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COMPARISON OF LINEAR NORMAL EXPERIMENTS

By OLE HAvARD HANSEN AND ERIK N. TORGERSEN

Mgre and Romsdale Regional College, Molde
and University of Oslo

Consider independent and normally distributed random variables
Xy, .-+, Xysuchthat0 < Var X; =¢%i=1,---,nand E(X}, - -+, Xy) = 4’8
where A’ is a known n X k matrix and 3= (4, --+, Bx)’ is an unknown
column matrix. (The prime denotes transposition.) The cases of known
and totally unknown ¢° are considered simultaneously. Denote the experi-
ment obtained by observing Xj, .-+, X, by #4. Let 4 and B be matrices
of, respectively, dimensions n4 X k and ng x k. Then, if ¢2 is known, (if
g* is unknown) 4 is more informative than «5 if and only if A4’ — BB’
is nonnegative definite (and n4 = np + rank (44’ — BB')).

1. Introduction, notations and basic facts. A notion of “being more infor-
mative” for experiments was introduced by Bohnenblust, Shapley and Sherman
and may be found in Blackwell [1]. This was generalized by LeCam in [4] (see
also, Heyer [3]) to the notion of e-deficiency.

An experiment will here be defined as a pair & = ((x, %), (P,: 0 € ©)) where
(x> -+) is a measurable space and (P,: 6 € ) is a family of probability measures
on (y,.*”). (y,.-) is the sample space of # and © is the parameter set of &

DEFINITION. Let £ = ((x, /), (Py: 0 € ©))and ./~ = ((Z, ££), (Q,: 0 € ©))
be two experiments with the same parameter set ©.

Then we shall say that " is more informative than ..~ if to each decision
space (D,.2") (i.e. a measurable space) where ../ is finite, every bounded loss
function (¢, d) — W,(d) on ©® x D (W, is assumed measurable for each #) and
every risk function r obtainable in ..+~ there is a risk function »” obtainable in
" so that

r'd) < ), 0eO.

If ~"is more informative than ..»~ then we will write this " > ../

Let & = ((x, "), (P,€0))and .~ = ((¢, o%), (Q, € ©)) be two experiments
such that (P,: 6 € ©) is dominated, .~/ is a Borel subset of a complete separable
metric space and .4 is the class of Borel subsets of 2. Then it follows from
Theorem 3 in LeCam’s paper [4] (see Section 2 in [5]) that £ = .~ if and only
if there is a Markov kernel M from (3, .-~) to (¢, .#) so that

P,M=Q,: 6ecO.

Suppose P, M = Q,; 0 € © for some Markov kernel M and consider a real-
valued function g on ©. Let X and Y be UMVU estimators of g in, respectively,
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& and .. Then it follows from the Rao-Blackwell theorem that
Var, X < Var, Y; feO.
Let G be a group acting on y, ~/and © so that
Pyg=t = P,y 0eO
0,97 = Quu s 0e®.
Call a Markov kernel M from (y, .") to (#/, 2¢') invariant if:

and

M(g[B]]9(x)) = M(B|x) ; Be. s xey.

Then ([2] and [4]) there is an invariant Markov kernel so that P, M = Q,; 0 € ©
provided there is at least one Markov kernel with this property and provided
certain regularity conditions are satisfied. An exposition of sufficient generality
for the applications to be made here may be found in Section 2 in [6].

Consider now independent and normally distributed random variables X|, - - -,
X,suchthat0 < Var X, =¢% i =1, ---,nand E(X, ---, X,) = A’8 where 4’
is a known n X k matrix and 8 = (8,, - - -, 8,) is an unknown column matrix.
(The prime denotes transposition.) We shall simultaneously treat the cases of
known and totally unknown ¢*>. The experiment obtained by observing X will
be denoted by <.

The purpose of this paper is to present a simple criterion for the informational
inequality, <, = <5, when 4 and B are matrices with the same number of rows.

Our point of departure was the following result of C. Boll [2]:

Letj=1,2, .- and ¢ = 0 be given constants and consider the experiment
S, ; of observing independent random variables Z and W such that Z is
N, (1 + c)d® distributed and W/a* is y,* distributed. It is assumed that { and
¢* > 0 are totally unknown. Then Boll proved that .o, = .~ , if and only

ifc>0andj>= k4 1,0r,c=0andj = k.

2. Comparison of “reduced” linear normal models. In this section we shall
treat simultaneously the case of known and unknown variance ¢°. In the first
case our parameter set © is ] — oo, oo[* for some positive integer k. In the last
case @ = ]— oo, oo[* x ]0, ocof for some nonnegative integer k.

Consider two experiments < and .~ defined as follows:

" is the experiment obtained by observing k + p independent normally dis-
tributed random variables X, - - -, X, , such that Var X, = ¢%i=1,..-, k 4 p.
EX,=8;i=1,.-.,kand EX,=0;i=k + 1, ---, k + p.

.~ is the experiment obtained by observing / + ¢ independent normally dis-

tributed random variables Y, - .., Y, such that Var Y, =¢%i=1,...,[ 4 ¢,
EY,=c¢f;i=1,.---,land EY, =0;i=1+4+1,..-,1 + 4.

Here ¢, - - -, ¢, are known constants and we shall assume that kK > /, p and ¢
are given nonnegative integers. The unknown parameter is (8, - - -, §,) when ¢*

is known and it is (3,, - - -, 8,, ¢*) when ¢* is unknown. If ¢%is known then—
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by sufficiency—X,,,, - -+, X, , may be deleted from # and Y, ,, .-, Y,,, may
be deleted from .~ If ¢* is unknown then—by sufficiency—X,,,, ---, X,,,
may be replaced by S= X}, + --- + X2, and Y, ..., Y, by T=
Y.+ --- 4+ Y, In order to avoid trivialities we will assume that [/ > 1

when ¢* is known and assume that k + p, | + g = 1 when ¢? is unknown.

Ifp=1,9=1, k=1=1and ¢* is unknown, then Boll [2] has shown that
= .~ if and only if either p> ¢ and |¢| =1 o0or p>g + 1 and |¢| < 1.
Boll’s criterion generalizes as follows:

PrOPOSITION 2.1. If ¢’is known then & = . if andonlyif |c|< 1;i=1, .., L
If * is unknown then <~ = “if and only if |¢,| < 1;i=1, ..., landp = q +
Bl <i< 1 el <1).

RemMARK. The “invariance” part of the proof below is very similar to that of
Boll and the proof might—as Boll’s was—have been completed by considering
Laplace transforms. We will here, however, replace the “Laplace transform”
part of the proof by a comparison of unbiased estimators of g2

~

PrOOF OF THE PROPOSITION. Let # denote the experiment obtained from &
by deleting X,: | < i < k. Clearly & = &% = % = .5, and that the converse
holds may be seen by letting the additive group R*~! act as follows:

9= (941 -5 9) (B -+, Br» %)
— (B -5 B Bigr + Givs -5 B + 91s %) 5

(X s X)) = (X - X X+ Gy o Xy G Xigns -0 s Xivn)
and (Y, -+, Y, ) = (Y, -+, Yi,,). Obviously < and .~ are both invariant
under this group and any invariant kernel from " to .~ does not depend on
X - X, It follows that we may—without loss of generality—assume that
I = k.

Consider now first the case of known variance ¢2. Let ¢, # 0. Then the
UMVU estimator of 3, in < is X, while the UMVU estimator for 3, in & is
Y,/c;. The variances of these estimators are, respectively, ¢* and ¢*/c*. Hence

Az =g = 1;i=1, ..., k. Conversely, assume |c;| < 1;i=1, ..., k.
Let Z,, ---, Z, be independently and normally distributed random variables
such that: (Z,, ---, Z,) is independent of (X, ---, X,), EZ, = 0; i =1, ..., k

and VarZ, = (I —c¢?¢* i=1, ..., k. Then Z, + ¢; X, has the same distri-
butionas Y, ---, Y,.

Suppose next that ¢ is unknown and that < > .. By the result proved
above: |¢| < 1;i=1, .-, k. We will demonstrate that p > ¢ + £{i: 1 <
i< ke < 1),

Let G be the group of transformations of © of the form: (8,, ---, 8,, ¢%) —
(9, + 981 -+ -5 9, + 984, 9%¢*) where g, ---, g, and g are constants. If k =
(9 -+ +» 94> 9) € G then we let it move (X, ---, X, S) to (9, + 9X,, - -+, ¢, +
9X,, ¢*S)and (Y, ---, Y,, T)to (9, + 9Y,, - -+, 9, + 9Y,, ¢°T). It may then be
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checked that /< and .o are both invariant under G. Moreover, since G has an
invariant mean we may restrict attention to invariant kernels (see Section 2 in
[6]). It follows that we may assume that (X, ---, X}, §), (Y}, ---, ¥}, T) has a
joint distribution where the conditional distribution, M, of (Y,, ---, Y, T) given
(X, - -+, X}, S) satisfies

(*) M(B, x -+ x B, x Bl .. s
= M((g,¢, + 9B) x -+ X (9., + 9B) X OBl 1 ov o gpian,08) -
Suppose first that p = 0. Then ¢* is not estimable in <. Hence g = 0. By
inserting g, = X, —gX;i=1,---,k in the identity (*) we get:
P(Y,e B, - -, Y, €By ...x,)
= P(Y,eg(B, — ¢, X)) + ¢, X, -+, Yoeg(B, — ¢, X)) + ¢ Xilvpoox,)

I
- P<7g~(Y1— aX) + aX,eB, oo

1
N (Y, — ¢ X)) + ¢ X € Bk‘len,Xk) .

It follows—by letting ¢ — co—that the conditional distribution of (¥}, ---, ¥})
given X,, - - -, X, is the one point distribution at (¢, X, - - -, ¢, X,), i.e. we may
aswellassume Y, = ¢, X,;;i = 1, ..., k. Henceg® = VarY, = ¢*Var X, = ¢;a?,
sothat¢?=1;i =1, ..., k. This proves the desired inequality when p = 0.

Suppose next that p = 1 and put U, = (Y, — ¢, X))/ i =1, ---, kand U =
7/S. 1t follows from (*) that (U,, - - -,U,, U) is independent of (X, --+, X\, ).
Writing Y, = ¢, X, + S*U, we see that StU; is N(0, (1 — ¢;})g?) distributed.
Furthermore:

Eexp[Xte, it;¢; X [T15-, E exp(it; S1U)|Ee”
— [[T%., Eexplit;c; X,)E exp(it; StU))] - Ee's
— [IT50 Eexp(it, Y)] - Ee"'
— E[TT5 exp(it; Y)) - €]
= E[T% exp ity ¢; X)IE[TT5-, expit; SIU ) Ee"™" .
It follows that StU,, - .. S*U, SU are independent. Hence:

0_2[Zi::ci{<1(SUi2/(1 —¢) + SU]

has a y* distribution with ¢ + £{i: |c,| < 1} degrees of freedom. This yields an un-
biased randomized estimator of ¢* based on S with variance [¢-+#{i: [c,[<1}]7'20"
The UMVU estimator based on S has variance p~'2¢¢. Hence p=g+#{i: [c;|<1}.

Finally, suppose o° is unknown, that |¢,| < 1;i=1, -,k and that p = ¢ +
#lic |e| < 1}. Write {i: |¢| < 1} = {i}, ---, i,}. Then .»~ may be constructed
on the basis of X}, ---, X, , by putting:

Y, = C,L-X,L- if lCil =1 s

T

Y; ZCirXir'*'(l_C%r)%XHrv r=1,.--,m

tr
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and
Yiei = Xetmess j=1L--.q.
Hence < = .o

3. Comparison of linear normal models. For each given n, x k matrix 4’ let
", be the experiment obtained by observing n, independent and normally distrib-
uted random variables such that: Var X; = ¢% i=1,..., kand E(X,,---, X)) =
A'(By, -+, 3;). The parameter set © is |—oo, co[* if ¢* is known and it is
]— o0, co[* x 10, co[ if ¢* is unknown. The basic criterion for “being more
informative” within this class of experiments is:

THEOREM 3.1. Let A’ and B’ be given matrices of , respectively, dimension n, X k
and n, X k.
If o% is known then:!

A=, e AA = BB’ .

A =

If ¢ is unknown then:

<, =, = AA = BB and  n, = n, + rank (44’ — BB).

REMARK. Suppose ¢° is unknown. It follows that <" and <, are comparable
ifand only if |n, — n,| = rank (44" — BB’yand A4’ = BB'or < BB’ asn, > n,
or < ny,.

As a particular case consider the experiment ~”, consisting in observing m
independent N(§, ¢°/2) variables, and the experiment ' consisting in observing
n independent N(&, ¢%) variables. Here & and ¢® are unknown parameters. Then
<, =« yifand only if m = n 4 1, while 7, = <, if and only if n > 2m.

Proor. Let [ denote the k X k idéntity matrix. ~’, may be considered as the
experiment of observing a N(A’B, ¢*) distributed k X 1 column matrix X while
~", may be considered as the experiment of observing a N(B'3, ¢*) distributed
k x 1 column matrix Y.

(i) A4’ = Iand BB’ = A, a diagonal matrix. Then 3 = AX and ||X — A'§|?
are independent variables which, together, constitute a sufficient statistic in .
f is N(B, o*I) distributed and ||X — 4'5||*/o* is 32 _, distributed.

Let {i,, ---,1,} = {it A, # 0} where w = rank B and let 3* be any solution of
the normal equations in ;. Then (4, )!g*; r=1, ..., w and ||Y — B'3*|/o®
are independent random variables which, together, constitute a sufficient statistic
in . (8, B is N((4;)*p,,, o%) distributed, r = 1, - -, w, while||Y — B'3*|}*/s*
has a y* distribution with n, — w degrees of freedom.

We are now within the framework of Proposition 2.1 and the proof is—in
this case—completed by noting that 44" = BB’ if and only if (A, | <1,
r=1, ..., wand that rank (44’ — BB') = k — rank B + #{r: 4, =+ 1}.

LIf M, and M; are symmetric matrices of the same dimension, then ‘““M; = M," is short for:
““M; — M is nonnegative definite.”
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(ii) Rank A = k. By a well-known result on simultaneous reduction of two
quadratic forms there is a (nonsingular) k X k matrix F so that

FAAF =1 and F'BB'F is a diagonal matrix.
Put 4 = F’A and B = F'B. It is easily seen—by reparametrization—that
T2 E =2
The theorem follows—in this case—since #"; and #; satisfy the condition in (i)
and since A4’ > BB’ — A4’ > BB and rank (44’ — BB’) = rank (44’ — BB').

(iii) The general case. It follows from the estimability criterion for linear
functions of B that row [B'] € [A'] provided &, = ;. Suppose now that
AA’ =z BB’ and that x is orthogonal on row [4’]. Then A’x = 0 so that 0 =
x'AA'x =z x’BB’'x. Hence B'x = 0so that x is orthogonal on row [B’]. It follows
again that row[B’] £ row[4’]. Hence we may, without loss of generality, assume

that row [B'] < row [4']. Write 4’ = (a/, ---,a,,) and B = (b/, ---, b, Y
where a/, ..., a, and b/, ..., b are, respectively, the row vectors of 4" and
B'. Let v/, ..., v/ be a basis in row [4'] and write p, =v/8; i=1, -.-, r.

Define matrices S = {s,;} and T = {¢,;} by: @/ = }j_,s;v/and b/ = 3 t,;v/.
Then A'f = S§'p, B'f = T’p and S’ has r = rank §’ columns. It is not difficult
to check that <, = <, = =&,, AA" = BB =SS = TT" and that

rank (44’ — BB’) = rank (SS’ — TT’). The theorem follows now from (ii). []

4. Comparison by Fisher information matrices. Replicates. If X is N(A4'3, ¢*])
then the Fisher information matrix is =244’ if ¢% is known and it is

0_2<AA' 0 )
0 2n,0

if 6% is unknown. It follows that the comparison criterion in the case of known
0% is just the usual ordering of the Fisher information matrices. This criterion
could also have been obtained by noting that the Bayes risk for quadratic error
for the problem of estimating a given linear combination '3 of 3 when 3,,- - -, 3,
are independently and normally (0, I) distributed is v+ AA") .

It may be shown quite generally that the ordering “being more informative”
is stronger than the ordering of Fisher information matrices. In fact there is an
intermediate ordering of “‘being locally more informative” ([7]).

In the case of unknown ¢* the ordering > of the Fisher information matrices
of <, and ', is the ordering: 44’ = BB’ and n, = n,. It follows that this
ordering is strictly weaker than the ordering “being more informative.”

Ordering of Fisher information matrices of a fixed number, say n, of replicates
does not depend on 7. In contradistinction to this we have, in the case of un-
known ¢*, that n replicates of <, is more informative than n replicates of ~  if
and only if* n(n, — n;) = rank (44’ — BB’y and A4’ = BB’'. This may be seen

2 If A is a matrix, then n4 denotes the number of columns in 4.
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by noting that the experiment obtained by combining (independently) experi-

ments <, , ~

4yt o> @4, Is equivalent with the experiment &, where 44" =

YA A andn, = 3in,.

(1]
(2]
(3]

[4]
(5]

(6]

(7]
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