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ON THE JOINT DISTRIBUTION OF FRIEDMAN'S
7> STATISTICS!

By D. R. JENSEN
Virginia Polytechnic Institute and State University .

This study is concerned with the joint distribution of Gerig's (1969)
statistics when applied to tests for shift in various marginal distributions
pertaining to complete two-way multivariate data. The exact small-sample
distribution can be found using conditional permutation arguments, and
the limiting permutation distribution is shown to belong to a known class
of multivariate chi-square distributions. A special case yields the limiting
joint distribution of Friedman’s (1937) y,2 statistics for the one-dimensional
marginal distributions. Berry-Esséen bounds are given for the rate of
convergence of the joint distribution to its limiting form when the under-
lying distributions are identical over replications.

1. Introduction. Let Y,, = [Y], ---, Y] be the vector of responses to the
Jth of k treatments on the ith of N replications in a complete two-way classifi-
cation scheme, and let {F,(z); 1 < j< k,1 < i < N} denote their cumulative
distribution functions (cdf’s), assumed independent for i = 1,2, ..., N. For
{F,;(+)} continuous, Gerig (1969) devised a test for the hypothesis H,: F,, =

F,=..--=F,=F,1<i<N, against the translation alternatives H,: F,;(z) =
F(z — p;), 1 < j<k, 1 <i< N, using permutation arguments together with
a nonparametric version of the statistics of Lawley (1938) and Hotelling (1951),
and using within-replication ranks in order to avoid the assumption that replica-
tion effects are additive. The small-sample distribution of Gerig’s statistic can
be found exactly using conditional permutation arguments, and its limiting dis-
tribution as N — oo is chi-square (y°) having m(k — 1) degrees of freedom; fur-
ther details are sketched in Section 2.4.

Under translation alternatives the hypothesis H, can be written as H,:
#y = -+ =p, wWhere g£;¢IR™, 1 < j < k. Several parametric tests for the
latter are available under Gaussian theory, including those based on the Lawley-
Hotelling statistic whose limiting (N — co) distribution is y* having m(k — 1)
degrees of freedom.

Conclusions more specific than those supported by tests for the single hypothe-
sis H, frequently are required. Here it is informative to examine the effects of
the k treatments separately for each of the m responses or for natural subsets
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of them, either in terms of marginal distributions of various orders associated
with {F,;(+)} or, under shift alternatives, in terms of the location parameters

themselves. We thus partition z = [z/, -+, z,') and g; = [g},, - -+, p},]; we
let {F}(z,), - - -, F;(z,)} be the corresponding marginal cdf’s; and we consider
tests for the r hypotheses

(1.1) Hy: Fy=Fy,=..-=F,=F', =i N
simultaneously against the translation alternatives

(1.2) HAt:th'j(zt):Fit(zt")ajt)’ lsj=sk1=<isN

where ¢ ranges from 1 to r. In view of (1.2), the hypotheses (1.1) can be written
equivalently as

(1.3) Hytptyy = oy = -+ = s lsr=sr.
Although a normal-theory procedure is known (cf. Jensen (1970)) for testing
{Hy, - -+, Hy,} using the Lawley-Hotelling statistics, we now abandon the

Gaussian requirement and study a nonparametric version based on an extension
of Gerig’s (1969) work as summarized in Section 2.4. Specifically, we apply
Gerig’s permutation test to each hypothesis, the properties of this procedure
thus depending on the joint distribution of several statistics of Gerig’s type based
on rankings within subsets of the m responses. A permutation argument in
Section 3 yields the exact joint distribution of the several statistics in small
samples, and their limiting joint permutation distribution is shown in Section 4
to belong to a known class of multivariate y* distributions (cf. Jensen (1970))
which also includes the large-sample joint distribution of the Lawley-Hotelling
statistics themselves. In Section 5 we investigate the rate of convergence of the
joint distribution to its limiting form in the spirit of Berry (1941) and Esséen
(1945) for the special case that F,; = F;, 1 <i < N.

1

2. Preliminaries. We adopt the following.

2.1. Notation. Here x is a column vector, A a matrix, A’ its transpose and,
where appropriate, A~' is its inverse; dimensions sometimes are given paren-
thetically. Special arraysareI,, the identity matrix of order n; the direct product
A x B = [a,,;B]; the diagonal matrix Diag (a,, ---, a,); and the vector 1,, of
order (n X 1), containing unit elements. The Kronecker indicator is d,;. Eu-
clidean m-dimensional space is designated by IR™ and'its positive orthant by R,™.
Other separable metric spaces are .#,,,,, the space of real matrices of order
(¢ X m) having maximal rank; _#,°, the space of positive semi-definite real
symmetric matrices of order (m X m); and _#,* C _#,°, the subspace of de-
finite matrices. Finally, () denotes the o-field generated by one of R™, . /7, ,,,
and .2, *, or spaces constructed from these. For example, .~ (.+,,) is the -
field generated by a basis for the topology of 7, ..

2.2. A result on weak convergence. Let %7, o/ and ./, be separable metric
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spaces and {X, X;; N = 1, 2, ...} a stochastic sequence in .57, having the prob-
ability measures {P(+), Py(+); N = 1,2, -..}. If X, converges in probability to
X, we write Xy —, X. If X, converges in distribution to X, i.e. if lim,__ Py(+) =
P(+) at every continuity set of the latter, we write .2 (X,) = ~(X). Upon
combining Theorem 4.4 and Theorem 5.1 of Billingsley (1968), we have

LemMa 1. Let {(X,¢), (Xy, Yy); N=1,2, ...} be a stochastic sequence in
e X Yy, and g ¢ X .S, — 7 a continuous mapping, such that

(i) Zu(Xy) = Z(X)

(ii) Y, —, ¢, a point in .57,

Then 7. [g(Xy, Y)] — £ [9(X, ©)].

2.3. A multivariate y* distribution. Let L,(x; @) be the Laguerre polynomial
on R", of total order h = h, + ... 4 h,, defined with respect to the weight
function

o(x; @) = []5., x5 e %i[[(a;) ; 0 < x;a; < oo
and satisfying an r-dimensional Rodrigues’ formula (cf. Jensen (1970)). Upon
defining

[(2x; 2a) = T3 h;! F(a&g

i, 1k P @ @),

making a simple change of scale in Theorem 2 of Jensen (1970), and abbreviating
probability density function as pdf, we have

LeMMA 2. Let W = [W,;] be a partitioned Wishart matrix having t degrees of
freedom and the matrix X = [Z,,] of scale parameters such that W; and Z; are of
order(m;, x m;),i,j=1,2, ..., r,andm,+ --- 4+ m, =m. Define Q,=tr W, X1
then the joint pdf of {Q,, - - -, Q,} admits the series expansion

1) 9@ v = Tra T T @)
: 2

where Q = [Qy, -+, Q.15 v =[v, -- -, v, ), v, =tm;, 1 £ j< r; and the coef-
ficients A(a) = A(ay, - - -, a,) depend explicitly on the matrix L through Z;}X, >},
l<ij<r

2.4. A resumé of Gerig’s work. Following Gerig (1969) and otherwise retain-
ing the notation of Section 1, let R, designate the rank of Y3, among the k scalars

{Y3, -+, Y3,}. These ranks are arrayed as rows of the matrix
R'lil ct R:k

(2.2) R, =" - I<i<N.
R™ ... Rn

Define

(2.3) Ty; = 25 R[N

(2.4) Vy = [Z5: (252 Ri; Ry — k(k 4 1)/4)[N(k — 1)]
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and
(2.5) Wy = [25=(Ty; — 3k + D)(T5; — 3(k + 1))].

Gerig’s statistic (3.2) for testing the hypothesis H, now can be written in the
Lawley-Hotelling form

(2.6) X, = NtrW,V, ',

Let R;* be the matrix obtained from R, upon permuting its columns so that
the integers {1, 2, - . -, k} appear in sequence in the first row. Gerig’s permuta-
tion test for H, against the translation alternatives H, rests on the uniformity of
the distribution of R, over the k! elements of the set S(R,*) of matrices permu-
tationally equivalent to R,*, conditionally on R;* and H,, where two matrices
are permutationally equivalent if the first can be obtained through a finite number
of permutations of the columns of the second. Gerig’s test procedure thus is
specified completely by the conditional probability law

N
@7) = PR =R 1SIS NSRS NoH) = ()
where R, € S(R;*). Because the statistic X,* at (2.6) depends explicitly on
{R,, ---, R}, the exact permutation distribution of X,* can be found, thereby

determining a randomized test of the hypothesis H, which is strictly distribution-
free under H, and which has exact size a.

In large samples, however, the computations become prohibitive. The final
result of this section, due to Gerig (1969), provides the key to the asymptotic
permutation distribution not only of X,* as shown by Gerig, but of the joint
distribution of the several statistics introduced in Section 3, details of which are
supplied in Section 4. ’

Let Z,* = [of,], 1 <i < N, where, for s = s/,

iss

(2.8a) ok, = k(k + 1)/12

and, for s + s’,

(2.8b) - o, = X, 2 2 PLY3 > Vi, Vi > Yk — 1) — k(k — /4,
the sums all ranging from 1 to k, and define

(2.9) Z,=N"'3N T,

Clearly, Z, depends on the underlying distributions {F,;(+); | £ j <k, 1 =i < N}

and, when H, is true, on {F,(+); 1 < i < N}. In the latter case we employ the
following

DerINITION 1. Let .~ be the class of sequences {F,} of cdf’s on R™ such
that (i) F,, F,, - - - are continuous, and (ii) lim, , X, = Z, where (iii) Z is posi-
tive definite.

The following result appeared as Theorem 4.3 of Gerig (1969).
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LemMmA 3 (Gerig). Let {Fy}e 7 ; then as N — oo the limiting joint permutation
distribution of

V(T4 — Mk + )il =ssm 1</ k)

is mk-variate Gaussian having zero means and the dispersion matrix @ = A X Z,
where A = [(0;;, — 1]k); 1 < j, J/ < k].

3. A simultaneous test procedure. We outline a nonparametric procedure for
testing the r hypotheses (1.1) simultaneously against the translation alternatives
(1.2), adopting the type 1 probability error rate (cf. Miller (1966)) as suitable
for this family of hypotheses. Our work thus extends that of Gerig (1969) and
Friedman (1937) to the case of several hypotheses. The key to these extensions
lies in three facts:

(i) The ranking among treatments within replications is carried out sepa-
rately for each of the m responses.

(if) The permutation argument outlined in Section 2.4 does not depend on
the number of responses.

(iii) It is clear from Gerig’s work that the number of test functions defined
in terms of the matrices {R,, - - -, R,} need not be restricted to one.

Accordingly, we now partition the m responses into » < m subsets such that

Y;; = [Y};, -+, Y7/], thus inducing the block partitions
Ril — [Rill’ ceey Rir’]
Vy= [sz']

and
WA’ = [Wm:/]

where 1 < ¢, ' < r. Corresponding to (2.6), we now construct the r statistics
(3.1) X%, = NtrW,, Vi 1<t<r

of Gerig’s type for testing the respective hypotheses H,, at (1.1), each statistic
defined in terms of one of the several subsets of the responses (compare equa-
tions (2.2)—(2.6)).

It follows directly from the arguments in Section 2.4 that our simultaneous
test procedure is determined completely by the conditional probability law (2.7).
Because the scalars {X%,, - - -, X3} are defined explicitly in terms of {R,, - - -, R,},
their exact joint permutation distribution can be found, thus determining a
randomized simultaneous test procedure which is strictly distribution-free under
the hypothesis H, = ;., H,, and having a type 1 probability error rate of exact
size a.

In samples of moderate size, however, the exact permutation test becomes
unwieldy. In the following section we investigate a large-sample approximation
to the joint permutation distribution of the statistics {X%,, - - -, X% }.

4. The limiting joint distribution of {X%,, ---, X% }. We demonstrate that:
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(i) {X%. ---, X%,} are definite quadratic forms in the variables {N¥(T3; —

e+ D)1 Z<s<Em 1 << k)

(ii) The limiting joint permutation distribution of the latter is Gaussian by
Lemma 3;

(iii) Lemma 1 applies; and thus

(iv) The limiting joint permutation distribution of {X%,, - - -, X3,} belongs to
the class of multivariate y* distributions given in Lemma 2, a typical cdf of
which is designated by ¥(., - .-, «; »).

Upon identifying the dimensions of Y!; as (m, x 1) such that m, + ... 4
m, = m, we state the main result of this section as

THEOREM 1. Let {(Fy}e.%  and, for each N =1,2, .--, let G.(+, ---, +) be
the joint cdf of the statistics {X%,, ---, X%,} defined at (3.1). The limiting joint
permutation distribution of {X%,, - - -, X%,} is given by

(4.1) limy ., Gy(ey -+, o) = T(e, -+, o5 »)
where v = v, ---, v andv, =m(k — 1), 1 <t < r.

Proofr. The limiting Gaussian distribution of the variables {N¥(T%,; — 3(k+1));
1 <5< m 1 <j< k})in Lemma 3 clearly is singular of rank m(k — 1). Upon
applying Lemma 1 we infer that the limiting distribution of NW . (compare (2.5))
is Wishart having k — 1 degrees of freedom and the matrix Z of scale parameters.
Gerig (1969) demonstrated under the conditions of the theorem that V  —, Z.
Applying Lemma 1 once more using the continuity of the function tr AB~! to-
gether with the indicated mapping g: .7, * X -#,* — R,", we conclude that

(4.2) limy .. Gy(zy -+, 2,) = Plu W, B < z; 1 <i<r)
where W = [W,,,] is Wishart having the parameters k — 1 and £ = [Z,,]. But

the probability on the right of (4.2) is precisely the cdf corresponding to the
series (2.1), and the proof is complete.

CoroLLARY 1. Ler {X%,, ---, X%,} be Friedman’s statistics for testing the hy-
potheses (1.1) in the case of m one-dimensional marginal distributions. Then the joint
permutation distribution of {X%,, - - -, X%,} has the limiting form
4.3) lim, . Gy(e, -y ¢)=W(s, ---, o3 »)

where v, =k — 1, 1 <1 < m.

5. Bounds on the rate of convergence. The weak convergence of {X3%,, .-,
X3} follows from Lemma 1 and multidimensional central limit theory requiring
only that second-order moments exist. The higher moments required for estab-
lishing rates of convergence are assured in the present study as long as k is finite
and thus the within-replication ranks remain bounded. Our intention here is to
develop uniform bounds of the Berry-Esséen type on the difference

iGN(., cee,0) — 'lI"(., cee, .;y)l .
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The presentation is simplified considerably upon accepting some loss of gener-
ality; we henceforth assume that distributions are identical over the N replica-
tions, i.e. F;;(+) = Fy(+)foralli=1,2,...,Nand 1 £ j < k.

5.1. Some results on convexity. We employ the following notions of convexity.
A real-valued function f(-) is said to be convex on C (a convex set in R") if,
for each pair of pointsx, y € Cand eacha = 1 — & € [0, 1], we have f(ax 4 ay) <
af(x) + af(y). If fis convex, the set S(z) = {x|f(x) < z} is convex in R" for
each z € R' (cf. Berge (1963), Chapter 8). For later reference we introduce the

DEFINITION 2. Let 2 and .7 be the natural product spaces .7 | = _+#,,, X
(2, —T)yand ¢, = 4., X A#,*, where T' e _Z,*.

Lemma 4. Let Xe . #7,, s Me #,* —T; A, Ce _7,,,; and Be _«°, where
s < m. Then the function

g9(X, M) = tr CX'BXC'[A(M + I 4]
is convex on . ¢ ;.

Proor. As the problem remains invariant under suitable matrix operations,
it suffices to demonstrate that g(L, V) = tr L(V + I)~'L’ is convex. Let

h(a) = g(aL,; + c'r]__,2, aV, + aV,);
upon differentiating once we find
B(a) = 2tr (L, — LY)Z7'Y — tr YZ7%(V, — V, + )7'ZY’
where
Z—=aV,+ aV,+1, Y = aL, + al,.
Differentiating once more, we reduce the resulting expression to

h'(a) = 2tr (T — UYT — UY
where

T=(L —L)2*, U=YZYV,—V,+)'Z%,

Because 4”(a) = 0, h(a) is convex on [0, 1] and thus g(L, V) is convex by Theo-
rem 2, page 190, of Berge (1963).

COROLLARY 2. The set
S(z) = {X, M|tr X'BX(M + T')™' < 7}
is convex in ¢ | for each z € R,

COROLLARY 3. LetXe #,,,andMe 7, —T. PartitionX = [X,, -- -, X,],
=M, ]and T = [T,,.] such thatT,, e 7}, X, € .+,

my? gxmy and Mtt € ‘//Znt - I‘w
where m, + .-« + m, = m. Define
5.1 g X, M) = tr X,/BX,M,, + T,)~*, 1

IA
A
~
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Then the set
S(zyy -5 2) = (X, Mg (X, M) < z,, -+, ,5(X, M) < z,}
is convex in '/ . for each z € R,".
Proor. Let {S), ---, §,} be cylinder sets in . /| defined as
S(z,) ={X,M|tr X/BXM,, + T,)' <z}, 1

IA
A

t r.

Each set §,(z,) clearly is convex in cross section; applying Lemma 4 with s = m,
and C and A both of the form [0, I,, , 0], we find that g,*(X, M) is convex. The
set S(z;, -+ -, z,) is the intersection

S(zy, -5 2,) = M= Sd2)
of convex bodies in /. and thus is convex.

5.2. Multidimensional Berry-Esséen bounds. Rates of convergence in multidi-
mensional central limit theory have been studied by a number of investigators
for sequences of independent and identically distributed (i.i.d.) random variables
in IR*; the following result is in a form due to Sazonov (1968), where <™ desig-
nates the class of all measurable convex sets in R®.

LEMMA 5. Let {y,, ---, ¥y} be ani.i.d. sequence in R* having zero means, the
nonsingular covariance matrix Q, and the finite absolute third moments By 1
Jj<s. Let Py(+) be the probability measure associated with the standardized sum
N=4(y, + --- 4+ yy), and let P(+) be the limiting Gaussian measure having the para-
meters 0 and Q. Then for each N =1,2, .-,

(5:2) SUP e s [Py(A) — P(A)| = e(8) D5 755 Bosl N*
where T = [7,;] = Q' and c(s) is a finite positive constant depending only on s.

In relation to other work, Lemma 5 also can be obtained upon modifying a
proof due to Bergstrom (1969), who assumed the existence of third-order absolute
moments, or upon specializing some findings of Bhattacharya (1968), who as-
sumed the existence of absolute moments of order 3 4 4 for some positive d.
Furthermore, the work of Bergstrom assures that the constant ¢(s) in (5.2) can
be replaced by ¢,-s*/d, where c, is a finite positive constant not depending on any
of the remaining parameters, and d* = 2,/4, in terms of the characteristic values
0< 4 < < A)of Q.

5.3. Boundson|G(«, ---,+) — ¥(+, -+, «;»)]. Theassumption that F;;(+) =
Fy+), foreachi =1,2, ..., Nand 1 < j < k, clearly supports the conclusions:

(i) Z, at (2.9) is identically equal to £, N =1, 2, .- ;

(if) V, at (2.4) converges almost surely (a.s.) to Z. The first conclusion
follows from the definitions (2.8) and (2.9), and the second from one of
Kolmogorov’s strong laws of large numbers.

It is clear from the definition of X%, at (3.1) that the limiting distribution of
{X%,, - -+, X%,} is the end result of two limiting processes which complicate our
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study, namely, the convergence in distribution of NW , and the a.s. convergence
to Z of V,. In order to study these processes simultaneously, we employ a
construction using bounds of the Berry-Esséen type for the joint distribution of
standardized sums in the variables

{[Riy Ry, Ry 1ISsSs=ml<f<k—1L1ISj<kEN=1,2--].
Specifically, we consider for N =1, 2, - - . the sequence
(5.3) [(Ry; — 3k + 1), Ups 1 s <m 1 <j <k —1]
where
Ui = 2051 (R R — k(k + 1)7/4)[(k — 1)

and the range 1 < // < k — 1 assures the nonsingularity of the joint distribu-
tion (compare Gerig (1969), page 1598). Clearly from (2.4) we have V, =
N-YU, + --- 4+ U,), where U, = [U,,,.]. The variables (5.3) arei.i.d. for N =
1,2, ..., and their joint moments of all orders exist by the boundedness of
{Ri;1 <5< m, 1< j< k). Details of our construction follow.

Let ¢’ = m(k — 1), £* = m(m + 1)/2, and £ = £’ 4+ £*. In the notation of
Section 5.1 we now identity ¢ = k — 1 and T' = N!Z, with the understanding
that N is finite throughout. Recalling the definitions (2.2)—(2.4), let

(Thi — 3k 4 1) -+ (Th o — 2k + 1))

(5.4) T, = : :
(Th — 3k + 1)) (TF,—r— 3k + 1))
and define
(5-3) Z.* = {NiT,, NV, — Z)}
and
(5.6) Z, = {N*T,, N*'V,}.

From the fact that 33%_, 7%, = k(k + 1)/2for 1 < 5 < m (cf. Gerig (1969), page
1601), it follows from elementary operations that W, at (2.5) can be written as

(5.7) W, =T/, + 1,.,1, )T, .

In the notation of Corollary 3 and (5.11), define

(5.8)  S5(2) = {(X,M)e /10 (X, M) < N-iz5 1 < 1 < )

(5.9) Sy(2) = {(X.S)e 7, ]0(X,S) £ Nz 1 < 1 = )

and

(5.10) Alz)y ={Xe Z;nl9.X, )< z51 <t <1}

where S = [S,,.] € .4, " and

(5.11) 9/(X, S) = tr X/BX,S;", I<r<r.

The sets S, *(z) and S,(z) can be interpreted readily. Observe that Z,* € .27
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and Z, e ‘¢, and let P *(+)and P,(-) be the corresponding probability measures
defined on .#°('¢) (note that 7 (.27) = . (.¢,)). Evidently P,* and P, are
identical apart from shift; more precisely, we have

(5.12) P ¥(Sy*(z)) = Py(Sy(2)) .

Moreover, upon making the identification X = N7, B = (I,_, + 1,_,1,_,), and
S = N*!V, in (5.9) and (5.11), together with (5.7) and (3.1), we conclude that
Py(Sx(2)) = PN U W (NtV )" = N4z, 1 < 1 < 7}

(5’13) :PN{Xivlézlv "'aX?Vrézr}
= GN(ZD ey zr)
where G (-, ---, +) is the joint cdf of {X%,, ..., X% }.

We finally consider Gaussian measures on ¥ (.¢,,). So that the parameters
can be identified unambiguously, we introduce the transformation H: 27 — R*
such that
(5.14) H: Ty > ty, (Vy — Z) > (vy — o)}
where t,/ = [t},, ---, t, ,_,] is defined in terms of the columns of T, =
[ty -5 ty il at (5.4), and V, — v, (similarly £ — &) column-wise using the
upper triangular part of V. Upon defining
(5-15) 2z, = N[ty (vy — 9)']
we conclude, for each N =1, 2, - . -, that the distribution of z is nonsingular
with zero means and covariance matrix

Q, @
(5.16) Q :[ n n]

Q:u 922
where Q;, = A* x Z, for example (compare Gerig (1969), page 1598), and A* =
[(0,;, — 1/k); 1 < j, j/ < k — 1]. With these conventions in hand let Q,*(+) be
the Gaussian measure on .5 (-2) having zero means and covariance matrix Q,
and let Q% (-) be the marginal measure of the first x’ components defined on
F (A, m)» having zero means and covariance matrix Q,,. Upon identifying
X = NIT, in (5.10), then using (5.7) and Lemma 2, we conclude that

(5.17) 0%(A(z)) = W(zyy -+ +» 2,3 ¥)
where v, =myk — 1), 1 £ j < r
Finally let H,(z,, - - -, z,) be the point function
(5‘18) H}V(zl’ ) zr) = Qx*(SN*(Zl’ M) Zr))
which also can be written as a definite integral using the appropriate density
function. Our main result here is

THEOREM 2. Let the array
RS =[(Ry, — 3k + 1), Ups 1S5S 5 Sm 1 £ j <k — 175
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as in (5.3) be an i.i.d. sequence in R* whose third-order absolute moments are B,,,
I < h < k. Define (X3,;1 <t Zr}in terms of (R 1 < i< N}asin (2.3)—
(2.5) and (3.1). Then for each z € R,” and for each N = 1,2, - -,

1Gy(z) — W(z; »)| < c(k) Dioa7h B/ Nt + |Hy(z) — W(z; v)|

where Q= = [r,,]; Q is defined at (5.16) and H(z) at (5.18); G (z) is the joint cdf
of {X%,, - -+, X%,} and W(z; v) its limiting form; v, = m(k — 1); and c(x) is a finite
positive constant depending only on «.

Proor. Applying (5.13), (5.17) and (5.12) in order, then the triangle inequal-
ity, we write
1Gy(z) — W(z; )| = [P(Sy(2)) — QF(A(2))]
= [Py¥(855%(2)) — QX (Sy*(2)) + Q5 (Sy*(2)) — QE(A(2))]
= [Py(Sy*(2)) — QX Sy ()] + [Q.5(5y%(2)) — O (A(2))] -
The second term following the inequality is
10.%(Sy*(2)) — Qi(A(2))] = [Hy(2) — W(z; v)|
from (5.17) and (5.18). Under the conditions of the theorem it follows that
P,*(+) converges to Q *(+), and the conditions of Lemma 5 otherwise are met.
Moreover, the set S,*(z) is convex in .2 for each ze R,” from Corollary 3.
Now applying Lemma 5, we have
[P *(Sy*(2)) — QX (Sy*(2))] = SUPce.« [Py*(C) — Q.X(C)]
< (k) Zhoa7hn Pu/N?
and the proof is complete.

CoRrOLLARY 4. Let G (-, -+ -, +) be the joint cdf of Friedman’s y,* statistics for
testing the hypotheses (1.1) in the case of m one-dimensional marginal distributions.
Then, for each z € R,™ and each N = 1,2, ...,

|G \(z) — W(z; »)| < (k) 24 T%hﬁsh/Ni + |Hy(z) — ¥(z; v)]|
wherev, = k — 1,1 <t < m.

COROLLARY 5. Let G(+) be the cdf of Gerig’s statistic (2.6) for testing the hy-
pothesis H, against the translation alternatives H,. Then, for each z€ R," and for,
each N=1,2, ...,

G(2) — W, (2)] = e(r) Zhar 7ha B/ NP + |Hy(2) — ¥ ,(2)]

where W () is the cdf of the y* distribution havingy = m(k — 1) degrees of freedom
and H,(z) = Q,*(Sy*(2)), where

Sy*(z) = (X, M)e /. [tr X’BX(M + T)~' < 7} .

Acknowledgment. The present proof of Lemma 4 was suggested by Professor
Ingram Olkin in lieu of the longer proof given by the author in an earlier version.
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