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OPTIMAL PREDICTIVE LINEAR DISCRIMINANTS

By PETER ENIs! AND SEYMOUR GEISSER

State University of New York at Buffalo
and University of Minnesota

When classifying an observation z which has arisen (with known prior
probabilities) from one of two p-variate nonsingular normal populations
with known parameters, the discriminant, say U, which minimizes the total
probability of misclassification is based on the logarithm of the ratio of the
densities of the two populations. When the parameters are unknown, the
““classical”” procedure has been to substitute sample estimates for the un-
known parameters in U and use the resulting sample discriminant, say V,
as the basis for classifying future observations. This procedure need not
enjoy the property of minimizing the probability of misclassification and
has been justified, from the classical point of view, almost entirely on the
grounds that it seems intuitively reasonable.

When the covariance matrices of the two normal populations are equal,
U is a linear function of the observation vector z. The fact that U mini-
mizes the probability of misclassification does not imply that V will. Fur-
ther, although U is linear, the sample discriminant which minimizes the
probability of misclassification will, in general, not be linear. Here, using
the Bayesian notion of a predictive distribution, we obtain from amongst
the class of linear sample discriminants that one which minimizes the pre-
dictive probability of misclassification.

1. Introduction. Suppose we are given an observation z on a random variable
Z, which, prior to its having been observed, could have arisen from one of two
p-variate nonsingular normal populations 7, = N(g,, Z,), i = 1, 2, with known
prior probabilities ¢, (¢, + ¢, = 1). When the parameters g, and X, are known,
the rule which minimizes the probability of misclassification, given Z = z, is
(e.g., see Anderson (1958)):

U(z) = U(ps 25y 21, L35 2)
(1) — lo n(z| g, 21)7 >
n(z| 1,0 %)
U(z) < log(q,/9,) , assign z to m,,
where n(- | g, Z) is the pdf corresponding to N(g, Z). ,
The situation usually encountered in practice, however, is one where the

parameters ¢z, and Z, are unknown and one wishes to classify an observation as
belonging to either =, or z,. In this situation, the “classical” procedure for
1 2

log (¢,/9,) assign z to m,
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classifying an observation has been to substitute estimates for g, and X, in U(z)
and to use the resulting sample discriminant, say ¥(z), in place of the “true”
criterion U(z).

In particular, for the case where U(z) is linear (i.e., £, = X, = X), viz., U(z) =
[z — (e + p) 27 (pty — p5), if we have a sample {x,;}, j=1, .-, n (n +
n, = p + 2), of independent observations from z,, we form x, = n,7' 37, x;;
and S = (n, + n, — 2)7' 330, 217, (X,; — X,)(X,;; — X,)’ and substitute x; and S
for g, and Z in U(z) to obtain
(2) V(Z) = Z'S“l(}_(l - iz) - %(il + iz),s_l(il - iz) .

We then use ¥(z) to classify z in the same way as U(z) is used.

Now, although the use of U(Z) minimizes the probability of misclassification,
the use of V(Z) cannot be justified similarly. In fact, as Anderson (1958, page
137) states, “We cannot justify the use of (2) in the same way. However, it
seems intuitively reasonable that (2) should give good results.” Geisser (1967)
and Enis and Geisser (1970) have provided a justification for this procedure (in
both the linear and quadratic cases) from a ‘““semi-Bayesian” point of view, by
showing that when g, and £, have invariant prior distributions of a particular
type that the posterior expectation of U(z) is E[U(z)] = V(z) + A(p, n,, n,), where
h is a function of only p, the dimensionality of the vector random variables, and
the sample sizes n, and n,. Further, when n, = n, the “bias” factor /4 vanishes
so that the posterior expectation of U(z) is exactly V(z).

When the covariance matrices of the two normal populations are equal, U(Z)
is a linear function of the vector Z and, as mentioned before, the fact that U(Z)
minimizes the probability of misclassification does not imply that V(Z) will.
Moreover, even when U(Z) is linear, the sample discriminant which minimizes
the probability of misclassification will, in general, not be linear.

Be that as it may, it still may be for many intuitively compelling to use linear
discriminants in this case. Firstly, the true population discriminant, U(z), is
linear and hence one may deem it more appropriate that the sample discriminant
also be linear. Further, as the sample sizes increase the optimum discriminant,
in terms of minimal error of classification, will tend toward linearity.

In this spirit, we obtain here from amongst the class of linear predictive dis-
criminants that one which minimizes the predictive probability of misclassifica-
tion. In Section 2 we delineate the problem explicitly and obtain the desired
result for the situation where the ratio of prior probabilities, ¢,/g,, bears a specific
relationship to the sample sizes. In Section 3 we consider the case where this
relationship does not exist.

2. Ratio of prior probabilities a particular function of sample sizes. Suppose
we have n, independent observations x;;, - - -, xm‘i from the p-variate nonsingular
normal population 7; = N(g,, X), fori =1, 2, wherev = n, + n, — p—1=1
If we assume that the joint prior distribution for g,, g, and Z-"is

P(#b Moy 2—1) oC |Z|§(p+1) ,
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which, we assume, conveniently allows the likelihood to maximally influence
the posterior, then we obtain as the joint posterior density of these quantities
P(ee,, 2y z- I X, X, S)
oc (2 exp{—F tr 27 (v + p — DS + ny(p, — X,)(p1 — X))’
+ ny(ps — Xo)(pt, — X))’}

We are now given a new observation z on a random variable Z (independent
of the n, + n, observations whose origins were known with certainty), which
could have arisen from z, with known prior probability ¢, (¢, + ¢, = 1). We
now require that linear function of Z which when used as a discriminant mini-
mizes the (total) predictive probability of misclassification. To this end, let

a’ = [a,, - -, a,] be a nonnull vector, and b an arbitrary scalar, and form the
linear discriminant W(z) = a’z — b such that if

(3) W(z)=0, assign z to m
W(z) <0, assign z to m,.

The (total) predictive probability of misclassification is
“(a, b) = g,&(a, b) + g,ex(a, b),

where ¢(a, b), denoting the predictive probability of assigning an observation
to m,_, when it actually arose from =, is given by

e(a, b) = Pr(—1)""W < 0|n; X,, S]
= §§§ Pr(—=1)""W < Ofm;; g, Z)P(pty, pra0 71| Xy, Xy, S) dpe, dpp, d27
So that, after first integrating with respect to g,, ¢, and Z-', we obtain

a(a, 0) = §l. g(w| 7 X,, S)dw
and ~
e(a, b) = {2 g(w|my; X,, S)dw,
where g(w|7;; X;, S) denotes the predictive pdf of W = a’Z — b.
The predictive pdf of Z given that it arose from =, is

4 h(z|m;x,S) = {§§n(z| g, Z)P(pe, pros 271Xy, Xy, S) dpe, dps, dE71

[1 ¥ m (z — X,YS™ Yz i)}‘w”)

oC — X; — X, .
(v+p— D+ 1)

Thus, it is readily shown (cf. Geisser (1966) page 156) that (predictivefy)

K(a’Sa)~¥(W — a’x; + b) has the Student ¢ distribution with » degrees of

freedom, where

K= [(ni + 1)(::’1;\- p— 1)]& )

Hence, letting F(.) denote the cdf corresponding to the Student ¢ distribution
with v degrees of freedom and

) t; = K(a’Sa)~#(b — a'x)),



406 PETER ENIS AND SEYMOUR GEISSER

we obtain, by direct substitution,
ea, b) = F[(=1)"].
So that the quantity we wish to minimize is
© (@ b) =Xl (=]
= ¢, F[K(a'Sa)"}(b — a'x,)] + ¢,F[K(a’Sa)~}(a’x, — b)].
It is clear that if (a,, b)) minimizes (6) then, for any ¢ > 0, so does (ca,, cb).

Thus, in order to obtain a unique solution, we seek the minimum of ~(a, b)
subject to the (actually nonrestrictive) condition

(7 a’Sa = (x; — x,)’'S7!(x, — X,) (= Q, say).

Employing the method of Lagrange, we let 1 be the Lagrange multiplier cor-
responding to the above condition and form

(8) O(a, b) = ~“(a, b) + A(a’Sa — Q).
Differentiating (8) with respect to 4, b and (the vector) a we obtain
od o
9 = 2iS
©) oa oa * 2
= (a’Sa)~! 7., (—1)'q, K, F'(1,){(a’Sa)x, + (b — a’x,)Sa} + 2/Sa
oD 0~ , )

10 —_—— = = (a’Sa)~? P (—=D"g K, F'(1,
(10) 5y = op = @A) Ui (DT K F ()

oD
11 -— =a'Sa — Q.
(1) oy =A% —0
Let

R - <(/1Kl>—2,w+l)

9. K,

and consider the case where (K,/K,)* = ¢,/q, (i.e., RK* = K,?). .
Setting (10) equal to zero yields ¢, K, F'(t,) = ¢,K, F'(1,). Making the substitution
indicated by this relation into 9®/da, multiplying on the left by the vector a’
and equating the resultant expression to (the vector) zero yields 6®/oa = 6 /oa
(i.e., 4 = 0). Then, from the equation d~’/oda = 0, we find that the solution
for a is
(12) a, = S7\(x, — X,) .
Finally, using this value of a in (10) and equating the latter to zero, we find
that the solution for b4 is
(13) by = F{(%, — X)'STH(X, 4 X)) + (R — D)/K} .
Thus, contingent upon our verifying that the minimum value (subject to (7)) for
«(a, b) is < (a,, b)), we obtain that the optimal predictive linear discriminant is
(14) Wy(z) = a2z — b, = 2'S7!(X, — X,)
— (X, — x,)'S7'(x; + X,) + »(R — 1)/K,}}}
= V(z) — (R — D)/K,}*-
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Now, let the p x p matrix A = {0°®/da;da,}, the p X 1 vectors @& =
[0*D/oa,0b, - - -, *®[da,0b) and B = (d/oa)a’Sa, and (the scalar) d = ¢*®[0b?,
and form the (p + 2) X (p + 2) matrix

A a B
H=|a" d 0].
g 0 0

Further, let A%, a°, 8% d°, and H’ denote A, a, B8, d, and H when evaluated at
the stationary point obtained upon equating (9), (10), and (11) to zero. Thus,
after some tedious calculations we obtain

(15) A’ = Q- 1g, K, F'(1,){0S — (X, — X,)(X, — X,)’ + oMM’} ,
(16) a’ = —pQ7iq, K, F'(1,M,

(17) B = 2(X; — X5) 5

and

(18) d’ = pQiq, K, F'(1,) .

Here

(19) M = 09x, + (b, — a,/X,)(X; — X,),

(20) 0= 0%+ v + ,)'(K,t, — RK, 1),

and r, (given by (5)) is understood to be evaluated at a = a, and b = b,. (We
note here that the above expressions for A?, &’, 8°, and 4" remain valid even for
the case, to be considered in Section 3, where RK*# K,2.) Finally, for r =
1, .-, p—1, let H'denote the (p + 2 — r) X (p + 2 — r) matrix obtained by
deleting the first r rows and columns of H°. Then, following Gillespie (1951),
sufficient conditions for ~(a,, b,) to be a minimum are that |H’| < 0 and that
HY <Oforr=1, -, p— 1.

Now, it is shown in Section 4 that the following three statements hold with
probability one: (i) d® > 0; (ii) A’ is positive definite; and (iii) A® — (d')"'a’a” =
01, K, F'(1,){0S — (X, — X,)(X, — X,)'} is singular. Thus, by (ii), we obtain

¢
= A — AT I@)BATE (VA

20 [H| = [A7]

In order to further evaluate |H’|, we note that, by (i) and (ii), the leading principal
minor of order (p + 1) of H" is
A" a

, do — a’OlAO . (a'O)—laOaOII
a ’

(22)

= (d" — a”A'"'a")|AY| .
But, by (iii), the first term on the right of (22) vanishes, which implies that
(23) d — a"A"'a’ =0,
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since |A’ > 0. Thus, from (21) and (23), we conclude that |H’| =

— (@A’ B)? A’ < 0 (with probability one). In an exactly analogous manner,

one can show that [H,°| < 0 for r = 1, ..., p — 1. Hence, the sufficient condi-

tions for ~'(a,, b,) to be a minimum are satisfied, so that W(z) = a/z — b, (given
by (14)) is the optimal predictive linear discriminant when RK? = K%

3. The general case. For the case where RK? # K,?, the situation changes
somewhat. Upon equating (9), (10), and (11) to (the vector) zero and solving
simultaneously, we obtain as the solution for a,

(24) a, = S7(x, — X,)
(just as in Section 2), and for 5 we obtain two solutions,
(25) byt = (RK? — K){(X, — X,)’STRKX, — K,’x,) + Qlw?}
and
(26) by~ = (RK? — K)7(X, — X,)’S7I(RK X, — K;’X,) — Qtwl},
where

© = QRK?K}? — v(R — 1)(RK}? — K}).

Hence, when o < 0 both 6," and b,~’ are complex so that < (a, b) can have a
minimum only when w > 0.

For v = 0, in order to determine which, if either, of the pairs (a,, ,'*’) or
(a,, b, ~’) provide a minimum for (a, ), we again obtain equations (15), (16),
(17), and (18). Now, it is easy to see that p (given by (20)) is positive when and
only when it is evaluated at &6 = b,~’. This implies that A° is positive definite
when evaluated at 6 = b/~ and is singular when evaluated at 6 = b,*'. Pro-
ceeding just as in Section 2, it immediately follows that ~<(a,, b, ™) is the mini-
mum value of £(a, b), so that Wy(z) = a,/z — b, ~’ is the optimal predictive linear
discriminant when RK* # K%

4. Verification of previous statements. For the case considered in Section 2,
we verify here that the following three statements hold w.p. 1 (with probability
one): (i) &’ is positive; (ii) A is positive definite; and (iii) A’ — (d°)"'a’a” is
singular.

Since Q = (x, — X,)’S7!(X, — X,) is positive w.p. 1, it is clear that in order to
verify (i) it is sufficient to show that p, given by (20), (when evaluated at a = a,
and b = b) is positive w.p. 1. Now, since RK;* = K,* we obtain

Kyt, — RK 1, = K, 1, — (KKt
= KzzQ_%aol(}_ﬁ —X,) = K0t >0 (W.p. I).

Thus, o > 0 (w.p. 1) so that (i) is verified. ‘
From (15) we see that, since the coefficient of B = 0S — (X, — X,)(X, — X;)" +

pMM'’ is positive w.p. 1, in order to verify (ii) it is sufficient to show that C =
S-tBS~! is positive definite w.p. 1. To this end, let § = S~}(x, — Xx,) and let T
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denote an orthogonal matrix chosen such that T##'T’ is a diagonal matrix whose
only nonzero element, 8’6 (= Q), appears in the first row and first column.
Now, C is positive definite iff

TCT = QI — TOO'T’ + pTS*MM'S™IT’
= diag (0, Q, - - -, Q) + TS :MM'S—*T’

is. The latter, being the sum of two positive semidefinite matrices, is at least
positive semidefinite. Further, letting T, denote the first row of T, we obtain

ITCT'| = pQ»~(T,S"*M)?,

so that TCT’ (and hence C) is, in fact, positive definite if T,/S-M = 0. From
the above expression for TCT’, we note that T/[I — Q~'66’]T, = 0. Also, since
I — Q07'66' is idempotent and of rank p — 1 we have that T/[I — Q~'66'] = 0/
so that T\"is orthogonal to the (p — 1)-dimensional space spanned by the columns
of I — Q7'66’'. Thus, if T/S™'M = 0 then S~*M and hence M must be in the
(p — 1)-dimensional space generated by the columns of I — Q~'66’. But, from
(19) it is clear that the probability that M lies in a (p — 1)-dimensional space is
zero. Hence, w.p. 1 T/S™*M == 0 and (ii) is verified.
In order to verify (iii), note that since

|0S — (X, — X)(X; — X,)'| = [OS|[T — Q_Iaait =0

the singularity of A’ — (d°)~'a’a” is immediate.
For the situation considered in Section 3, statements (i), (ii) and (iii) are verified
in the same manner as above.

5. Some additional comments. We note here that, in his development of the
Bayesian approach to classification and discrimination, Geisser (1964, 1966) ob-
tained predictive discriminants by considering the ratio of the predictive densities
for Z. More speciffcally, for the situation considered in this paper, the dis-
criminant obtained by Geisser arises from the classification rule: assign the ob-
servation z to «, if A(z|=;; X, S)/h(z| 7y X,, S) = ¢,/q, (Where h(z|x; X, S) is
given by (4)), and assign z to r, otherwise. Indeed, this rule provides a predic-
tive discriminant which minimizes the probability of misclassification. More-
over, although this latter discriminant is not, in general, linear, it is not difficult
to show that it is linear and thus equivalent to (14) iff RK;* = K, (the situation
considered in Section 2). Hence, when this latter condition is fulfilled the optimal
predictive linear discriminant (14) is, in fact, globally optimal.

Whereas the above reasoning indicates the optimality of (14) without resorting
to the calculus, it is not applicable to the situation where RK* == K,’. Thus, for
the sake of both continuity and convenience, we have employed the previously
given proof (involving the method of Lagrange) in Section 2 as it is precisely
analogous to the method used to prove the optimality of the linear discriminant
obtained in Section 3 where RK? + K.
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