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ASYMPTOTIC RESULTS FOR INFERENCE PROCEDURES
BASED ON THE r SMALLEST OBSERVATIONS®

By RICHARD A. JOHNSON
University of Oslo and University of Wisconsin

We consider procedures for statistical inference based on the smallest
r observations from a random sample. This method of sampling is of im-
portance in life testing. Under weak regularity conditions which include .
the existence of a q.m. derivative for the square root of the ratio of
densities, we obtain an approximation to the likelihood and establish the
asymptotic normality of the approximation. This enables us to reach
several important conclusions concerning the asymptotic properties of
point estimators and of tests of hypotheses which follow directly from
recent developments in large sample theory. We also give a result for
expected values which has importance in the theory of rank tests for cen-
sored data.

1. Introduction and summary. Suppose that n items are placed on life test and
that the test is censored at the time the rth failure occurs. Below, we consider
asymptotic properties of statistical procedures based on the first r order statis-
tics Yy, -+, Y, from a random sample of size n from a cdf F, where # € R*.
The law P, , of the r order statistics is related to a pdf

(1.1) s ) L = FAE

where f, is the population pdf. All of our results follow directly from an ex-
pansion of the likelihood ratio

N X N L= F,(Y))
(1.2) A, 0., 6] = X5, log %) +(n—r) log—l_—w—ﬁ,

for sequences {6,} with 6, = 6, + h,n"%, h, — h. In particular, Theorem 3.1
establishes that, as n — oo, r/n — p

(1'3) Ar,n[aﬂ’ 00] - h,An(ao) _)P,,,,go —%h’rp(ao)h ’
where I',(6,) is the Fisher information for the censored case (see 3.16) and
2 oy §7% 2¢f,
1.4 AB) =", 2 (Y,)—(n—r)2==""% |
( ) n( 0) ZJ—I nt 90( .7) (n r)l _ Fgo(Yr)

with ¢ defined in assumptions (A). Corollary 3.2 shows that ~<“[A, | P, , ] con-
verges to a normal distribution with zero mean vector and covariance I',.
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Several important conclusions can be drawn from the convergence (1.3) and
the asymptotic normality of A,(6,). These in turn employ assumptions (A) and
(B) below together with the assumption that I" (6,) is positive definite.

The first set of conclusions, dealing with asymptotic properties of point esti-
mators, follows immediately from the representation theorem of Hajek (1970)
(see also Roussas and Soms (1971)). Hajek’s proof requires only (1.3) and the
asymptotic normality of A (f,). The main conclusions for estimators are given
by (E1), (E2) and (E3).

Asymptrotic efficiency of point estimators. These results apply to any sequence of
estimators T, = T,(Yy,- - -, Y,) such that & [n¥T, — 6,) — k| P, , ]— L(v), for all
h € R, at the continuity points of L(v). L(v) need not be a normal distribution.

(E1) L(v) has the representation L(v) = § ®r (v — u) dG(u) where G(u) is a
distribution in R* and @, is the normal cdf with zero mean vector and covari-
ance I' 7(6,).

(E2) limsup P, ,[n¥(T, — 6,) € C] < §,dD;,
for all convex symmetric sets C in R*.
(E3) lim inf E[nth'(T, — 6,)] = H'T, "%k , all he R¥,

so that the limit covariance D, if it exists, satisfies D — I',~* nonnegative definite.

The conclusions regarding asymptotically optimal tests of hypotheses follow
from the development in Johnson and Roussas (1969), (1970), (1971), since the
relevant proofs there do not use the Markovian character of the observations.
Because this is not in as convenient a form for our purposes as Hajek (1970),
we review the main steps in the development before presenting the main con-
clusions on testing hypothesis.

It is first shown in Section 4 of Johnson and Roussas (1970) that p(A,) — p(A),
in law, where A is distributed as N(0, I')), under P,, and p(.) is the usual
Euclidean norm. A truncated version A, * of A, is then constructed, using o(A,),
in such a way that P,[A,* # A,] — 0 and the moment generating function of
o(A,*) converges to that of p(A).

Based on the sequence A,*, an exponential family

dR, ) = e PnMetin" dP, .

is constructed which approximates P”,,,”.‘ Theorem 5.1 shows that sup {||R, , —
P, |, he bounded set} — 0 where ||+|| is the total variation. This exponential
family approximation is also crucial to Hajek’s proof of the representation
theorem for point estimators.

Next, Theorem 6.1 shows that E, [Z,|A,] has the same local power, asymp-
totically, as any test function Z,. Furthermore, Theorem 6.3 establishes that
test functions based on A, and A, *, respectively, have the same asymptotic local
power functions. Hence, asymptotically, we can restrict ourselves to tests based
on A_* or, if we prefer, A

ne
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The method of establishing the optimality of tests based on A,(6,) is by as-
suming the contrary holds and then obtaining a contradiction for the test based
on A, * rather than A,. This conclusion employs the fact that A * is sufficient
for the approximating exponential family R, ,. The conclusions below for one-
sided tests can be obtained from the Neyman-Pearson lemma as in Johnson and
Roussas (1969). Alternatively, these could be derived in the same manner as
those for two-sided tests using the exponential approximation and the fact that a
test based on A,* is UMP unbiased. The conclusions for tests concerning multi-
dimensional parameters, in turn, use the admissibility of the class of tests based
on A,* which reject outside of convex sets. The complete details appear in
Johnson and Roussas (1971). All of this development uses only (1.3) and the
limit law of A,,.

We now state our main conclusions regarding statistical tests of hypotheses
based on censored data.

Asymptotically optimal tests of hypotheses. The following are established for
local alternatives of order 4/ n away from 6,. To obtain global results, we would
need an assumption like (A5) of Johnson and Roussas (1969).

(T1) Let @ R and let 5, denote the upper ath point of a standard normal.
Then, the test ¢, which rejects H,: 6 = 6, for A, (6,) > 5,T',} is asymptotically
most powerful for local alternatives in that for any other sequence of tests {1,},
with E"o A, — a,

lim sup [sup,<; <, (Ey, 40 — E5 ¢,)] = 0.

(T2) The test ¢,, which rejects for |A,(6,)| > 7,,I,} is asymptotically most
powerful unbiased. For any other sequence {1,} of tests which is asymptotically
of level @ and liminf {inf £,2,} = a, limsup {sup [E, 1, — E, ¢,,]} < 0 where
inf and sup are over bounded sets of # and § = 6, + hn~t.

(T3) For testing H,: § = 6, vs. H,: § + 6, when § C R*, the test which re-
jects for A 'T" ~*A, large has asymptotically best average power over certain
ellipsoids and is asymptotically most stringent (see Johnson and Roussas (1971)
for the relevant definitions).

The regularity conditions imposed here are much weaker than those imposed
in previous papers on life testing. For instance, they include the normal, log
normal, Weibull, exponential and gamma. In the latter cases, the location
parameter fixes the support and this must be known, otherwise n is not neces-
sarily the correct normalization. See David (1970), Chapter 6, for a survey of
more applications. Chernoff, Gastwirth and Johns (1967) established lower
bounds for the variance of point estimators of location and scale parameters.
They require that the partials of log f exist everywhere and a condition on f7'.
This is slightly stronger than our assumptions even for this special case. The
results here extend their optimal estimator to a wider class than those which
are asymptotically normal.

Incidentally, it can be readily observed from the discussion in Section 3 that
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the limiting covariance I',(6,), given by (3.16), is also the covariance for fixed
time censoring.

Section 4 contains a lemma which shows the equality of the expected value
of the last term in A, and the expected value of the scores evaluated at the un-
observed order statistics. This result is also of importance in the derivation of
locally most powerful rank tests for a general parameter. It is also shown that

E[A,(0,)] is the zero vector for each n. We conclude with an application to the
double exponential with p = .

2. Assumptions and preliminary results. We first make some smoothness as-
sumptions regarding the law of the univariate distributions. These are similar
to those employed in Johnson and Roussas (1970) except that they are further
specialized to Lebesgue measure. Although most of the results hold without
this specialization, there would be difficulty in defining the censoring scheme
without it.

Let © be an open subset of R¥, (27, %) a measurable space and, for each
6 € ©, Q, a probability on (27, %) such that X, X,, - - -, X, - - - are independent
and identically distributed with X, taking values in the Borel real line (R, 7).
Set .7, equal to the o-field induced by (X;, ---, X,) and let Q, , denote the
restriction of Q, to .%,. We can, if we wish, transfer to the coordinate space.

Assumptions (A).

(A1) The law of X has pdf f,(x) with respect to Lebesgue measure and the
set where it is positive does not depend on 6.

(A2) Set p(6, 6%) = [fi(x)[fo(x)]}. Then

(i) For each 0 ¢ @, (0, %) is differentiable in q.m. at (¢, §) when P, , is
employed. Denote this derivative by ¢(6).

(i) ¢(0) is X,"Y(<Z) x € measurable where & is the class of Borel subsets
of O.

(iii) For every 0 € ©, 4E,[¢(0)¢'(0)] is positive definite.

Although ¢ = ¢(x, 8), we will write ¢(f) when we want to emphasize the
parameter and ¢(X;) when we want to consider it as a function of a random
variable. We allow a similar abuse of notation with ¢ = ¢(X, 6, 6,) and some-
times write ¢(X)).

Under assumptions (A), we have the following result when the X, are governed
by 0, , and the alternatives are of the form @, = 6, 4+ h,n"* with h, — h.

(2.1) max,, [p(X;) — 1] —q, , 0
(22) m(@(Xy) — 1) =q.m. H'¢(60) 5
(2.3) nt(p*(X,) — 1) — 2h'¢(6,) in 1st mean,
(2.4) Ep (X)) =0 (k x 1 column vector) .

These are (3.1.3), (3.1.2), Lemma 3.1.3 and Lemma 3.1.4 (i) in Roussas (1965).
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The existence of a q.m. derivative for ¢ implies the existence of a pointwise

partial for the cdf F,(x). For notational convenience, we sometimes write f
for f, .
0

LemMA 2.1. Under assumptions (A), uniformly on bounded sets of h e R* and z,

(2.5) n*|:F0"(z) — Fy(z) — :_;F(z):l 5
where
(2.6) WE(z) = {2, 20 ¢f .

Proor. We write F, (z) — F,(z) = {2, (¢* — 1)f, so that the difference is
20
mia - - 2els
n

which, by (2.2), goes to zero uniformly in bounded sets of 4.
We now describe the sampling scheme. Only the first r order statistics
(Y, ---, Y,) are observed where r is selected so that

(2.7)

L_P’<i with 0<p<1.
n n

We further assume that f, is positive in a neighborhood of the pth percentile &,
so that it is unique.

The next result is a specialization of Bahadur (1966) to the uniform order sta-
tistics F(Y,),i=1, ..., n. Let

(2.8) Z,() =4X, -, X, =6, o<,
LEMMA 2.2. With r given by (2.7) and Z,, = Z,(p) by (2.8),
V4
né|: o p ok Fo(Y,) — p} 0,0, 0 -

Below, we investigate the behavior of certain functions over the random set
2.9 A, ={(Y, ]I Y, <, and (,,V,] if ¥, 2§,).
We also have the following property for the Z,(z).

LeEMMA 2.3. Let Z,(p) be defined by (2.8), then
Zus) _ Z (f)

3
Sup‘fs'fte’ir,n n n

— [Fy,(&0) — Fi(§)] —

Proor. Since Z,(s) = #F,(X;) < p and F, (X,) is uniform, it is sufficient to
show convergence in probability for uniform variables. It is well known that
V.(t) = n¥(Z,(t)/n — t) converges weakly to a Brownian bridge. Therefore, by
a characterization of tightness in C (see Theorem 8.2, Billingsley (1968)) the
modulus of continuity of a continuous piecewise linear approximation to ¥V, (z)
is small with high probability and the same holds true for V,:(t). In particular,
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given any e, 5 there exists a 4, 0 < é < 1, such that
Q.0 [SUPicosiss [Vault) — V()] > el < 7 all sufficiently large n.

For a direct verification see (13.16) of Billingsley (1968). Since {(s, 7): &,, §, €
A} C{(s,t): |s — t| < 0} for sufficiently large n with probability one, the re-
sult follows.

In order to establish our main results, we have to know that ¢ and ¢ act
smoothly at &,. This does not seem to follow from the quadratic mean calculus
and we must make additional assumptions. We will first state these in the form
needed later and then prove a lemma which leads to sufficient conditions which
are easy to verify.

The assumptions may be expressed in terms of the indicator function 7, .

Assumptions (B).
(B1) Lile =Dl =14, (¢ = Df =4,,0,

¢ .
(B2) ha ,,30 L, — 18, (WO —>q,, 0

In order to see what conditions on the pdf’s would imply (Bl) and (B2), we
prove the following.

LEMMA 2.4. For all sufficiently large n, let ¢, be the difference of two non-decreas-

ing functions over the interval &, + n~*(log log n)* where each is essentially bounded
by M. Then

¢
vl —ntf, ¢‘nf—_)Q'n,,00 0.

Proor. Without loss of generality, we assume that ¢, is non-decreasing on
the interval and we define ¢,~* by inf {x: ¢,(x) = a}. For fixed n and arbitrary
¢, consider a partition {a,} of [ — M, M] with norm less than ¢ and not more than
2Me™' 4 3 terms. Set b, = ¢,~%(a,) and
(2.10) M, = ess SUPa,,b,447 PalX) m, = ess inf[bl,,,lﬂ] &.(x) .

Then,
(2.11) M —m<e, each [.
Furthermore, if Z} = #X, belonging to [,, b,,,], then

2t % Loy — M S3101 00, f
M, Zint —m, nt[Fy (by,1) — Fp(b)]
M{Z¥n™t — ”*[Foo(bzﬂ) — Fp(6)]}

e [Fo(bi) — Fa(b)],  all L.

The lower bound has M, replaced by m, and ¢ by —e. Define Z,() by (2.8) so
that, setting b, = ¢

2.12)

A TIA

p+4p°

(2.13) Zy=Z,(p+8,)—Z(p+4).
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Then, for all / such that b, b,,, € 4, ,,

nt —Znﬁ — [Foy(br11) — Fﬂo(bl)]‘

< sup s, 1 [ 20— 20— r ) - o]
and the r.h.s., which does not depend on the partition within 4, ,, converges
in probability to zero by Lemma 2.3. Now Y, belongs to the interval §, +
n~t(log log n)t, for all sufficiently large n, with probability one. If for each n,
we include &, and Y, in the partition, the result follows if we add the inequali-
ties that correspond to the interval between &, and Y,, and employ the asymp-
totic normality of n}[F, (Y,) — p] and the fact that ¢ is arbitrary.

CoROLLARY 2.A. If, for all sufficiently large n,

(B'1) ni(p — 1) is the difference of two non-decreasing functions on the interval
¢, + n~#(log log n)t and each is essentially bounded by M, then (Bl) is satisfied.
The two functions and M may depend on h. If there is a version of ¢ such that ¢
has one-sided limits at &,, then (B2) is satisfied for each h € R*.

Proor. Inspection of the previous proof shows that (2.11) and (2.12) can be
established, under (B'2), with a single interval (Y,, §,] or (§,, Y,].

REMARK. For a location or scale parameter, a simple sufficient condition for
(B'1) and (B2) is that f; is continuous at §,. The existence of a continuous
derivative insures one-sided monotoneness, for sufficiently large n, and the mean
value theorem gives uniform boundedness. This includes most one-parameter
applications.

In the remaining sections, we will often employ the joint distribution P, , of the
first r order statistics since the probabilities can be computed under Q, , or P, ,.

3. Proof of main results. In this section, we employ the previous results to
obtain the expansion of the likelihood and its asymptotic distribution. We first
note that, from Lemma 2.1, |[1 — F, (Y,)]/[1 — F,(Y,)] — 1| — 0 in probability
since Y, — &, in probability. The expansion

31 logZ=Z-1)—HZ—-1y+c(Z—-1)p, ||s3for|Z-1Z}
is then applied to each term of A, .

LEmMMA 3.1. Under Assumptions (A),

Fo(Yr) — Fﬂﬂ(Yr)jl}

(3.2) A,.= {Z§~=1 2o(Y;) — 1]+ (n — ’)[ [ — F,(Y,)

Fo(Y,) — Fy (Y5) T}

1 r 2 n—
oy (B 2o — 1P+ = [

+ W

where W, converges in probability to zero.



INFERENCE ON SMALLEST OBSERVATIONS 1145

Proor. The expansion follows from (3.1) and the result for W, from (2.1)
and the next two lemmas which show that the terms in the second bracket con-
verge to constants.

LEmMMA 3.2. Under Assumptions (A),

_ o [Fu () = Fo (YD) (WEE) _ [251ofT
(3.3) (n r)[ 1= Feo(yr) ] Py~ — s = i—5 .

Proor. Since Y, — p in probability and F, is continuous, it is sufficient to
show that ni[F,,(Y,) — F,(Y,)] — K'F(§,); but this follows from Lemma 2.1.

LeMMA 3.3. Under Assumptions (A),
(3-4) D5 [p(Yy) = 1T — 07 T [Wo(Y)F =, 5,05
3.5) nt i WY ) =, 4 S22 [HOTS -

Proor. The Markov inequality gives the bound

T E|lp(r) — 1P =[5 o0V || < e

o) — 17 = [ o) ||

for the probability that the r.h.s. of (3.4) exceeds ¢ > 0 and this bound con-
verges to zero (see Roussas (1965), equation (3.1.19)).
Next, (3.5) follows from the law of large numbers since

Tt Y He(Y ) — nt N [ (X)) e — 0 in probability.

This last difference is dominated by 3} n~*h'¢l, _; .. for all sufficiently large
n with ¢ arbitrary.

For notational convenience, we set B, = (— oo, §,] and introduce two statis-
tics corresponding to the case of censoring at a fixed percentile &,.

(3-6) S, = Lia {209 — DI, + (1 = p)7[Fy (€,) — Foul§) s} s

& ww (20 . WEE,)
(3.7) 8, = "=‘{n% oI, ﬁlﬂpc}.

These will later be compared with the statistics for censoring at the rth order
statistic. Namely,

(3.8 S, =i 2e(Yy) — 1+ (n—1) [Fe(,(lYf - 2?’(;/’)]

" _(n—1n HKEY)
-9(Y5) w1 = F,(Y,) :

: 2h
(3.9) ST = ;‘:1 ,,n%

LEMMA 3.4. Under Assumptions (A),

E,[S, — S,] = —nE[(p(X,) — 1,1 > —E(W )1y, ,
Var[S, — $,] > 0.
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Proor. Set p, = F, (§,) and consider the identity

¢ —plp=(—1)+2Ae—1)+1—=pp-
Multiplying both sides by 7, and taking expected values gives E[2(¢ — 1)I; ] =
—E(p — 1)l + p, — p SO "that E[S, — S,] = —nE(p — 1)’I, , and this con-
verges to —E(/z’go)2 s, since n¥(p — 1) — #'¢ in g.m. by (2.2). Also

Var [Sp - p]

:nVar{[Z(go — 1) — E’Lgo] I + (1 —p)“[p — Pa +%F]IB,,}

< 16E{[ni(p — 1) — K'¢PLy ) + 4(1 — p)7{nk(p — pa) + HEY,
which converges to zero by (2.2) and Lemma 2.1.
We now employ the statistics (3.6), (3.7) and the result for first moments to

obtain an approximation to S, in the expansion of A, ,. Here we require the
extra smoothness assumptions on the pdf’s at &,.

LEMMA 3.5. Under Assumptions (A) and Assumptions (B) (or (B'1) and (B'2)),
S, — 8, — (S, = 8,) =p,,,0-
ProoF. Let Z, = Z,(p) be defined by (2.8). First, we have

(10) [~ Z) — (0= N[ Fyl&,) = Fo(6) + 1 FE) | 00,0

by Lemma 2.1 and the asymptotic normality of the binomial variable Z,. Next,
we write

Ko 2n
Fold) = Fo @) + 5 b =~ [ = 1) = 2o s
and employ the asymptotic normality of F, (Y,) to give

@1l [ = F () =1 = p) {1+ (1 = p)7[F(Y,) — Pl + 0,(n7H)}
Together, (3.10) and (3.11) give

=1 - iy
ﬁ‘m ‘:Fﬂo(Yr) Fﬂn(Yr) + n* F(Yr):|

—mr =7 [p = Fa) + R |

(3.12) = Ql%r;/ﬁ[—n 1 [(902 - - 2;; ﬂf] + 0,(n¥) 4 0,(1)
e LR e R (O R

= —ni5[ = D=2 e |1+ 0.

The last equality follows since F, (Y,) is asymptotically normal and nt(p* — 1)
converges in first mean to 24’¢ by (2.3).
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From the definitions (3.6)—(3.9) of the statistics, we now see that it is suf-
ficient to show that

R N L ]

2K,
B (T P

where 4, , is defined by (2.9). To this end, let B, be an interval about &, such
that {5 (#'¢)’f < e. Then, limsup §, n(¢ — 1)’f < e by the first mean con-
vergence of n(p — 1)% Since (¢ — 1) = (¢* — 1) — 2(¢p — 1), we see that it
remains to show that

(3-14) Lyea, e — 1) —2n§, (¢p—1)—p,, 0,

2K "
ZyieA,m e ¢ — 2nt SA,,_',,,, k' of T Pn,b, 0.

This follows directly from Corollary 2.4 under the assumptions (B’1) and (B'2)
on ¢ — 1 and ¢.

THEOREM 3.1. Under the Assumptions (A) and (B) (or (B’1) and (B'2)), for each
alternative h, — h,

_¥ r NY) — (=1 s _1p
(1) A= [ Zra200) — pOT s B | — 4T, 008,

where

(3.16) (00 = 4§65 99'f + = HE )Y

is the Fisher information for the censored case.

Proor. We write ~ when the difference converges in probability to zero.
Thus, from Lemma 3.1 together with Lemmas 3.2 and 3.3, we have

A, ., ~S,— 31 = p)HEE)T — Vi, (WO)f
and Lemma 3.4 combined With Lemma 3.5 gives
Sr ~ Sr + Sp - Sp ~ Sr - se—“’w (hlso)zf

The next result yields the asymptotic r;ormality of the statistic which approxi-
mates the likelihood in (3.15). That is, of

— ot s 2eeysy — (n=DEY,)
(3.17) A,(00) = n *[Zm 20(Ys) — 1= F,(Y,) 1

which is central to the derivation of the main result.
THEOREM 3.2. Under Assumptions (A) and (B2) or (B'2),

Sp -8, ——)Pn,ooo ,
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where the h, which enters the definitions (3.7) and (3.9) of S, and S,, respectively, is
arbitrary.
Proor. Employing (3.11), we expand the last term of S, as
(3.18)  n¥(n — N1 — F,(Y,)]" {¥5. 2K'gf
— n g 2Kgf 4 i [ffg(lyLﬂ] {72 29f + o(1).
—P
Again, setting Z, equal to the number of observations < §,, we expand the cor-
responding term of S, as
(3.19)  nmin — Z)(1 — p) §in 20gf

= U=2ZJn) = (L=P) i tn 20 + n? in, 200 .
I—p

Subtracting (3.18) from (3.19) gives

(3200 mspawef —m {2 — p o (R (Y,) — pl)

X (1= p)7 §in, 200f + 0,(1) ,
since F, (Y,) is asymptotically normal and Y, — &, in probability. Furthermore,
Lemma 2.2 establishes that the second term in (3.20) is o,(1).
From the definitions of S, and S, it is clearly sufficient to show that
20
nt

nt Diviea,., — nt SAML 2h,¢f_>f’n,ﬂo 0,

where A, , is given by (2.9). However, this follows directly from Corollary 2.4
under the Assumption (B'2).
Applying the central limit theorem to S'p, for each %, we obtain

CoROLLARY 3.3. Under the assumptions of the theorem,
(3.21) ZA,| Py 0] — A7[0, T'(6,)]
where T ,(0,) is defined by (3.16), A,(0,) by (3.17) and k'A,(8,) = S,.

Summarizing, we have the asymptotic normality of A, from (3.21), and Theo-
rem 3.1 states that

A, +HA, — om0, — LT (O)h , heR*.

These two results lead to an exponential approximation of the sequence of alter-
natives from which asymptotic optimality properties may be obtained. In par-
ticular, the results for sequences of point estimators are just the conclusions
from the theorem of Héjek (1970) which requires only these two results.

As far as testing problems are concerned, the results follow from the approxi-
mation of P, , by the exponential family

R, (A) = exp[—B, (k)] §,exp[A'A,*] dP”,,,0
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based on a truncated version A, * of A, as in Section 5 of Johnson and Roussas
(1970), since none of the results from Section 4 onward require anything but
Assumptions (A) and the approximation of A, by A, which converges to a
normal distribution (see Section 7 for conclusions). The results on multiparame-
ter testing follow from Johnson and Roussas (1971).

Besides the conclusions stated at the start of the paper, just as in Theorem 6.2
of Johnson and Roussas (1970), we also conclude that the alternative distribu-
tion satisfies

(3.22) LB,(00)| Py ]— A (L,h,T,).

As in Proposition 3.1, the measures {P, , } and {P, , } are contiguous. The result
(3.22) enables one to calculate asymptotic power.

Finally, we note that, from Theorem 3.2, that S, could be used instead of S,
to obtain the exponential approximation to P, , . The statistic S, is the one that
approximates the likelihood, under Assumptions (A), for the sampling scheme
which observes only the lifetimes which are not greater that £,. The above
lemma states that the asymptotically sufficient statistics for each of the two cases
are asymptotically equivalent. See Kendall and Stuart (1967), page 523, for a
statement that maximum likelihood estimation is the same for the two schemes
although they do not state their conditions.

4. An interpretation of S,. We consider two special cases when O is a subset
of the real line. For location families with f,(x) = f(x — #), Assumptions (A)
are satisfied if 0 < §=_ [f"(x)/f(x)]*f(x)dx < oo. In this case, 2¢ = — f'(x —
0,)/f(x — ;) so that
(4.1) —hEY,) . R(Y)

I—F,(Y,) 1—F,(Y,)

which is the hazard rate evaluated at the rth order statistic. For scale alterna-
tives, f,(x) = 07'f(x/60), & > 0, it is sufficient for Assumptions (A) to require that
§ 2w [T 4 X(f"(x)[f(x)]*f(x) dx < oo. Then 2¢ = 6,7'[ —1 — (x/0,)(f(x/0,)[f(x/0,))]
and

—hEY,) _ (00fo(Ys)

*2) IL—F(Y,) 1 —F,(Y,)

Equations (4.1) and (4.2) show the manner in which the hazard rate carries the
information on the unobserved order statistics in the case of scale of location
alternatives. We also have the following general result which gives another
interpretation.

Lemma 4.1. If Assumptions (A) hold, then

(4.3) (n — r)E[I.—_f"ﬁf((Y;/))} — St L E[2K(Y))],  for 1=r<n.

PrOOF. Setb,, = (n — E[—HF(Y,)/l — F,(Y,)]. Now b, , = 0 and a direct
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evaluation of b, ,_,, using integration by parts with dU = F*-*f and WE(y)— 0
as y — oo (—oo) (according to (2.4)) gives b, ,_, = E[2h'¢(Y,)]. Furthermore,

an integration by parts with dU = — f[1 — F]"~"~! establishes that
@4 b= [WEDIF N = FO)' 7 |Z0 +ba ey — E[2H(Y,)]
= by — E[2K9(Y,)] L<r<n,

where ¢, , is the constant for the pdf of ¥,. Thus, a general solution of (4.4) is
given by
by = S0 EL2H(Y,)]

The result above shows that the ““hazard’ tate term has an expected value equal
to the sum of the expected values of the unobserved scores, which themselves
appear in the uncensored version in the general case. Besides giving some intui-
tive feeling for the manner in which the unobserved scores enter, this relation-
ship is exactly what is needed to obtain the statistic for the locally most powerful
rank test for the two sample case. It extends Johnson and Mehrotra (1972) to
a general parameter. Furthermore, we also have the exact moments

4.5) ES, =0
ES = nE[Zh’gb(xl)] =0,

r

which follow from the lemma and (2.4).
We conclude with a particular example, the double exponential f,(x) =
fexp[—|x —4|].

ExaMPLE. It is well known that the pdf } exp[ — |x — 6|] satisfies Assumptions
(A) with ¢ = 4 sgn (x — 6,). Since 6, is a location parameter, we take 6, = 0.
Then ¢ = exp{}|x| — 4|x — 0]}. We see that ¢ is monotone in x. Consider the
scheme forp = Yand ¢, = h,n~%, h, — h. Then nt|p — 1| < |h,|e'’" is uniformly
bounded. Thus (B’l) and (B'2) are satisfied. Here the censored tests are the
same for all p > 1.
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