,
respectively.

LeMMA 3.11. Suppose there exists an a < 1 such that xe 27, y € Z/ implies
e, )| = allx||[[yl]. Then

(3-5) ¥+ yIl = A=)+ 1y*ID/A = @)

Proor. It follows from the definition of x*, y* that (x 4+ y — y*,y) =0,
(x +y —x*, x) = 0. Thus||y||" = (3, y*) — (x,) < [Vl lly*|| + «llx|[]|yl| and
[[x]|* = (x, x*) — (x, ) < ||x||||[x*]| + a]||x||||y||- The triangle inequality and the
above two relations imply [|x + y|| < [Ix[| + |yl = (IIx*]| + «llyll) + dly*II +
al||x||), from which (3.5) follows. []

Lemma 3.12 is an obvious multivariate generalization of Kolmogorov’s in-
equality.

LeMMA 3.12. Suppose X,, - .-, X, are independent p X 1 random vectors, with
EX;)=0,Cov(X) =X, LetS, = Yk ,X,, X% = Y ¥ X., and let M denote a
positive definite matrix. Then

(3.6) Plmax,, ., S,’'MS, > ¢’} < e* tr (3™M) .

Proor. The quadratic form S,’MS, can be written as || M!S, |*= 3;2_, [(M!S,),]*
(where M* denotes the symmetric square root of M). The derivation of the usual
Kolmogorov inequality is directly applicable to this sum. (See Doob [4], bottom
of page 315.) []

Lemma 3.13 will be used to show that the length of the projection of the
disturbance vector e onto a certain random one-dimensional subspace is not too
large. This lemma is used in the proof of Theorem 3.14, the principal rate of
convergence result.

The conditions and assumptions of the lemma are rather opaque and were of
course motivated by the needs of Theorem 3.14; it may be preferable to read it
after the proof of Theorem 3.14.

Assume 0 < p(n) < n and p(n) — oo as n — co. Assume further that N, is a
sequence of random variables such that 1 < N, < n and N, = O,(p(n)). For
brevity denote N, by N. Let{,, 1 < i < oo be a fixed set of constants and let
a=0. Let {,, ---,&,, be constants such that sup, max,_,., |{,;| < co and
such that n°{,; = {(1 + p,,) where m,~% = max,_,, |0,;| = o(p~¥(n)) as n — .
Let A(i) = o(1) as i — oo.

LEMMA 3.13. Suppose forevery K > 0 suchthat Kp(n) < n for n sufficiently large,

, w (&l loglog 316, {2\
3.7 1 xpm (i e '
(3.7 im,_, 2% < h(i) 251 €5 > e

Then
(3.8) Ty = L Cuend (D1 Gt = Oy((loglog n)h)  as n— oo
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REMARK 1. Define loglog >1i_, {;* to be 0 if it is otherwise undefined or
negative.

REMARK 2. This lemma is used in the proof of Theorem 3.14 to account for
the influence on the least squares estimates of the observations near the change-
over points.

REMARK 3. The d in the exponent in equation (3.7) is the o referred to in
the paragraph immediately below equation (2.4), where it is assumed that
Elemlz(na) < 0.

Proor. Multiply each of the {,, by n*. Thus
Ty = 25 Gl + puen /(D5 A1 + p,0)°)*
Since max,,_, |0, = o(p~¥(n)), we have that for every ¢ > 0, (1%, {1 +

0.t > (1 — )T, ¢! for nsufficiently large. Therefore, for n sufficiently
large,

(1 — &) 2y & €ail [ CP(1 + paa)?)?
< |ZEL i P eni'/(Z?:l EH < m,t N |G el (i Cia)*
S m, (R )t < m I 4 0,(1)] = 0,(1) .

Now consider V, = 21X, (,e,./(3Y%, ()t For every ¢ > 0 there exists a
K = K(¢) such that N < Kp(n) < n with probability greater than1 — e as n — co.
Thus, with probability greater than 1 — cas n — oo, |Vy| < max,,cxpm |Vil- If
> kam £ 2is bounded as n — co, then Kolmogorov’s inequality implies that that
the numerator is O (1). The denominator is obviously bounded away from 0. If
S k™ 2500 asn— oo, define e, as e, if €}, < h(i) 23, {,/(C2 loglog 336, L)
and as 0 otherwise.

Imagine the finite sequence {3 f., (el /(2f,CA)L k=1, ---, Kp(n)}, to be
the beginning of an infinite sequence. The proof of the first part of the law of
the iterated logarithm on pages 261-262 of Loéve [16] holds true for this infinite
sequence. This implies that for every g > 0

P{Xk Cetl > (1 + Bk, ¢ Y loglog 31k, L] infinitely often} = 0.
This in turn implies that
limy, o, P{SUp,zy [[Zim Crem][ Do &%) Hlog log 5, 67174 > 1 4 8} = 0
or equivalently that for every ¢ > 0 there exists an M(e) such that for all n for
which Kp(n) = M(e), P{maXy.,<i<xpm |5ame| > 1 4 B} < e. This implies that
MaX,ghgrpm Lint i€l (Lim 6t = O,([log log 235%™ C7]F) -

Since {; < Cn%(1 + m,™%), 1 < i < n, it follows that the above expression is
O,([log log n]t) as n — co.

It now remains to show that e,; can be substituted for eZ, in the above order
relation. This is done using the first part of the Borel-Canlelli Lemma (see
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Logve [16], page 228): namely, if >;7_, P(4,) < oo then P(4, infinitely often) =
0. Now,
n n h(i) 2351 G5 ]’
1 Plef # eud = T2 P {lewdl 2| Sty
Zi 1 { } Z 1 | | C{"IOgIOg Z§-=1C,-”

= E|em,|3(1+a) Z{f__ﬂl(”) <Cta 10g lOg Zf’i=1 Cja >1+a
) k(i) Zjes G

which, by hypothesis, remains bounded as n — oo.

If we pretend that {e,,, 1 < i < Kp(n)} is the beginning of an infinite sequence,
then the Borel-Cantelli Lemma implies that Pfe], + e, infinitely often} = 0.
Equivalently, for every e > 0 there exists an M(¢) such that Ple,, — e%, = 0 forall
i = M(e)} = 1 —e. This implies that max, g, <, |2 Culen — eX)(Th, E0)E =
o,(1)as n— oo. (]

Let ny;, N; denote the indices of the observations which occur immediately
preceding ¢, #;, j =1, ---,r — 1. Assume that the spacing of the observa-
tions around the change-over points satisfies the following condition:

There exist functions py(n), j = 1, - -+, r — 1 such that for each j the assump-
tions of Lemma 3.13 are satisfied with N = |[N; — n,,|, p(n) = p;(n), and {,; =

fj(O)(tn,nojii) - f}?l-)l(tn,noj:ti)'

REMARK. If y(r) is a broken line and the #,; are equally spaced, then equation
(3.7) holds true with A(i) = i=%?, p(n) = n, and N, {,, defined as in the preceding
paragraph. To see this, express f;0(f) = a,@ + b;O(t — ;%), f0(f) = a;” +
b, (t — ;7). Then({,; is (b, — b{,)i/n(1 + 0 (1)) and so ng,, — (b, — bY"),)i =
;- The assertion in (3.7) is now easily verified.

Next, a key theorem in the rate of convergence argument is stated and proved.
The theorem guarantees that within any subset of ¢ values which contains a
“substantial” portion of the observations, the estimated regression function must
be “quite close” to the true regression function, at least at one point. An as-
sumption is required to the effect that “enough” observations are taken within
each (true) segment of the regression function.

Suppose S; is a subset of (z{2,, 7;), j =1, ---, r and that with probability
approaching one as n — oo, S;€(%;_,,%;), j =1, ---,r. Let M; denote the
K(j) x K(j) matrix (1/n 3. fi(tai)fu(tni))s B k = 1,2, -, K(j). Assume that
the minimum eigenvalue of M; is 4; 4 o(1) asn — oo where 2; > 0,/ =1, .-+,
r. In other words, the subset S; contains a proportion of the information which
is bounded away from 0 as n — oo.

THEOREM 3.14. Suppose W is a subset of [0, 1] such that H(W) > 0. Then
(3.9) min, ., [9(1,0)] = O,(n~*(log log n)?) .

ProOF. (r = 2). The proof is given only for the case r = 2, to simplify the
notation, with no substantial loss in generality. Let t denote the n-vector
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(tys - -+ t,,) and let g, denote the n-vector (u(§;¢,,), ---, #(89; ¢t,,)) within
(and only within) this proof.

There are n + 1 ways in which the ¢,; may be divided among two segments.
Consider the kth of these partitions: (¢,,, -+, %, 4_1)s (fur =+ t,,). Let 7, be
the linear space spanned by the ¢ (= K(1) + K(2)) n-vectors where the ith com-
ponent of the jth vector is

fit,) if i<k—1 and j<K(1)

0 if izk and j<K(1)

0 if i<k—1 and j=K(1)+ k> K1)

San(tas) if iZk and j=K(1)+ k> K(1)
and let & " = &, @ [p(t)] denote the direct sum of the two vector spaces.
Let Q,* denote the orthogonal projection onto & ,*, Q, the orthogonal projec-
tion onto .&,.

Let X = (X,,, - -+, X,,)" and let g,* be the orthogonal projection of X onto

F s By, the closest point to X in &, *, subject to the underlying continuity
restrictions. This is displayed schematically in Figure 3.3.

X=pote

y gt

Po Pk Bk k
FiG. 3.3.

Then . .
IX — ¥ + e — Al = 11X — &l = |IX — 2l

which implies
[1X — pol|* — [l — #ll® + |lee™ — #4ol]?
—2(p* — s By — ) + || — )P = ||X — -

Thus

[|18 — £l < 2020 — o B — #20) = 2||28™ — 0] || 2 — #2]]
and so
(3.10) 12 — ]| < 2||e* — tol| = 2[|Qi7e]| -

This computation is an important step in showing that || Z— g,|| = O,((log log n)?).



SEGMENTED REGRESSION PROBLEMS 65

The estimated regression belongs to the random linear space, .9%, which is
spanned by ¢ n-vectors whose components are almost the same as those of the
q n-vectors that span &, except that the condition i < k — 1 is replaced by
i < N, so that there are now a random number of “0” components in the vec-
tors. This implies that §(t) belongs to F+ = .F @ [pt)], the direct sum of
the two vector spaces. The vector space &+ is also generated by the direct
sum of .% and the vector {, where £’ = (0,- - -, 0, £, (tnwy+1) — f2 O (u wya1)s -
F1nng) — fr@(tning)> 05 + <+, 0). Let O, Q denote the orthogonal projections
onto & +, a respectively.

If it can be shown that ||0*e|| = O,((log log n)}), then equation (3.10) implies
|2 — p]| = O,((log log n)?). Thus any subset, I, of the ¢,,’s which contains a
proportion of the observations asymptotically bounded away from 0, must con-
tain a t,; for which 9(¢,,) = O,(n~*(log log n)t). This implies (3.9).

It now remains to show that ||Ote|| = O,((log log n)}). Recall that it was
assumed that with large probability as n — oo, S; € (2,1, £;) N (z2y, 7;¥) j =
1,2. Since the minimum eigenvalues, 1,, 2, of the information matrices M,, M,
are asymptotically bounded away from 0 as n — oo, it follows that the propor-
tions of observations in the subsets S,, S, must each be asymptotically bounded
away from 0 as n — co. With large probability as n — oo the sets S, S, do not
intersect the interval (¢, 7,) and so the components of the vector § are identi-
cally O for t,,€ Sy, ,, € S,. Thus, intuitively, one would expect the vector § to
be at a substantial angle to % (in fact almost orthogonal) as n — co. This
intuition can be quantified by demonstrating the existence of an @ < 1 such that
with probability approaching one as n — oo, |(£, g)| < al[¢]|]|g|| for all g e 7.
The calculation of such an « is not difficult but is omitted to avoid digressions.
It thus follows from Lemma 3.11 that

10%ell < {1/(1 — a)(||Qell + (& )/IICIDH1L + ox(1)) -

Therefore, if it can be shown that ||Je|| = O,(1), (£, €)/||¢]| = O,((log log n)?),
then i
14 — £l < 2|Q%e]| = O,((log log n)?) .
That ||Qe|| = O,(1) is a consequence of Lemma 3.12 and the assumptions
regarding S;, M;, j = 1, 2. From standard least squares results

l10e|[* < 231 vi/M,; 1 + 0,(1)]v; = {X5- v;/M;7IV;H1 4 0,(1))

where  ntv) = (X2 fu(tadens = > Y% fika(tai)en) and  where niv) =
(D tenyr fu(ta)enss + s Zilenyn faxa(ta)en)- Lemma 3.12  implies that
Piv;M;'v; =2 2} < 2 2 tr {M;*M '1} where M,;* is the K(j) X K(j) matrix
(7 S faltnd tad)s B k= 1,2, <+, K(j). Since tr {M;*M,} = O(1), it
follows that v;/M,~'v; = O,(1) and so ||Qe|| = 0,(1).

It now remains to show that (§, e)/|||| = O,((log log n)}). But this follows
as a direct consequence of Lemma 3.13. Thus the proof of the theorem is
complete.
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LemmA 3.15. If 0 is identified at p'™ by the q-vector t = (t,, ---,t,) and the
components of t are centers of observations, then the assumptions of Theorem 3.14
relating to S;, M;, j = 1, .- -, r are satisfied.

Proor. It suffices to demonstrate S;,, M;, j =1, ---, r. Let S, consist of the
union of small neighborhoods about each of the components of t that lie within
(z{"4, 7;7), and are not limit points of A ;. Define M; as previously. Since the
elements of §; are not limit points of A, and Lemma 3.8 implies that 7, is
arbitrarily close to A;® with large probability as n — oo, it follows that §; e
(%;_1» £;),J = 1, - - -, r, with probability approaching one as n — co. Let G, be
the ¢ X ¢ block diagonal matrix consisting of r diagonal blocks and r(r — 1) off
diagonal blocks. The jth diagonal block is the K(j) X 'K(j) information matrix
M;. The (i, j)th off diagonal block is the K(i) x K{(j) matrix consisting entirely
of zeroes. If it can be shown that the smallest eigenvalue of G, is bounded away
from 0, then the same must be true for each of the M;. Let G* = (f(t)) denote
the ¢ X ¢ matrix with (i, j)th element

G¥ = fi,(1) i< K1) and j=p < K()
=0 i>K() and j=p < K(1)
=fo(t)  P=K)+ -+ K@~ 1)+ h S K1) + - + K(g)
and j=K()+ --- +Kg—1)+p<KI)+ - + K@)
=0 iI<K1)+ --- +Kg—1) or i>K(1)+ --- + K(9)
and j=KI1)+ --- +K@g—1)+p=<K(1)+ --- + K(9) .
It follows from Lemma 3.2 that G* is nonsingular, and the smallest eigenvalue
of G*'G* is greater than some C > 0. By continuity, there exist intervals, 7,
about each of the components of t such that if t* is any g-dimensional vector
with components #;*el;, j=1,...,¢q, then the smallest eigenvalue of

(f(t*))'(f(t*)) is greater than C/2. Since the components of t are centers of ob-
servations, there exists a y > 0 such that each I, contains at least 2yn 4 o(n) of

the 1,,. Form [yn] vectors t,, = (f,u1 **» tug)s B =1, - -+, [rn], each having
one component in I;, j =1, ---, g. Thus,
1
G = — 2 (£(t)) (£(tws)) -

(A = B means that A — B is positive semidefinite.) Therefore, the smallest
eigenvalue of G, is greater than yC/2 4 o(1). This implies that G, is strictly
positive definite for n sufficiently large. []

Theorem 3.14 and Lemma 3.15 together imply the principal rate of conver-
gence result, namely:

THEOREM 3.16. (Rate of convergence). If (i) @ is identified at p'” by t and the
components of t are centers of observations, (ii) the spacing of the observations
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around the each of the breakpoints is such that the assumptions of Lemma 3.13 are
satisfied, then
(3.11) 6 — 6 = 0,(n"(log log n)*) .

Proor. Theorem 3.14 implies that within any small neighborhood of a center
of observations there exists a ¢,; such that

A(t,) — po(tns) = O,(n¥(log log n)?) .
Lemma 3.2 implies the conclusion of the theorem.

CoRrOLLARY 3.17. If §® e @ C E, then under the hypotheses of Theorem 3.16

(3.12) 6, — 8 = 0,(n"¥(log log n)}) .
For simplicity, it will be assumed in the sequel that @ is well-identified at p®
by t.

The rate of convergence of £ to z® will now be considered. Suppose that
f10;%;¢) and f;,,(09,; t) have m; — 1 t-derivatives in common at 7,*, j =
1, ..., r — 1. Further, suppose that f; and f;,, have continuous left and right
m jth t-derivatives at r = 7, and differ in both of these derivatives. For brevity,
denote these assumptions by conditions (v). Let D*(h,j, k), D=(h,j, k) denote
the kth right and left s-derivatives respectively of £,(8,; t) at t = ;. If they
coincide, denote their common value by D(#, j, k).

Expand f;(6,; 1) and f;,,(6;,,; t) in Taylor series about 8,, z,© and 6{),, r;©
respectively. Recall that f,(8,; ;) = f;,(00,; ;), D(j, j, k) = D(j + 1,
S kyk=1,2,--.,m; — 1.

For # €O in the neighborhood of 6%, the intersection point, z;, of the two
segments f(8;,7) and f;,,(8,,,; ?), is obtained by solving the equation f;,,(8;,,;
t;) — fi0;7;)=0. For@,@8,,, t; near 6, 6%, t,2,

0= f;41(0;.0575) — f4(05 75)

=[ai{;%+o(1)] 0,0 — o;-w—[af’ + o[ @ - 0,)

[P+ Ly my) — DA jm) + o(D)(e, — 7,0
;i

where D* is D* if z; > r;® and D~ if r; < r;®. Thus
1 . . ..
(3-13) il [D=(J + 1./, m;) — D*(j, j, m;) + o(1)](z; — 7)™

+

Equation (3.13) and Theorem 3.16 imply
(3.14) (£; — ;)™ = O, (n~}(log log n)?) .
This is stated formally in the theorem below.
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THEOREM 3.18. If (i) @ is well-identified at p® by t and the components of t are
centers of observations, (ii) conditions (t) above are satisfied, and (iii) the observa-
tions are spaced around the breakpoints in a manner so that the assumptions of Lemma
3.13 are satisfied, then

@ — 69) = 0 (n¥(loglogn)t  and
(f'j _ Tj(O))mj — Op(n—i(log log n)é) R j= 1, ...,r—1.
An important special case of this theorem is stated as

COROLLARY 3.19. If the hypotheses of Theorem 3.18 are satisfied and in addition
m=-...=m,_, = l,then

(3.15) é — g = 0,(n"#(log log n)t) .
Just as with Corollary 3.17

CoROLLARY 3.20. If §” € @ C E and the hypotheses of Theorem 3.18 are satis-
fied, then (£, ; — ©;V)" = O, (n~}(loglog n)t), j =1, -, r — 1.

COoROLLARY 3.21. If (i) the conditions of Theorem 3.18 are satisfied, and (ii)
E(e*) < oo, then 6* — o) = O, (n~¥(log log n)t). If in addition §° ¢ @, then 3,* —
0,2 = O, (n~¥(log log n)?).

It was previously remarked that a necessary condition for identification of the
underlying regression function is that no two adjacent segments are identically
the same. However, if one imposes the additional assumption that a sufficient
number of previously specified centers of observation lie within each segment,
then 6 is identified even though two adjacent segments may be the same.
However, 8 is obviously not well-identified. Thus Theorem 3.16 can be used
to decide whether or not two adjacent segments are distinct.

More precisely, if the specified centers of observations lie within the appro-
priate segments and estimated coefficients from two adjacent segments (having
the same functional form) differ by less than log n/n?, or if an estimated segment
does not contain appropriate disjoint subintervals, each with at least n/log n
observations, then it can be inferred that two adjacent segments are identical.

This is stated formally as

COROLLARY 3.22. Suppose the assumptions of Theorem 3.16 hold and it is known
a priori that certain specified centers of observation lie strictly within each segment
and are sufficient to identify 8. If (and only if) p(§; t) contains two identical
adjacent segments, then with probability approaching one as n — oo, either

(i) 10, — 6,,.| < log njns
or

(ii) there exists an estimated segment £, £;,,] which does not contain appropriate
disjoint subintervals, each with at least nflog n observations.

Proor. For the sake of simplicity assume that r = 2. For all least squares
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solutions with the a priori specified centers contained in the appropriate seg-
ments, the argument leading up to the proof of Theorem 3.16 goes through
directly. Thus the only way for (i) to be violated is for (ii) to hold.

4. Asymptotic distribution of €. Tt will be assumed, unless specifically men-
tioned to the contrary, that 8 is well identified at £ by t and the components
of t are centers of observations. It was shown in Theorem 3.18 that under these
conditions and a mild additional assumption § — 6© = 0,(n"*(log log n)*) and
(£; — ;)" = O,(n~*(log log n)*) where m; is the lowest order t-derivative in
which the segments f;® and f{%  disagree at 1 = ;. This enables one to discuss
the asymptotic distribution of &.

The principal idea (due to Sylwester [24]) is to form a pseudo problem by
deleting all of the observations in intervals Lyn), j =1, ---, r — 1 of length
d;(n) about each of the r;®. The intervals L (n) are chosen so that d,(n) — 0
but (n/log log n)**™s'd;(n) — oco. The term pseudo problem is used because in
practice the statistician does not know (z,®) and thus cannot delete such
observations.

Assume that the #,, are distributed in a manner that implies only o (n/log log n)
observations are deleted by this process. (If H(f) is continuous and has finite
slope at each 7;, then this will be the case.) Intuitively, deleting o (n/log log n)
observations eliminates a percentage of the information which approaches zero
asn — oo. Thus, from an asymptotic point of view, the deletion of these obser-
vations should not affect any of the distribution theory. It will be shown that
this is in fact the case.

More precisely, it will be shown that

6% — 60 = 0,(n), (2% — ¢, O)mi = O,(n})
G« — G =o,nt), (2* — ) — (2 — ;)" = 0,(n"H)

where £+ =(6*, #*) is the L.s.e. in the pseudo problem (p.l.s.e.). This isa great
simplification since the p.l.s.e. behaves asymptotically as if it were known be-
tween which two consecutive observations each of the r; are located. Thus
it is possible to use classical techniques to discuss the asymptotic behavior of
§*. Notation:

(i) n*: sample size in the pseudo problem, n** = n — n* = o(n/log log n).
(i) @*: unrestricted l.s.e. in the pseudo problem (p.L.s.e.).
(iii) @,*: restricted l.s.e. in the pseudo problem.
(iv) 2*: the summation over the n* terms of the pseudo problem.

(V) I** o, — o*
Generally, a single asterisk refers to the pseudo problem.
Theorems 3.10 and 3.18 carry over directly in the pseudo problem. Thus

THEOREM 4.1. If §© e C E, 0 is well-identified at g by t whose components
are centers of observations (in the pseudo problem), the conditions of Lemma 3.13



70 PAUL I. FEDER

are satisfied (in the pseudo problem), and f(0,; t), f;,.(0'),; t) have at most m; — 1
t-derivatives in common at t = 7,7, then

(4.1) 0% — 69 = 0,(n¥(log log n)}) ,
(z5* — 7)™ = O,(n~¥(log log n)?)
(4.2) 8,x — 69 = 0,(n¥(log log n)}),

(75,5 — 0" = O,(n~*(log log n)*) .

The asymptotic behavior of é will now be considered by first treating é*
Recall that © was defined to be the collection of 8’s which lead to functions
((§; 1) satisfying the continuity restraints, and E the set of corresponding §’s.
Thus, © is a subset of g-dimensional space, and different asymptotic behavior
occurs, depending on whether 8 is a boundary point or an interior point of
©. It will be shown later that 8 interior to © implies 6* has an asymptotic
normal distribution.

LeMMA 4.2. Suppose D*(j,j, m;) = D=(j,j,J, m;), D¥*(j+1,j, m;) = D=(j+
Lj,my),j=1,---,r—1. If my, ..., m,_, are all odd, ' is an interior point of
©. If any of the m; are even, then 8 is a boundary point of ©.

Proor. Recall equation (3.13): If r; is the intersection point of f,(8;; f) and

fi+1(0j+1; t)
(.13) LD + Ljim) — Dy my)l(e; — =)

= [ +om] @ =0 [ R 4o [ @ — 01
0,1

for all 6,, 8,,, sufficiently close to 8,, 8{),. If m; is odd and D* = D~ then

for all 4, 0”1, equation (3.13) can be solved for ;. However, if m; is even,

then (3.13) cannot hold both for 8, + 6,, 6, + 8,,,and 8, — 3,0}, —

8;,,. Thus any neighborhood of (8, o , 6{,) must contain pomts Wthh are not

in © and so 6 is a boundary point of 9 0

An important special case of Lemma 4.2 occurs when each segment is a straight
line. Thenm =m,= ... =m,_, = 1.

The next lemma shows that the rate of convergence of 8* to 8 is n~* rather
than n-i(log log n)t.

LEmMMA 4.3, 6% — 0 = 0,(n7}).

Proor. In analogy with equation (2.5) define
S8 = 7 I (X — (85 1,0) -

Theorem 4.1 implies that £,* € L,(n), j = 1, - - ., r — 1 with large probability as
n — oco. Since there are no observations (of the pseudo problem) within the
intervals L (n) it follows that s*(§) within this region does not depend on r and
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is a paraboloid in #. In particular, it is twice differentiable in #. For the
remainder of the proof denote s*(§) by s*(@). Thus, with large probability as

n-— oo

0> s*(é‘*) — $*(6)
(4.3) =nt as*gzm))' [n(6* — 9]

~ 20%( (0) A
+ 3lni@* — ooy [ DO | (mde — 0],

The proof of Lemma 3.15 implies that the smallest eigenvalue of
n' 9’s*(6®)/06 60 is bounded away from zero as n — oo, and the matrix is posi-
tive definite and converges to a limit as n — co. The vector n~#[ds*(6)/06]
has mean 0 and uniformly bounded variance as n — oo, so that it is O,(1).
Thus equation (4.3) implies that n}(§* — 8©) = 0,(1). []

LEMMA 4.4. If 0 is an interior point of © then

(4.4) L} 6* — 69)] — 570, G

where (V') represents the distribution (law) of V and

(4.5) = op(€™; 1) &5 1) dH (1)
00, 20,

where G is the ¢ X q information matrix and is strictly positive definite.

Proof. Define s*(§) as in the proof of Lemma 4.3. Since 6 is interior to
©, any @ within a neighborhood of © is “admissible” as a possibility for 6.
Thus, with large probability as n — 0, 6* is the point at which the unrestrained
minimum of s*(§) occurs. Thus §* may be obtained by setting the derivative
of s*(§) equal to 0. This implies

(4.6) {% ST (3#(66‘:;; tm)) (a#(e;; tni)’>} (é‘* — 69)
Z* aﬂ(e 5 tm)
a0

The proof of Lemma 3.15 implies that the smallest eigenvalue of the matrix on

the left-hand side of equation (4.6) is bounded away from zero. Since this

matrix converges to G, by continuity G must be positive definite. Thus
n(@* — 89) = (G- 4 o(1)jn-t 3* WHED 1) HAE S Lo i) ¢

The Lindeberg-Feller central limit theorem for double sequences (see [16], page

295) implies the assertion of the lemma.

COROLLARY 4.5. In the case of broken line regression (i.e., when each segment
is a straight line), n*(ﬁ — 0©) has an asymptotic normal distribution with mean 0
and covariance G,
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Before discussing the case when 6 is a boundary point of ©, it is necessary
to introduce two definitions. These appear in Chernoff [2].

DEFINITION 4.6. A set C is positively homogeneous if y € C implies ¢y € C for
c>0.

DE°rINITION 4.7. The set p is approximated by the positively homogeneous set C
if inf, ., |y — | = o(|y|) for yep, » — 0 and inf, ., |y — 7| = o(|7|) for yeC,
r — 0.

Let © — 6 denote the translate of ® by 8©; i.e., ® — 0@ = {8 — 6; 0 ¢
©}. This amounts to translating the origin of the parameter space to 6.

LEMMA 4.8. If (i) 6 is a boundary point of ©, (ii) ® — 6 is approximated
by the convex, positively homogeneous set C, then the asymptotic distribution of
ni(é* — 0©) is that of the closest (in the metric determined by the asymptotic infor-
mation matrix, G) point in C to Z, where £ (Z) = 47(0, G™).

Proor. The p.ls.e. 6* is that element of ® which minimizes s*(§). Let 8*
denote the parameter which minimizes s*(§) without regard for the continuity
restraints at the change-over points. Then Z[n}@* — 6©)] — .47(0, G™),
where G is specified in the statement of Lemma 4.4.

Recall that within the region of interest of the parameter space, s*(§) does
not depend on = and is a paraboloid in §. It will thus be convenient for the
remainder of the proof to denote s*(§) by s*(6). The change-over points between
segments will be understood to lie in Lyn), j =1, -+, r — 1 regardless of whe-
ther or not @ € ©.

For all @ in the neighborhood of 8

(4.7) $%(8) = s*(8%) + (6% — 6)G,(8* — 6)

where G, is the matrix on the left-hand side of equation (4.6). G, converges to
G, where G is given in equation (4.5). With large probability 6~ is that element
of © which minimizes (8* — 6)'G,(6* — ). It may be shown by an argument
that utilizes the convexity of C that O =7 + o,(n"%) where 7* — 6 mini-
mizes (@ — 6)'G(6* — ) over all & — 8 ¢ C. (The argument is a bit lengthy
and so has been omitted. It is available from the author upon request.) This
implies that n*(é* — 6©) and n¥($* — 6) have the same asymptotic distribu-
tion, which may be shown by a continuity argument to be that which is asserted
in the statement of the lemma. This completes the proof.

Note 1. Condition (ii) is satisfied if © is locally convex at 6.

Note 2. Condition (ii), that C is convex, is a bit stronger than what is actu-
ally needed to prove the lemma. If C is a positively homogeneous set which
can be divided into disjoint convex sets {C;} such that with large probability as
n — oo the estimates §*, #* and §* (the closest point in @ to 6* in the metric
determined by G) each lie in the same C;, then the proof goes through. This
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relaxed condition is necessary for the validity of example 3, case (iv) at the end
of this section.

Lemmas 4.4 and 4.8 are the basic building blocks for the calculation of the
asymptotic distribution of #, the Ls.e. in the original problem. It now remains
to show that @ and §* do not differ by too much. The next sequence of lemmas
leads up to the result that 6 — 6* = o,(n"t). This shows that the rate of con-
vergence of & to 6 is n—* rather than n-#(log log n)* and that 6* and 6 (suitably
normalized) have the same asymptotic distribution.

The following three lemmas lead to uniform bounds on the order of magnitude
of certain expressions which occur in regression problems. The bounds will be
precisely stated in Lemmas 4.10 and 4.11.

Lemma 4.9 concerns the behavior of partial sums of numbers. This is Theo-
rem 3.1 of Sylwester [24] and is included here only for the sake of completeness.
The proof given below is due to a referee.

LEMMA 4.9. Lety,i=1,2, .. ,nbeanynumbersandwi,i=1,2, <., n be
any n numbers such that 1 Z w, 2w, = --- 2w, = 0. Then

max, <, |2k, y| = max g, |Z£‘=1 Yiwi -

Proor. Definew,,, =0. Letd,=w, —w;,, =0,i=1,...,n Thenw, =
2r_;d;. Thus

maX, g, | 2ot Yo Wil
= MaX,; <, IZf 1 yz(Z;L : )I = MaX, <, IZJ ld_1 mln(:,k) yl
< Yradiimax g, | DRPOR ] = Xiadimax g [ 2 pil]
é (ZJ-I J)(maxlsksn |Zz =1 ytl) = maxlské»n IZ’L =1 yzl D

Let &, = {f(#)} be the class of functions defined on 0 < ¢ < 1 such that f(7)
is composed of at most s segment each of which is a differentiable function
possessing at most z sign changes in derivative. Lete,,i=1,2,..--,n be a
double sequence of i.i.d. random variables having mean 0 and variance 1. De-
note f(t,;) by f,;. For convenience arrange thet,;sothat0 <¢,, <--- <1, <.

LemMA 4.10.
| 220y failnil = {mMax, g, Ifnil}op(ni)

where O (n*) applies uniformly over all fe 7 ..

ProoF. Assume without loss of generality max |f,;| = 1. By definition of
F,, the set I = {t:|f(t)] < 1}, which contains all the ¢,;, consists of at most
s(z + 1) (possibly degenerate) intervals in each of which df(r)/dt has at most z
zeros. Therefore each of the s(z 4 1) intervals can be subdivided into 2(z + 1)
or less subintervals, throughout which f(7) is positive and increasing, negative
and increasing, positive and decreasing, or negative and decreasing. Let /(k),
k=1,2,...,2s(z + 1)* denote the kth such subinterval. Obviously

(4'8) |Z?=1fm‘eni| =20 |Zl(k)fnieni| .
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The f,, can be assumed positive and decreasing within each subinterval, since
otherwise the f,; can be multiplied by minus one or the summation can be taken
in reverse order. By Lemma 4.9

(4.9) | 22 10 fai €nil = MAX e, |20 = 4, .

Equation (4.9) is valid for every nondegenerate interval.

The set 7 may also contain degenerate one-point intervals in which all f{(z,,)
are +1 or all are —1. For these intervals (4.9) holds trivially. Hence from
(4.8) and (4.9)

(4.10) |20 fuiad = 25(z + 1)4, .

Thus far in the proof probability has not been mentioned. The only random
variable on the right-hand side of (4.10) is 4,, which does not involve .&,. By
Kolmogorov’s inequality 4, = O,(n?). []

The proof of Lemma 4.10 can easily be extended to yield

LEMMA 4.11. Let &, denote the collection of subsets, S, of [0, 1] each of which
consists of at most m intervals. Then

| 25 far€nil £ {mMaxs |f,i[}O,(n?)
uniformly for fe &, and S € .

LeMMA 4.12. If (i) @ is well-identified at ¢ by t and the components of t are
centers of observations, (ii) the conditions of Lemma 3.13 are satisfied (in both the
original and pseudo problems), (iii) © is locally convex at 8, then
(4.11) 0 — 6% = o, (n ).

Proor. It follows from the definition of identification that @ is also identified
at £ by t in the pseudo problem and the components of t are centers of obser-
vations with respect to the pseudo problem. It follows from Theorems 3.16 and
4.1 that @ — 6© = 0,(n~*(log log n)*) and * — 6@ = O,(n—#(log log n)}).

Select a, > 0 such that a,/(log log n)t — oo and a, = o((n/n**)}). Let Z, =
(cB:|0 — 09 < a,n, t;eLn),j=1,---,r— 1}. Then € and é* both
lie in 7/, with large probability as n — co. Note that the function s*(§) depends
only on @ for § € Z,, so that s*(§) = s%(6).

Recall s(§) = n™ T, (€ + vaur)'s s%(8) = n7* 1* (€4 + vai)’. Thus

(4.12)  5(§) = s*(§) + n" ¥ (i + )
= 5%€) + 7t D el + 2n7t P ey, + nTh R,
It follows from the definition of %/, that
SUPee o, MaX, ey 1 ME5 1) = O(a, n~t).
Thus sup,., |7 X ** v}, = o(n™?) and Lemma 4.11 with n** substituted for »

implies
SUP¢e o, [n=t 2** e, vp| = 0,(n77) .
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Equation (4.12) thus implies
(4.13) 5(§) = s¥(§) + nt ek, + o, (n7h)

where o,(n~") is uniformly small for § € 7.
Since € and é* are the L.s.e. and p.l.s.e. respectively,

(4.14) s =5,  sEn=sd.
Equations (4.13) and (4.14) imply
415) 0= 58 — s(6) = (") — 5€) + o,(n) S 0,(n7).

Therefore s*(é) — s*(é*) = o,(n™"). Since O is locally convex at 6 and 0% is
the minimizing value in ©, it follows that the directional derivative of s*(§) at
6* in any direction into © is nonnegative. Now

(4.16) s*(é) — S*(é*) + n—§(5 _ é‘*)r I:né as*(é*):l

+ 30— 6y BE) G _ gy

00 06

o=

Note that the last two terms on the right side of the above equation are positive.
Equations (4.15) and (4.16) imply @ — 6* = o (n7%). []

Note. Condition (iii) is more than what is actually needed to prove the lem-
ma. If © can be partitioned into disjoint locally convex sets {©,} such that with
large probability as n — oo € and €* lie in the same 0;, then the directional
derivative in (4.16) is positive and the proof of the lemma goes through. This
relaxed condition is necessary for the validity of example 3, case (iv) at the end
of this section.

Lemma 4.12 implies that n*(é — 6©) and n}(0* — 5‘°’) have the same asymp-
totic distribution. Thus

THEOREM 4.13. Suppose (i) 0 is well-identified at p® by t and the components
of t are centers of observations, (ii) the conditions of Lemma 3.13 are satisfied.

(a) If 6© is an interior point of © then & [n*(ﬂ 0] — 470, G™) where
G is the positive definite information matrix and

_ 10#(5‘“ 1 g 1)
= 20, dH(t) .

(b) If 6 is a boundary point of © and ® — 6% is approximated by the convex,
positively homogeneous set C, then & [n*(0 — 0)] converges to the distribution
of m(Z) where t(Z) minimizes (Z — 0)G(Z — 0) among all 0 € C, and (L) =
470, G™Y).

Note. The convexity assumption in (b) can be relaxed in the manner discussed
in Note 2 following Lemma 4.8.
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CoROLLARY 4.14. If D*(j,j, m;) = D=(j,j, m;), D*(j + 1,j, m;) = D~(j +
Lj,m),j=1,2,---,r—1land my, --., m,_, are odd, then £ [n}(0 — 0")] —
470, G™).

The conditions of the corollary are satisfied in the important special case of
broken line regression.

REMARK. If Ee* < oo then ¢* — 6% = o,(n~%). To see this, note that ¢* =
nt Yt (ens + 9, = nTt X el + Oy (n7Y) and 6** = n*7! 3 ¥(e,; + 0%) =
n*-1 3 * el + 0,(n™"). Thecentral limit theorem implies that }; * €}, = o’n* 4 X,

1€ = o’n+ X+ Ywhere X = O,(nt), Y = o,(nt). Thus *— ¢** = o,(n?).

The behavior of the #,’s will now be discussed. First the asymptotic behavior
of the #;*’s will be considered. It will then be shown that #; and #;* are close
and thus have the same asymptotic distribution.

Refer back to equation (3.13) for the intersection point of f,(8;; t) and f; (6 ;..
t), for all 8, 6,,, sufficiently close to 6, 6{),, j = 1,2, ..., r — 1. Denote
(I/mH[D=(j + 1,j, m;) — D*(j,j, m;)] by D;*, of;,0;”, 7, )/08; by .f;, and
delete the + from D;* if the mth t-derivatives are continuous at 7. Since
6* — 6 = 0,(n"t), equation (3.13) implies that (¢;* — ;@)™ = O,(n"*) and
so (3.13) may be rewritten as

(4.17) niB* = A[ni(é* — 69)]

where B* is the r — 1 dimensional column vector with ith coordinate (#;* —
;)™ and A = A(z?) is the (r — 1) X ¢ matrix whose (i, j)th components are
f//D;* for K1) + -+ + K(G— 1)+ 1 <j < K1) + -+ + K(i), —f,,/D*
for K1)+ --- + K@) +1 <j<K1)+ --- + K@i+ 1), and 0 otherwise,
where i runs from 1 to r — 1.

The asymptotic distribution of #;* depends on the value of m; and on whether
ornot D;* = D;~. Suppose first that all of the m; are odd and D;* = D, = D,,
J=12,...,r— 1. Lemma4.2 and Theorem 4.13 (a) imply that n}@* — 6©)
is asymptotically normal. Equation (4.17) then implies

g{n*((fl* — z.l<0))m1, ceey (f;k_l — T(ro—)l)m'_l)'} — ‘/1/(0’ AG-—IA') .

If D;* + D, then ni(é* — 6©) may or may not be asymptotically normal,
depending on just how the segments intersect. This will be illustrated by exam-
ple. It is apparent though from (4.17) that n(z* — 7,©)™; is not asymptotically
normal. Its asymptotic distribution is a mixture of half normal distributions.

If m; is even, then it can be seen from (3.13) that né((éj* —0,%y, 6%, —
0.,)) does not generally have an asymptotic normal distribution. However,
if D,* = D, and m, is odd for k + j, then 5k* is the unrestrained l.s.e. for
k +j—1,j,j+ 1. Thus, n¥(?,* — 7,2)™ is asymptotically normally distributed
forall k =j — 1,7,j + 1.

This discussion is summarized in the following theorem.
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THEOREM 4.15. (i) If m;isodd and D;* = D;~,j = 1,2, ---,r — 1, then
(4.18) Lnd (¥ — 1, O™, -, nd(EE, — o0)™r1} — S0, AGT?A)
where A = A(7'") is the (r — 1) X g matrix on the right side of (4.17). If m; is
odd but D;* + D;~, then the asymptotic distribution of n}(%;* — ,©)"i may be
nonnormal.

(ii) If m, is even, then with the exception of j = k — 1, k, k + 1 the statements
in (i) are applicable.

It will now be shown that #; and #,;* have the same asymptotic distribution.

LEMMA 4.16. Let B* be the r — 1 dimensional column vector defined in (4.17) and
let B be defined similarly, but with ©* replaced by t,. Then n}(B — B*) = o,(1).
Proor. Equation (4.17) is valid at € as well as é*. Thus
n(B — B*) = A(z®)nt(@ — 0%) + o,(1) = 0,(1) . 0
Theorem 4.15 and Lemma 4.16 imply
THEOREM 4.17. The asymptotic distribution of T as n — oo is the same as that
stated for ©* in Theorem 4.15. In particular, if m, ---, m,_, are odd and D;* =
D=D;j=1,.--,r— 1, then & (n'B) — 470, AG'A’) where B is defined
in Lemma 4.16.
The section will be concluded with several examples that illustrate the results
stated in the theorems.
1. Consider the two-segment broken line regression model.
wE; 1) =0y + 0,5t 0=sr=7?
- =0, + 0, O<Lt<1.
Here r =2, K(1) = K(2) =2, m; =1, D;* =D;- =0 — 6. If n(§°;1¢) is
identified by centers of observations, Corollary 4.14 implies that {ni(é — 0} —
470, G™"), where ¢,’G is the 4 X 4 information matrix with components
072G, = V5" r+i- dH(r) for i=1,2; j=1,2
=0 for i=1,2; j=3,4 or i=3,4; j=1,2
= Slr(o) fiti-s for i= 3, 4; ] = 3, 4,
Equation (4.17) (substituting # for #*) asserts that
ni(# — t©) = ntA(z @)@ — 8) + o,(1)
where A(z®) = (1, 2@, —1, —t®)/(0 — 65). Thus L{n}(? — )} — 470,
AG~'A’). This concludes the example.
Hinkley [11] reports for this special case, based on an empirical study, that
the asymptotic normality of ¢ is not a good approximation for small sample
sizes. The estimated change-over point is given by

Oy — by _ (68 — 689) + [(B1 — 00) — (6 — 689)]
O — 0 (09 — 0R) + [0 — 01) — (652 — 09)]

7 =
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The denominator can be expanded in a geometric series to as high an order
term as desired. Thus

f_,mz,m[ (6 — 6,) (én—én)]
O —62) (69 — 0

A

— 7 <ézz _ 012 _ 1>|: (911 _ 921) _ (ézz _ "12) ] + Op(n—g) .
o3 — 0% 0F —0) (6 — 0%)

The first term on the right-hand side of the above expression, when suitably
normalized, converges to the normal distribution discussed above. The second
(correction) term is O,(n~'). Additional terms could be included if desired.
Hinkley [12] discusses the distribution of the ratio of two correlated normal
random variables, of which the distribution of # is an example.

2. In this example 6 lies at a boundary of ©. Consider the two segment
regression model

(& 1) = 0, 0<r<<
=0,(t—3p c=t=<l.

62

Suppose 09 =0, 6 = 1. Then r=2, fi(0,;t) = 0,5 [0, 1) = 0,(t — 3,
7,9 =%, K(1) = K(2) = 1, m; = 2. Assume thats,’ = 1. The parameter space
O consists of the first and third quadrants of two-dimensional Euclidean space,
including the 6, axis but excluding the 6,, axis. The state of nature, (0, 1), is
at a boundary of ©.

Suppose, for definiteness that observations are equally spaced along the inter-
val [0, 1]. Itis not hard to show that the conditions of Lemma 4.12 are satisfied

FiG. 4.1.



SEGMENTED REGRESSION PROBLEMS 79

and so 0 — 6* = o,(n~%), etc. It thus suffices to discuss the asymptotic distri-
bution of 8*.

Calculate the unrestrained estimators 83, 8 based on the observations within
each segment separately. O is locally convex at (0, 1) and so the conditions of
Lemma 4.8 are satisfied, taking for C the half space {#: §,, = 0}. In this exam-
ple G is the 2 X 2 matrix with diagonal elements

tdt =% and §}(rt — 1)*dt = ;1; and off diagonal elements equal to 0.
2 3 2 160 g q

Lemma 4.8 asserts that ni(é* — 6") has the same asymptotic distribution as the
point in C closest to Z, where #°(Z) = 470, G™*) and closeness is measured
in the metric determined by G. Thus

Llni(0%, 0% — 1)} > LA(Z,*, Z,)

where Z;* = max (0, Z,) and #{Z,, Z,)} = .40, diag (2, 160)).
The change-over point, #*, is estimated in the obvious manner. Thus (t* —
1)* = 6% and so

Lt — 3} > LZ,5)  where L[Z} = .470,2).

3. In this example 6 is sometimes a boundary point and sometimes an
interior point of ©. However, even when #© is interior, # is not normally
distributed. Suppose u(§; 7) is represented by the two segment model x(§; ) =
|t —3if0<t<rand u(&t)=6,+ G,tifr <t < 1.

The parameter space O is pictured below.

Suppose 6 is such that 6, + §,/2 = 0. Then 6 lies along the dashed

line and is thus an interior point of © if |6,”| > 1 and is a boundary point if

62
\ |
\
6 =1/2-9, \
\
\
\
\, +I
92= “29[
1/2 .0
|
_[..
\
\
\
\
\
\ 92= |/2-e’
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|6,| < 1. In either case, ¢® = 1. The case |0,”| =1 will be discussed
separately.

Suppose that the observations are equally spaced along the interval [0, 1]. If
|0,7] = 1, @ is well-identified, if 8,2 = —1, @ is identified but not well-identi-

fied, and if 9, = 1, @ is unidentified. When |6,| # 1 the conditions of Theo-
rem 4.13 are satisfied. We consider this situation first.

Case (i). |0,”| < 1. The parameter space ® — @ is approximated by the
half space 20, + 0, = 0 as defined in Definition 4.7. Theorem 4.13 (b) implies
< [n*(ﬂ 0")] - <£[w(Z)] where m(Z) minimizes (Z — 6)'G(Z — 6) among
all @ such that 26, 4 6, = 0 and & (Z) = .#7(0, G™?). It is easily seen that

n(Z) = Z if 22,4+ 2,20

— _Z6d, =2y N it 2z,42z<0
a, _2)(;(1,_2)'(_2) At <D

Thus 27(Z) + 7(Z) = max (0, 2Z, + Z,).
The estimated change-over point, #, must satisfy the equation

|2 — 4 =6, + 26, = 0, + 30,) + (¢ — 1)¥, .

Therefore
|t — 3 — (2 — DO = [0, + 38,) — (6,7 + 36,7)] + O,(nY).
This equation has two solutions #,, #_, where #, > 4, #_ < 4.

N (G A R A V0
1 — 0 0)
_n, + 30) — (00 + 36,7)]
1o O

Tnk(2, —

D=

me. —4) =
Thus
L, — )] - LUm(Z) + $7(Z))[(1 — 6,7)]
LnE- — )] > L= (7(Z) + $n(Z))/(1 + 6,7)] -

Case (ii). |6,”] > 1. The underlying parameter, #® is an interior point of
©. Thus Theorem 4.13(a) implies LIl — 89)] —» L (Z) = 40, G).
If 6, > 1

t— = —[0+30) — (7 + ")/ + 6.%) + op(n-*)
if 0 +46,=0
= [0, + 30,) — (0.7 + 30,”))/(1 — 6,%) + O, (n™)
if 6, + 16,

IA
=

This implies g[n*(f — 31)] —» &(¢¥) where
‘ = —(Z,+3Z)1 +a) if Z,+32,20
=(Z,+ 3Z,)/(1 — a) if Z,+3Z,<0
where a = [0,|. Similarly, if 6, < —1, &Z[n}(% — §)] - < (—%). In both

A

instances @, suitably normalized, is asymptotically normal; however # is not.
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Case (iii). 6, = 1. The parameter @ is not identified and so there is no
reason that & should even be consistent. However Corollary 3.22 is applicable.

Case (iv). 6, = —1. The regression is identified but not well-identified.
The parameter space ©® — @ is approximated by the wedge-shaped positively
homogeneous region, C, of apex angle 206.6 degrees between the half lines
{6, —+=0,0,4+1<0}and {6, + 20, = 0,0, — 4 < 0}. Note that C is not
convex here. However © and C satisfy the relaxed condition mentioned in the
notes following Lemmas 4.8 and 4.12. The region C can be divided into two
convex regions by a half line beginning at the point (4, —1). The appropriate
angle of the line depends on G. The extension of the line into the complement
of C should contain all points equidistant (in the metric determined by G) to
both arms of the wedge. Thus, from Lemmas 4.8 and 4.12 <Z[n#(@ — )] —
Z[n(Z)] where (Z — 7(Z))G(Z — =(Z)) = min, ., (Z — 0)'G(Z — 6). The
estimate of the change-over point, 7, is not even consistent.

5. Some unresolved problems. This paper provides a derivation of the asymp-
totic distribution theory in the identified case, but leaves several important
questions unanswered.

(i) Hinkley [11] has done numerical work which shows lack of agreement
between the empirical and asymptotic distributions for moderate sample sizes,
in a special case. Work should be done to assess the sample sizes necessary for
the asymptotics to be valid and to obtain moderate sample size approximations
to the distributions of the least squares estimators.

(ii) The distribution of the likelihood ratio statistic, 2, is of interest. It may
be shown by arguments corollary to those of this paper that in the identified
case —2 log 4 has the usual chi-square asymptotic distribution. However these
arguments break down in the unidentified case. This is precisely the situation
where one wants to test whether or not there is a change in the regression.
Quandt [20] reports on empirical grounds that the distribution of —2 log 2 does
not appear to be chi-square. This problem is considered in Feder [9], where it
is shown by example that the asymptotic distribution varies with the spacing of
the z-values.

(iii) The design question is of interest. That is, how should one select the
independent variables, either sequentially or nonsequentially, to obtain the most
precise parameter estimates and the most powerful tests?
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