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RANK SCORE COMPARISON OF SEVERAL
REGRESSION PARAMETERS

By J. N. ADICHIE
University of Nigeria, Nsukka

For testing 8; = B, i=1, -+, k, in the model Yi; = a + Bixi; + Zi;
j=1,---,n; aclass of rank score tests is presented. The test statistic is
based on the simultaneous ranking of all the observations in the different
k samples. Its asymptotic distribution is proved to be chi square under the
hypothesis and noncentral chi square under an appropriate sequence of
1alternatives. The asymptotic efficiency of the given procedure relative to
the least squares procedure is shown to be the same as the efficiency of rank
score tests relative to the -test in the two sample problem. The proposed
criterion would be an asymptotically most powerful rank score test for the
hypothesis if the distribution function of the observations is known.

0. Introduction and summary. For the regression model Y,; = a; + §,x;; +
Z,j=1,---,n5i=1, ..., kwhere Z; are independent random variables, a
rank score method of testing that 3, = 8 for all i/, while «, are nuisance param-
eters, was recently studied by Sen (1969). His test criteria are based on the
individual ranks of the k different samples. In this paper, we show that for the
special case where a; = @ (unknown), suitable rank score tests for 8, = 3 may
be based on the simultaneous ranking of all the observations.

1. Notations and preliminaries. Foreachi=1, ...k, letY,;, j=1,...,n,
be independent random variables with continuous distribution functions F,;
given by
(1.1) PY,; =y) = F(0) = Fy — & — fix;) .

The precise functional form of F(.) is not assumed to be known. Here x,;’s are
known regression constants, a is a nuisance parameter and the 8,’s are the
quantities of interest. Our problem is to test the hypothesis

(1.2) H,: B, = B (unknown)

against the set of alternatives that 3,, - - -, 3, are not all equal.
To simplify the notation, let us write

(1.3) Xpo =070 005 X5 Chi= 25 (xy; — x.)% 7ni = {Coi/CL)
i = ], cee k
(1.4) Cl=2.Cu; n=3.,n

where for the summations above, and in fact throughout the rest of the paper,
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J goes from 1 to n;; i (or s) goes from 1 to k. We shall also write

(1.5) el = 7.(x,; — X, s=1, o, i—1,i+1, .-,k
= (Fw — D(xy; — x,0) s=1i

so that

(1.6) ¢ =nty, N =0 i=1,---,k

and

(1.7) Lo niled = = (ru — )G £ G

It is assumed that each of the C}, (and hence C,? tends to infinity with n such
that
(1.8) limy,, =75 O0<n=r-ns=0-r)<l
where y, < 1/k.

Let ¢(u), 0 < u < 1, be a smooth non-decreasing function, and let the scores
generated by ¢ be defined by
(1.9) a,(p) = ¢pl(n + 1)} r=1

Also let R,; be the rank of Y,; in the combined ranking of all the n observations.
We shall need an estimate of [3 in (1.2); for that purpose, let

(1.10) Su(Y) = 20 205 (xiy — Xu)au(Ry;) -

As in Adichie (1967), define the estimate of 5 based on (1.10) as follows;
(1.11) B,* =sup{b: S (Y — bx) > 0}; B,** = inf {b: Sn(Y—bx)<O}
(1.12) Bu = 38" + 8.7%)

where S (Y — bx) denotes the statistic (1.10) when the observations Y,; are re-
placed by (Y,; — bx,;). The estimate defined in (1.12) is consistent in the sense
to be made precise in Lemma 2.1 below. Now write ¥,; = (Y,; — fx,,), and let
R,; be the ranks of ¥,;. Define

(1.13) T.=T.?) =5, 5;caR,):
the proposed test statistic is

(1.14) 3. (T,.]AC,.)
where

(1.15) A = § @) du — {§ $(u) du)?

2. Asymptotic distribution of L,. In order to study the asymptotic power
properties of the proposed I:n test, we shall establish the limiting distribution not
only under the hypothesis H, but also under the sequence of alternatives,

(2.1) H,: B.=8+(,)/C,, 0, < M,, i=1,---, k.
Now set Y7, = (Y;; — Bx;;), and let R}; be the ranks of Y?,. Alsolet T}, and L,°
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be the 7, - and L,-statistics associated with Y,. The proof of the limiting distri-
bution of Z, depends on the following lemmas.

LemMA 2.1, Let 5, be as defined in (1.12). Assume that the score generating
Sunction ¢(u), and the regression constants x,; satisfy conditions (i), (iii) and (iv) of
Lemma 2.2 below. Then as n — oo,

(2.2) |C.(5, — P)| is bounded in both P, and P, probabilities |
where P, and P, denote probabilities under (1.2) and (2.1) respectively.

Proor. The proof of boundedness of (2.2) under P, is similar to that of Lemma
3.1 of Sen (1969). '

LEMMA 2.2, Let the score generating function ¢(u), 0 < u < 1 have

(1) a bounded second derivative,
(i1) sup, [(d/dy)¢{F(y)}] also bounded; and let the regression constants be such that
(iif) max,; |x,;| < M max,; |x;; — x,,|, M does not depend on n,
(iv) {max;; (x,; — x,)*/C,*} — 0.
Then for each i, {T,, — 1,)/C,} — 0 in both Py and P, -probabilities.

Proor. Without loss of generality, we may take « = 5 = 0. Throughout the
proof, M will denote a generic constant independent of n. Now let us write

(2.3) Y=Y, — (bCx bl = M

and let TF = T, (Y*) be the T -statistic defined through Y*'s. To prove the
lemma, under H , it is sufficient because of Lemma 2.1, to show that as n — oo,

(2.4) E{((T: — To)|C.Y—0 uniformly in |6 < M,

ij

where £, denotes expectation taken under H, of (2.1). Repeated use will be
made of the fact that under H,, with « = 8 = 0, the distribution functions of
Y? and Y% are respectively,

(2.5 FL) = Fy = 0x,/Co); Fi) = Fy — (0, = b)x,4/C.} .

Following Hajek (1968) define, for each i/, a sum of n independent random
variables with zero expectation; thus

(2‘6) Zni - an( y) - Zs Zj nAl Zt Zv (C;'v’ - C;;’)Btv( Ysj)
where

(2.7) —B,.(Y,;) = F (Y )} + Q,u(Y,;) + const.,
and

(2'8) IQsjtv(.V)I é Mmaxsjt,v,y |st(.y) A— Ftv(.y)l *

Also for each i, set

(2.9) o = X L5 e S PFO}AF ()
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where

(2.10) nf(y) = X, 3, F,0) -

Correspondingly, let Z; and ;.¥, be the statistic (2.6) and the quantity (2.9) defined
through Y*’s. On writing

2.1 E(TS = Th) = E{(T — 25 — ) — (T — Z0 — 1)
— (L0 — £ — i + llni)}z
and making repeated use of the elementary inequality (b — d)* < 2(b* + d*) we
obtain
(2.12) E(Ty — TV S AE(TF — Z) — pi Y + 4E(T), — Z), — 118)*
+ 2E(Z0 — 25D+ 2t — 1)

For the first two terms of the inequality, Hajek (1968) has shown that under our
condition (i) alone, and in view of (1.6)

E(T

ni

Zni - /lni)z
]\/lln_l Zs Zj {C;;7}2

M, max,; (¢5)*

fIAIA

(2.13)

Il

M, max {;3, max,,, ; (X, — x5 (0 =7, max; (x; — X{-)z}

IIA

Ml maxxj (ij - xso‘ !

As for the term E,(Z%, — Z¥)?, (2.6), (2.7) and (2.8) imply that

(2.14)  |Z0() — ZEW £ T T, 0 DT lah — e

XAPEZD} = PELON 4 1Qs0 () — Q0] -

Furthermore, by (2.5) and conditions (ii) and (iii) of the lemma, we have

IP{ESD)) — SFLDY = max,; [x,,1(0,/C)9 {F(n)}()
(2.15) < Mmax, |x,;|/C,
< M, max; |x,; — x,.|/C, .
Also (2.5), (2.8) and condition (iii) imply
,Q.sjtv( V) - im(}’)l
(216) é maXSjtuy [f(}')”x syl(b/c |0t'x(v - 0sxsj|/cn}]

se n*

< M,max; |x,; — x

/C
On applying (2.15) and (2.16) in (2.14) and making use of the inequality
(2.17) Doy B X el — ) = 2 3, 2 {es) = 26,7

it follows, since the Z,,’s are sums of independent random variables with zero
expectations, that

(2.18) E(Z%, — Z%)' < Mmax,; (x,; — x,.) .
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Finally, we write

(o — i) = L 5 518 QP ONYAFL () — § GUF*(p)) dF5 ()] -
On expanding and integrating by parts, making use of (2.5), the terms in the
square brackets give

Col=0.x; § ¢/ IFO) dF(y) — bx., § ¢/ {F(0)IFI())
+ 07 XL 250, = b)x; § ¢ I} aFE(D]
where x,, = n' 3, 31, x,;, and ¢’ denotes the derivative of ¢ with respect to y.
In view of (2.1), and conditions (ii) and (iii) of the lemma,
= g5 £ M Myx,; + {bM, + MM, — b))x,,
= (M,/C,) max,; |x,; — x

PDIFI

sj'| ’
where M with subscripts are also generic constants. It follows then from (1.7),
that

(2.19) (0 — ) < Mmax; (x,; — x,,)°.

The inequalities (2.13), (2.18) and (2.19) together imply (2.4) and the lemma is
proved. The convergence of E{(T}, — T%)*/C,% to zero follows as an obvious
corollary.

Lemma 2.3. If U,, = (T,,/AC,,), then under the conditions of Lemma 2.2, the
random vector U "= ( wlr " s 0”,) is asymptotically normal N(0, X) under P,, and

N(v,, X) under P,, where v,) = (v,,, - -+, v,,), with
(2.20) Yoo = Tadle — Zo (1000} § ¢,/ {F(0)} dE(y)/ A
(221) Z = (Uis) ; gzis = {ais - (7’41‘7’7»3)&}

where 0 denotes the Kronecker delta.

Proor. The proof will be given only for P,. By virtue of Lemma 2.2 {7, /C,}
and {7T9,/C,} have the same limiting distribution. Now, since under (2.1) with

=0

maxwtvy] ](y) - Ftv(y)] = Mmax” IX — X /Cn
and
max,; [{e;i'V/ 2, 25 (e Y1 = Mimax,; (x; — %)%/ — 72)C,
< Mmax,; (x,; — x,,)%/C,}
it follows from Theorem 2.2 of Hajek (1968) that (75, — s,.)/A(l — 7,)!C,.,

and hence (T,, — p,.)/A(1 — 7,.)*C,, is asymptotically normal N, 1).
But under (2.1),

(:uni/ACni) = [{#ni(tgm‘) - #nL(O)}/ACm] ~ VY
where ,,(8.,;) and g,,(0) are the values of (2.9) computed under (2.1) and (1.2)
respectively. Hence under (2.1),

(2.22) U, is asymptotically N(v,;, I — 7, i=1, ..., k.
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Furthermore, any linear combination of the T, ’s is of the form

T - Zl i m Z Z Z] lt ,11 n(RsJ)

It is easy to see that the new constants (4,c!}’) satisfy the Noether condition with
i, so that under the assumptions of Lemma 2.2 fu has a limiting normal dis-
tribution under (2.1). Hence U, is asymptotically normal. Now if we write

W?ti:ZSZJ { J( }/ACM., izl,""k
it can be shown by arguments similar to those used in the proof of Theorem 2.2
of Hajek (1968), that"under (2.1),

(2'23) COV (U"ll’ ) ~ COV (Wm" Wns) = —(T'm' me)é *
The symbol ~ denotes asymptotic equivalence. In view of Lemma 2.2,
(224) COV( ni’ ~ _(Tnz Tns)é .

The proof of the lemma is complete.
The main result of the paper is given in the following

THEOREM 2.1. Consider model (1.1) and assume that the conditions of Lemma
2.2 are satisfied. Then

(2.25) lim P(L, < y) = P(i., <)
(2.26) lim P(L, < y) = P(i(8,) <))

where y2_ (A ,) denotes the noncentral chi-square random variable with (k — 1) degrees
of freedom and noncentrality parameter

227 A = T = A a0 — (D 0 9 FDY AEODP AT
Proor. The asymptotic covariance matrix (2.21) of the vector U, is singular
of rank (k — I). On using an orthogonal transformation, e.g.

(2.28) Vo= X740

ns

Vi: seis(}ns i:1"“’(k—'l)

where the e’s are properly chosen to make the transformation orthogonal, it
follows from Lemma 2.3 that under (1.2) the sum of squares L, = ¥, U2, has
asymptotically a central chi-square distribution with (k — 1) degrees of freedom,
and under (2.1) has asymptotically a noncentral chi- -square distribution with
(k — 1) degrees of freedom, and noncentrality parameter };, v, given in (2.27).

In view of (2.25) an asymptotically level ¢ test rejects the hypothesis (1.2) if
L, is greater than the upper 100:%, point of the chi-square distribution with
(k — 1) degrees of freedom.

3. Asymptotic efficiency. The usual method of testmg the hypothe51s (1.2) in
the model (1.1) is based on the least squares estimates 3, and 3, of the parame-
ters g and f,. In computing the estimates, it _is easier to work with xj; =
(x;; — x,,) instead of the original x,;. With this reparametrization, the test
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statistic becomes

(3-1) M, = 3, CilBui — B (K — 1)s?
where
(3'2) léni = Zj Yij('xij xlt)/cm ’ Aén bt Zirniﬁnz’ s

and s’ is the mean square due to error. It is well known that for any distribution
function F(y) for which ¢*(F) = {{ V*dF(y) — ({ ¥y dF(»))’} < oo,

(3.3) lim P{(k — DM, < ¥} = P, < )
(3.4) lim P {(k — WM, < v} = Plri_(dy) £ )
where

(35) By = {5, 7007 — (X, 7200 0%F) -

By the conventional method of measuring asymptotic efficiency, the efficiency
of L, test relative to the usual least squares test is therefore

(3.6) A Ay = (B[S ¢, (F} dF()]A*

The efficiency in (3.6) is the same as that obtained by Sen, and it is the familiar
efficiency of rank tests relative to the classical tests. The connection between
efficiency and asymptotic power of tests is now well established (see e.g. Theorem
6.1 of Hajek (1962)). If the functional form of the distribution function F is
known, one can improve on both the classical and the rank score tests. Provided
F has a finite Fisher information, an asymptotically optimum parametric test is
not M, but the likelihood ratio test (see Section 2 of Sen (1969) for details).
For the rank score tests, if we choose the score generating function

(3.7) Py = =[S @YAF W),
it follows that under the assumptions of Lemma 2.2 our L, test based on (3.7),

with § ¢*(u) du < oo, provides an asymptotically most powerful rank order test
for the hypothesis (1.2) in model (1.1).
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