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ADMISSIBILITY OF PROCEDURES IN TWO-DIMENSIONAL
LOCATION PARAMETER PROBLEMS

By LAWRENCE D. BROWN! AND MARTIN Fox?

Cornell University and Michigan State University

Conditions are given for admissibility of procedures invariant under
two-dimensional translation. These conditions may be applied to obtain
admissibility of (i) the best invariant procedure for estimating a two-dimen-
sional location parameter and (ii) procedures which are Bayes in the class
of procedures invariant under two-dimensional translation, the prior dis-
tribution being over values of some other parameter.

1. Introduction. Brown (1966) gave general conditions for the admissibility
of best invariant estimates of one-dimensional location parameters. Using his
methods, Fox (1971) did the same in the case of multiple decision problems in-
variant under a one-dimensional location parameter. In the present paper we
present a theorem combining the extension of the above results to the two-
dimensional case. In the three-dimensional case Brown (1966) gave general
conditions for inadmissibility of best invariant estimates while Portnoy and Stein
(1971) gave an example of an inadmissible best invariant test.

Notation and assumptions are given in Section 2 while the main theorem and
its proof appear in Section 3. Section 4 contains lemmas concerning verification
of the conditions in the case of estimation. The application to multiple decision
problems is given in Section 5 and is extended in Section 7. An indication of how
the one-dimensional results of Brown (1966) may be extended along the lines of
this paper is found in Brown and Fox (1972).

In the one-dimensional case one of the conditions involves finiteness of a mo-
ment of order one higher than needed for finite risk. Counterexamples when
this condition is violated have been given by Perng (1970) and by Fox and Perng
(1969). In the present paper we require finiteness of a moment of order two higher
than needed for finite risk. Section 6 contains examples patterned after those for
the one-dimensional case. Unfortunately we have been unable to verify one
other condition and one example violates a condition other than the moment
condition. The conditions causing these difficulties have no parallels in Brown
(1966) or in Fox (1971).

2. Notation and assumptions. Let X, Y be random variables taking values in
AR, B 0 % o8, where #*, 24, denotes two-dimensional Euclidean space
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with the usual Borel o-field. Suppose the distribution of X, Y is given by
(2.1) Pry{X, Ye S} = §§sp(x — 0,y) dxp(dy)
where 6 ¢ <4, dx denotes Lebesgue measure on .2#?, <%

2 .2, and
§p(x —0,y)dx = 1.

The parameter space is therefore <#* = {f#}. The family of distributions is
“invariant” (or, “‘equivariant”) under translation. Y is the “maximal invariant”
statistic.

We suppose the decision space %7 has a group of transformations defined on
it which is a homeomorphic image of the translation group in .Z%*. Thus, for
each ze .2 there is a transformation ¢,: & — <, and ¢, ,,, = 9.,-9.,. For
example, in an estimation problem . might be .2#”* itself and ¢g,d = d + z; or
in a multiple decision problem (see Section 5) g, is the identity map g,d = d for
all ze ..

Suppose further that the loss function is invariant; i.e. that the loss function
L: & x .2t x .5 x 7 — [0, o) satisfies

(2.2) L(d, 0, x,y) = W(g_,d, x — 0, )

where, of course W: &7 x 2 x 7/ — [0, o).

It is also convenient to assume that <7 is a measurable space with ¢-field, <7,
W is a measurable map with respect to <%, x £, x £, and that the map
(d,8,z)—(9,d, 0 + z) is measurable from 248, x 5 ,, x <8 .10 &8, x B .
This last fact implies in particular that the maps d — ¢,d and (d, 6) — g_,d are
measurable.

Certain aspects involving invariant statistical problems with a parameter space
larger than . #* can also be treated using the results of Section 3. This will be
done in Section 5 for the specific example of an invariant multiple decision
procedure. The general situation will be discussed in Section 7. (But no theo-
rem will be proved there!)

A decision procedure is a measurable map

0: Hrx Y >,
Its risk function is
R(f,0) = E(W(g_40(X, Y), X —0,Y).

Formally, then, all decision procedures are non-randomized. However, if £ is
a locally compact, g-compact topological space and <~ is the Borel field on &~
then we have not lost any statistical generality in using this more convenient
formulation rather than a formulation allowing the use of randomized estimators.
This follows from Wald and Wolfowitz (1950).

A procedure is invariant if

o(x + z,y) = g,0(x, ) .
Since W is invariant (2.2) the risk of any invariant procedure is a constant. Let
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./ denote the class of invariant procedures. Note the standard fact thatif g e .
then d(x, y) = ¢,6(0, y). Hence the function

7(y) = 0(0, y)

determines 0 with the aid of the maps g,.

We now formulate the assumptions which will be required for the admissibility
theorem of the next section. These assumptions will be only briefly discussed
here. More detailed discussion of the latter assumptions will be left for Sections
4 and 5 which deal with specific types of location problems. The first three
assumptions to follow are closely related to Assumptions 2.1.1, 2.1.3, and 2.1.2
respectively of Brown (1966).

AssuMPTION 1. There exists a procedure d, € ..” such that
R, = R(8, 6,) = inf,, , R(0,0) < oo .

0, is called the best invariant procedure.

The existence of d, follows from standard statistical results involving very mild
regularity conditions. That essential uniqueness, implied by a later regularity
condition (see Lemma 2.1), is needed for any general admissibility result can be
inferred from analogous examples involving one-dimensional location problems;
see Farrell (1964) and Perng (1970).

ASSUMPTION 2.
(2.3) § r(dy) § [[x["W(di(x, ), x, y)p(x, y) dx < oo .

Again, by analogy with one-dimensional problems one would expect a moment
condition to be needed for any general admissibility result. Further, we con-
jecture that the exponent 2 in (2.3) is the smallest exponent which yields a general
admissibility theorem like Theorem 3.1. The examples of Section 6 give partial
support to this conjecture.

AssuMpTION 3. If 4 is any procedure such that R(f#, 0) < R, for all # e ..,
then there exist procedures d, (L — oo) with the following properties:

R(0,d,) < R(4, 9) for ||0|| < L,
and for L < M and [|x|| < 3L/2 we have
(24 S W9 -a00(%, )5 2, VP2, y) d2 < § WHG_ (o1 00(X, ¥), 2, V)P(2, ) dz
and
(2.5)  § @) §Simcra X Sz WH9-50.0(x, y), X — 0, y)p(x — 0, y)df — 0
as L — oo.

The hypothesis of this assumption is peculiar. It begins, in essence, with the
negation of the conclusion of Theorem 3.1. Nevertheless, Assumption 3 need
not be difficult to verify. It is a condition on the tails of p. For, if for some '
we have § p(dy) §,.,>. p(x, y)dx = 0, then we may choose 6, = ¢ and then for
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L sufficiently large (L/2 = ') the left-hand side of (2.5) is zero, and so Assumption
3 is satisfied.

Also, if W < B and the moment condition
(2.6) § mdy) § [Ix[[°p(x, y) dx < oo

is satisfied, then letting , = 6 we have

Sionzr d0§ 14dy) §,zcrs W(G_p0(x, p), x — 8, y)p(x — 6, y) dx
= Bz d0§ 11(dy) § s o2 p(2, y) dz

(2.7) < B 1) § iz (Son<riarnen 40)p(2, y) dz
< 4B § w(dy) § oy ll2lp(z, ¥) dz
= 0(1) as L - oo.

Thus Assumption 3 is satisfied in this case also.

The last assumption has no analog in Brown (1966) and is qualitatively different
from the previous conditions. It is not mainly a condition on the tails of p and/or
the growth of W. Rather it is a kind of condition on the local behavior of
W(-., x, y) near d(x, y). :

AssumpTION 4. There is a non-increasing function k: (0, co) — (0, co0) such
that
(2.8) §o k(v)dv =k, < oo,

and such that for any d €./~ inequalities (2.9) and (2.10) below are satisfied:

(2.9) § 11(dy) §,20<0 (W(0(x, ¥), X, ¥) — W(i(x, ), x, y))p(x, y) dx
< k()(§ (dy) § (W(0(x, y), x, p) — W(0(x, ), X, ¥))p(x, y) dx)}
and
(2.10)  § dy) §yais [W(O(X, ), X, y) — W(a(x, ), x, »)]*p(x, y) dx
= k()(§ r(dy) § (W(0(x, ), x, ¥) — W(dy(x, y), X, ¥)p(x, y) dx)} .
The following trivial lemma implies a form of essential uniqueness of d,. For
estimation, essential uniqueness is implied in the conclusion of this lemma if, as

in Farrell’s (1964) case, W(d, x, y) is strictly increasing as d moves away from 0
in any direction.

LemMa 2.1. Let o, be any best invariant procedure satisfying (2.10). If o is also
best invariant, then

(2.11) W(o(x, y), x, y)p(x, y) = W(d(x, y), x, y)p(x, ¥) a.e. (dxp(dy)).

Assumption 4 is usually somewhat more difficult to verify than are the pre-
ceding assumptions. Merely to indicate to the reader that it may be satisfied we
consider below the case where < = .2, W(d, x, y) = ||d|* (i.e., L(d, 0, x, y) =
[ld — 8|]*), and (for simplicity) Ey(x) = 0 so that dy(x) = x.

We will need a slightly more stringent condition than Assumption 2; namely,
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for some ¢ > 0

(2.12) § z(dy) § [|x][*(In**<] x| )W(x, x, y)p(x, y) dx < oo .
With this assumption and W as above
(2.13) k(v) = 2(§ 14(dy) § 050 |IX]Fp(x, p) dx)t

satisfies (2.8). Clearly, {jk(v)dv < oo and, for v > 1, we have k(v) <
a v In~*» v so that (¢ k(v) dv < oo. Under these assumptions, the left-hand
side of (2.9) satisfies

§ 14(dy) §yn<o (XN = 11X + 7O)IP)P(x, y) dx
= §dy) § <o —2x-7(p)p(x, y) dx
(2.14) = § 1(dy) §)m150 23 7()p(x, y) dx
= 28 1(dy) §yais [1xIFp(xs y) dx)A(S (@y) § 117 (0)IIPp(x, y) dx)t
= k(v)(§ p(dy) § (W(d(x, y), x, ) — W(d(x, ), X, y))p(x, y) dx)} .

This verifies (2.9). Verification of (2.10) is similar since the left-hand side of
(2.10) is dominated by

§ 1Y) § 50 125 7(p) p(x, ) dx .

Note that the above argument strongly uses the special form W(d, x, y) = ||d||*
Thus it is not to be expected—and is not the case—that the moment condition
(2.12) or any other moment condition suffices by itself to check Assumption 4
in more general cases. A similar slight strengthening of Assumption 2 is required
in Stein (1959) and James and Stein (1961).

3. The admissibility theorem.

THEOREM 3.1. In the problem of Section 2 suppose Assumptions 1—4 are satisfied.
Then the best invariant estimator 0, is admissible.

PrRoOF. Suppose g, is inadmissible. Then there is a procedure, 4, which is
better than d,. R(f, ) < R,. Asin (2.1.5)—(2.1.7) of Brown (1966) we may
interchange orders of integration and substitute z = x — ¢ for @ to yield

0= §y< [Ro— R(0,0,)]dO
= § 1Y) §21c 02 AX § s Wi(25 X, Y)P(2, p) dz
(3.1 + § DY) § Lrasiianesnre X §omacr Wil2, X, y)p(2, y) dz

+ § Udy) §aiza02 X § om0 WL(2, x, »p(z, y)dz
= ]1(L) + ]2(L) + ]3(L)

where in view of the invariance of W and using (2.2) we set
wi(z, x, y) = W(ao(z’ ) 2, y) - W(g~(a:—z)51‘(x’ )’)’ z, ,V)

and /(L) are defined in the above expression.
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In view of Assumption 2, the quantity (L) satisfies

I(L) < § () Sizis i Siamaise @ W(0y(2, ¥), 2, y)p(2, y) dz
(3.2) = 7§ @) § s HI2|W(O2, ¥)s 2, Y)P(2, ) d2
o(1) , as L — 0.

From Assumptions 4 and 2 it follows that

(3.3) h(L) = § t:4dY) §yai<rn dX §emzyzr Wi(2, X, y)p(2, ) dz
= o(1) as L — co.

Furthermore, I, satisfies
(3.4) I(L) < §1asianssen Rodx = O(L?) .

Subtract A(L) from both sides of formula (3.1). Transpose the first integral
to the left side of the inequality and apply the above estimates to the terms which
remain on the right. The result is

I(L) = § (@) §jaycrndx § =W (2, x, y)p(2, y) dz
(3.5) = § 14dY) §iai<s2 4% Siamancr. —Wi(2, X, Y)p(2, ¥) dz — h(L)
= I(L) — h(L) + o(1) = O(L? as L— oo.
For x fixed the procedure g_,_,,d,(x, y) is invariant. Thus, since d, is the best
invariant procedure, /(L) is nonnegative. It is non-decreasing in L because 4, is
best invariant and because of (2.4) of Assumption 3.

We now use the crucial Assumption 4, and then the Cauchy-Schwarzinequality
to obtain

A7 L(L)dL < A7 S dL § g aysann dX

XA 24dy) Siziciziian Wo(25 X, y)p(z, y) d2)*
+ (5 24dy) Sizus e W2 (25 X, ¥)p(2, ) d2)}

S 247§ dL § L jagyaysansn dX k(L — l1xI1[)
X (§ p(dy) § —wy(z, x, y)p(z, y) dz)}

< 247 §apagiansaa 4 (§ p(dy) § —Weu(2, x, y)p(z, ) dz)?
X S ma sl k(1L — [|x]]) dL

= ke(§arasiionsas @x § 11(dy) § —Weu(2, x, y)p(z, ) dz)?

= ky(I(64) — I(A4))}

where
ks = 2478 4 josiiansea X [Smak Pistiaihy k(L — [|x[|]) dLT}?

which is finite by Assumption 4.
(Note that the next to last step of the above argument fails in &#° and higher
dimensions.)

Thus, for any A there is an L with 4 < L < 24 such that

(3.7) 164) — I(4) = (I(L))ks .
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It follows from (3.5), (3.7) and the monotonicity of /(.) that
(3.8) I6L) — K(L[2) = P(L)/k; + o(1)I(L) .

Suppose / is unbounded. By (3.8), for L, sufficiently large and L > L,,
I(6L)/I(L) =z 6°. By induction, for n = 1,2, ... we obtain /(6"L,) = 6°I(L,).
Since /(L) = O(L?), we obtain a contradiction by dividing both sides by (6"L)?
and letting n — oo. Thus, / is bounded.

Boundedness and monotonicity of / imply that the left-hand side of (3.8)
converges to zero. Thus, /(L) = 0 which implies, by Assumption 1, that § = 4,
a.e. (dxp(dy)) and, hence, that R(6, §) = R,. Thus, §, is admissible and the
theorem is proved.

REMARK. Even if the distributions of X given Y do not possess densities with
respect to Lebesgue measure, the above argument can still be applied. Suppose
the distribution of X given Y is

PyA]y) = P(4 —01y)
where 4 — § = {x: x + 0 € A} and P, is a measurable conditional probability
measure (i.e. P(4|-) is measurable). Suppose the obviousanalogs of Assumptions
1—4 are valid. Then the above proof, with the obvious notational changes,
remains valid to show that the best invariant procedure will be almost admissible
(df) but may not be admissible.

REMARK. In a similar manner a theorem can be proved if only an almost
everywhere version of Assumption 4 is valid. To be precise, suppose (2.9) reads:
For any procedure 4, for almost all x (dx) we have

§ 4dy) § <o [W(0u(2, 3), 2, ¥) — W(G_ (1, 0(X, ¥, 2, V)] p(2, y) dz
= k)(§ (dy) § [W(9-a—00(x, y), 2, ) — W(3y(2, ), 2, )]p(z, y) dz)} .

A similar expression replaces (2.10). Then the argument in the proof of Theorem
3.1 yields the conclusion that g, is almost admissible. We note that the assump-
tions of this remark are applicable to certain problems of “‘estimation™ by (pos-
sibly randomized) confidence sets. The conclusion in these cases is that the best
invariant confidence procedure is almost admissible. Joshi (1970) has termed
this “weak admissibility.”

4. Estimation. In the formulation of Section 2 suppose <~ = .4, g,d =
d + z, and the loss function is simply a function of the argument d — ¢ only.
For simplicity we write

W(d — 0) = L(d, 0, x,y) = W(g_,d, x — g, y)

which defines the function W(.) of one argument. Assume sup,,,., W(t) < oo
for all K < co. There is no loss of generality in assuming the variables have
been modified so that a best invariant estimator (assumed to exist) is given by

4.1) Oo(X, ¥) = x.
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In this section we describe how Theorem 3.1 applies to such an estimation
problem. Primarily, we give more easily interpreted conditions which imply
Assumptions 3 and 4. In that sense the results of this section are a straight-
forward analytic exercise; the results of the next section are much more inter-
esting statistically.

In the estimation context of this section the validity of Assumption 3 is also
often not hard to check. We have already given conditions which imply As-
sumption 3 if either W is bounded or if p has compact support. The following
general statement and example may help in other situations.

Condition C. For each y € ./, there exists an increasing function B,: R — R
with B (L) > L such that

42) (W= L, |lnll=B(L)— L  implies W(1) < W(r),
and
(4.3)  loll = 3L)2, Il = B,(L) — 3L/2

implies  § W(z + t)p(x, y)dz < § W(z + t,)p(z, y) dz
for all y e /, and such that

4.4y lim_ L*§ (dy) § s e sup{W(z+10): 1] < 3L/2+B(L)jp(z,y)dz = 0.

Before showing that Condition C implies Assumption 3 we will verify that it
is satisfied in a standard class of examples. Suppose W(r) = ||t]|*, 0 < k < oo,
and Assumption 2 is satisfied. Condition C is also satisfied. If k > 1, choose
B,(L) = 4RV*(y) + 9L where R(y) = § W(dy(x, y))p(x, y)dx. Since B(L) > L
and W(t) is an increasing function of [|¢||, we see that (4.2) is trivial. Also (4.4)
is easy since W(z + (3L/2 + B(L))*) < (22 4 4R, )*W(z) for ||z]| > L/2 and
L > 2. Assumption 2 then implies (4.4). For (4.3) when k > | note that
[z + 6" < 257Y|z|]* + 257'||0||* and, by a Chebyshev type inequality,

Pro{[IX]] <(B/(L) — 3L/2)[2]Y =y} = 1 — R())/(B,(L)/2 — 3L[4)".

Thus, for ||t)|| < 3L/2 and ||1,|| > B,(L) — 3L/2 we obtain

§ W(z + 0)p(z, y) dy < 2°7'Ry(y) + 2°7'(3L/2)"
< H(B(L) = 3L[2))2)
= SHZIK(By(L)-SL/?)/Z Wi(z + 1)p(z, y) dz .

This implies that (4.3) is satisfied. For 0 < k < 1l a slightly different choice of
B, is needed, but the argument is analogous to the above.

LeEMMA 4.1. Condition C implies Assumption 3.
ProoF. Given ¢ define
@5 aoy) =dxy) i (6 )l < By(L)
=0 it Jlo(x, yIl > B,(L) -
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Now (4.2) of Condition C immediately implies that W(d,(x,y) —0) <
W(o(x, y) — 6) for ||0]] < L. Hence R(0,d,) < R(0, §) for ||f]] < L. Also (4.3)
is precisely (2.4). For (2.5) note that ||x|| < L/2 and ||#|| = L implies that
l|z]] = L/2 where z = x — # and also that W(d,(x,y) — 0) = W(z + 7,(x,))
where y,(x, v) = 9,(x, y) — x. From (4.5) it follows that ||y, (x, ¥)|| < 3L/2 +
B,(L). Itis then easy to check that (4.4) implies (2.5). This completes the proof.

It seems a little harder to give a precise set of easily usable conditions which
imply Assumption 4. In Section 2 we gave a condition which implies Assumption
4 when W(t) = ||t||* (squared error loss). We describe below a fairly general
method of checking Assumption 4 which generalizes the considerations in Section
2. This will be followed by some more specific examples.

For m € (0, o0), v € (0, o) let

m*C¥(m, y) < inf{§ (W(x + 1) — W(x))p(x, y) dx: [[t]] = m},
mD (m, y) = sup {§,, <o (W(x) — W(x + 0)p(x, y)dx: w = v, ||t]| = m},
mE,(m, y) Z Sup {§, 5, (W(x) = W(x + )" p(x, y)dx: |t]] = m},
' Dym, y) E[(m, ).
k(v,y):sup{max( v , 2 ).O<m<oo s
C(m, y) ~ C(m, y)
k(v) = (§ KX(v, y)e(dy))* -

Lemma 4.2, If {5 k(v) dv < oo then Assumption 4 is satisfied.

Proor. The hypothesis of the lemma guarantees that k satisfies condition (2.8)
of Assumption 4. The above definition of k implies that k is non-increasing. It
remains to verify (2.9) and (2.10). Consider (2.9). Since d¢.”, we have
0(x,y) = x 4 r(y). By assumption dy(x, y) = x so

K@) (dy) § W (x + 7)) = W)p(x, §) d)?
= k@) [lrDIFCAlr DI y)edy))t
D} ) -t
(4.6) = k(o) (§ 20U D)) ) DO D)
Clril »)
Z Sl y)eddy)
= § p(dy) Sanco (W(x) = Wix £ 7(0)p(x, y) dx .
(In the third line of (4.6) we have used the Cauchy-Schwarz inequality and in
the fourth line the definition of k.) This verifies (2.9) while (2.10) is verified
by a similar sequence of steps. The proof is complete.

The following is a moderately general and reasonably convenient application
of Lemma 4.2 to the case of convex loss functions. If M is a symmetric 2 x 2
matrix, let > M< denote the smallest eigenvalue of M. For a real valued
function M and 222, let M'(t) = ((9/0t,)M(1), (0/dt,) M(t))* and

a2
dt, ot,

M(r)

FE
Mt
) T (1)
M (t) = Py

az
— M(t — M(t
ot,ot, ) ot )
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ExAaMpPLE 4.1. Suppose W is convex, and possesses continuous second partial
.
" derivatives, and

(§ r(dy) § wlx + 0p(x, y) dx)| i = § p(dy) § W (x)p(x, y)dx = 0.

A(m) = inf {>W"(x)< : ||x|| = m}.

Let

Note that 4 > 0. Suppose there is an a > 0 such that for every re..»* and
y e/ we have

(4.7) $irzzo A(lIX[Dp(x, y) dx = @ > 0.
(Note that (4.7) is satisfied if 4(m) = « for all m as is the case when W(x) = ||x||*
Also, if W(x) = [|x]|* (k > 2), then i(m) is an increasing nonnegative function

of m. Hence (4.7) is satisfied if

§irazoiiiais a0 P(X5 V) dX > a3 > 0

for te..#? ye#/, which is the case in a wide variety of examples.) Then
Assumption 4 is satisfied if

(4.8) 55 (5 (Siaiso IW(O|p(x, y) dx)p(dy))t dv < oo .
(If W(x) = ||x||*, k = 2 (4.8) is satisfied if
§ re(dy) § [[x|[* (I x]p(x, y) dx < oo .

Note that if k > 2 this condition is more stringent than (2.12).)
Since W is convex W(x) — W(x + r) £ —y"W'(x). Define

DL ») = 1S e WO p(x, ) dx)
= 77 $jause W(X)p(x, y) dx
= §imico (W(x) — W(x + 7))p(x, y)dx .

By a fairly similar line of reasoning it suffices to choose E, = D,.
A Taylor expansion of W yields W(x 4 ) — W(x) = y"W'(x) + y"W"(%)r
where % is on the line segment joining xand x 4 y. Let X denote the point on this

segment which is closest to 0. Then W(x + ) — W(x) = r"W'(x) + [|r|I*A(%])).
If y°x = 0, then X = x. We have
§ (Wx + 1) — W(x)p(x, y)dx z 77 § W/(x)p(x, y) dx + [[7]* § A(/[X]]) dx

= I711* §eaz0 A(1[X]]) dx
= |[r[]Pe .

Hence we may choose C%y, y) = a. Using the above definitions for C, D, E in
Lemma 4.2 verifies that the condition (4.8) is indeed sufficient to imply that
Assumption 4 is satisfied.

The methods of the preceding example may also be applied in other situations
when W is convex, but we will not pursue the matter. In the following example
we take p to be a normal density and W spherically symmetric, but not neces-
sarily convex. The choice of normality is mainly for convenience, to guarantee
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existence and ease of computability of certain derivatives. Many other smooth
spherically symmetric densities could be used in place of the normal density,
but again we will not pursue the matter further here.

ExampLE 4.2. Suppose the distribution of X is normal with mean ¢ and co-
variance matrix / and suppose W(r) = V{(||7]|) where V' is non-decreasing and not
identically constant. (The variable Y is superfluous and we omit it from the
notation.) Then Assumption 4 is satisfied if § ||x||*W(x 4 1)p(x) dx < oo for all
te.” This is certainly true if V(r) = O(e*") as r — oo, for some k < co.

Let 1 = (a, 0), a = 0, and h(a) = § (W(x + 1) — W(x))p(x) dx. Computation
yields

h(a) = § x,W(x + t)p(x) dx
and

h'(a) = § (x> — DW(x + t)p(x) dx
for all a. Note that 4’ and 4’ are continuous.

By symmetry #’(0) = 0. Also A’(a) > 0 for a > 0. Since (x;” — 1)and W(x,)
are non-decreasing functions of x,> and since § (x> — 1)p(x) dx = 0 it follows
that #"(0) > 0. Hence #"'(a) = ¢, for a < ¢, for some ¢, > 0, ¢, > 0. Note that
there exists an ¢, > 0 such that § x, W(x + f)p(x) dx = ¢, > 0for a > ¢,. Because
of spherical symmetry we may set a’C*(a) = h(a), and we have

4.9 a’C¥a) = ¢,a if 0<ac<e,
( ) 1
= ¢,&’ + ga if a>e¢,.

Another computation yields

&g e () = WO 1)L di
a

d
= :{a SHIH>v1x1<—a’2 (W(X) - W(X + t))/’(x) dx
(4- ]0) = - S\}z:1>v:xl<—~a 2 XIW(X + t)p(x) dx
g - SHIH>1:::I<—a,2 XIW(X)p(x) dX
< min (N,, N,/v*, 8N,/a*)
where ’

N, = § ||x|[FW(x)p(x) dx < oo for k =1,4.
lntegrating (4.10), we may take
aE (a) = min (N,a, N;a/v*)y if @ < max <8]i/\/?, 81)3>

1

(@.11) —3NSNS — 4NJat it @ > %\}/V and N, < N,jv°

1

= 3N,/v* — 4N,/a* if a>2v and N, > NJ/v*.
From the spherical symmetry and non-decreasing property of V' it follows that

§iance (W(x) — W(x 4 1))p(x)dx £ 0.
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Hence we may choose D, = 0. Computing from (4.8) and (4.11) then yields that
k(v) = SUPyceca (E,(a)/C(a)) is bounded and satisfies k(v) = O(1/v°) as v — oo.

5. Multiple decisions. It is clear (see Section 2) how Theorem 3.1 may be
applied to the problem of estimating #. We now consider the application to
multiple decision problems in the presence of a nuisance location parameter.

In place of (2.1) we assume the distribution of X, Y is given by

(5-1) Pr, ; {X, Ye S} = §s §fi(x — 0, y) dxv(dy)

where now the unknown parameter is (¢, j) with 6 asin Section 2, j =1, ---, r,
each § f,(x — 0, y)dx = 1 and each v, is a probability measure. In the invariant
multiple decision problem, we have & = {1, . - ., m} and loss of the form V(}, d, v)
when the true parameter value is (¢, j) and decision d € << is made.
Contrary to the case of estimation, invariant procedures now depend only on Y.
Let £ = (&, -- -, £,) be a prior distribution on the index j. Without loss of
generality assume each &; > 0. Set

5,6V d Wf(x — 0, 7) ‘7’1— )
(5.2) L(d, 0, x,v) = 2

i8S = 0.0 @i ()
dy
where 1 = ¥, &;v; and
dv,
(5-3) P = 0.0) = D56 = 0,0 2 ().
Then, using (5.1), (5.2) and (5.3) yields
Pr){X, Ye S} = §s§ plx — 0, ) dxp(dy)
as in (2.1). Furthermore, § p(x — 6, y)dx = 1 and
(5-4) R(0,0) = 2; & § vi(dy) § V(J, 0(x, y), n)f(x — 0, ) dx
which is the usual Bayes risk for fixed 4.
The procedure ¢, of Assumption 1 is the procedure which is Bayes in the class
of invariant procedures. In the case of hypothesis testing (r = m = 2 and
V(j,d,v) = 0 when j = d) if V' is independent of y, then g, is the best invariant

test of some size.
We now modify Assumptions 1 to 4 to fit the multiple decision problem.

AssumpTION 1”. The procedure which is Bayes in the class of invariant pro-
cedures exists.

AssumpTION 2/, Forallj =1, ..., r, we have

$i(dy) S XV 046, 3), 9f (%, p) d < oo

When ¥ does not depend on y this assumption is equivalent to E || X||* < oo.
As in (5.4) Assumptions 2 and 2’ are equivalent.

When V is independent of y, it is clear that W is bounded. In this case,
E,;||X||* < oo implies Assumption 3 as shown in (2.7).
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AssumpTION 3. If ¢ is any procedure for which R(f, ) < R, for all 0 € =#,
then there exist procedures d,, L — co with the following properties:

(i) R(¥,0,) < R, 9) for [|0]] < L;
(i) for L < Mand ||x|| < 3L/2 we have

(5.5) V(0,05 1 0) § o2 ¥ d2 S Vi, (5 000 9) § f(2 1) d2
forallj=1,...,r;and"
(iii)
(5.6) § v (@) §imi<rndx 0050 V(s 0005, 3), Y)f(x — 6, y)do — 0
as L — .

Now gd = d so that (5.5) implies (2.4). That (5.6) implies (2.5) follows by
straightforward calculation.

AssuMPTION 4’. There is a non-increasing function k: (0, co) — (0, co) satis-
fying (2.8) and such that for any 6e.” and all j = 1, ..., r we have

(5.7 §vildy) Sz [V 05 ), ¥) — V(s 0(x, 9), ]S (%, p) dx

= k(NS p(dy) § [W(0(x, y), X, ¥) — W(dy(x, ), x, »)]p(x, v) dx}?
and

(5:8) S v, § iy [V 8430 9) ) = V(o 306, 10 DI i(x, v) dx
< K(O)(S (dy) § [W(3(x, 1), x, y) — W(ax, v, x, 9)]p(x, v) dx)

By straightforward calculations, (5.7) implies (2.9) and (5.8) implies (2.10).
Admissibility as used in the proof of Theorem 3.1 (namely, R(f, d) < R, for
all 4 implies equality) is not the usual definition for the multiple decision prob-
lem. Let
R9(8,0) = E,;V(j, 0(X, Y), )

and R, = R'(0, 4,), the latter being clearly independent of #. Then, admis-
sibility in the usual sense of g, requires that R(6, §) < R, for all 4, j implies
equality. However, R(#, d) = ¥, &,R'¥(0, 6)and R, = 3, &, R,'"’. Since each
&, > 0, we obtain

COROLLARY 5.1. [In the multiple decision problem of this section suppose Assump-
tions 1'—A4' are satisfied. Then, the procedure d, which is Bayes in the class of invariant
procedures is admissible in the usual sense.

Note that admissibility in the usual sense of an invariant procedure implies it
is Bayes in the class of invariant procedures with respect to some prior £ on
{1, ---, r} (possibly with some &, =0).

We now proceed, as in Section 4, to obtain conditions implying those of
Theorem 3.1. The theorem has been chosen rather than Corollary 5.1 since its
conditions are slightly weaker.

First assume V(j, d, y) is independent of y. This implies that V, and hence W,
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are bounded functions. It has already been noted in Section 2 that in this case
Assumption 2 implies Assumption 3.

We now consider hypothesis testing with V(j, d, y) =1 —6,, (j,d =1, 2).
Let & be the prior probability that j = 1. An extension to more general multiple
decision problems of the lemma which follows (analogous to Lemma 4.2) can be
obtained but is notationally difficult. The pattern is fully illustrated by the case
stated.above.

Forde. .~ let

A={y:dlsy) =1}

= {2 0%, ) = 2}
SURIESs "”1 ()= (=220 |110) = 10))

DY) 2 5P {§ca | =800 G () + (1= &) 1) G2 () [ w = 0]
if ye4
2 50 {§121c0 | 0 ) 2 0) = (1= O ) 92 ()| v wz 0]

if yeB
but, in any case, let D,(y) = 0. Further, let

B0 Z Siain | {3160 92 0) = (1= /0 1) 2 O 140) = L0} |
— max (2 E,,<y>
ko) = max (2 E07)
| k() = [§ K0, ()]
LEMMA 5.1. If §5 k(v) dv < oo, then Assumption 4' is satisfied.

The proof is so similar to that of Lemma 4.2 that we omit it.

The following example is an application of Corollary 5.1. Let Z%, ..., Z™
(£ = (Z,', Z,'")) be independent, normally distributed on ..#* with EZ'* = @
(=1, ..., n)and each with covariance matrix (} {). We wish totest H,: p = 0

versus fH,: p = +p,.
Define the relationship between p and j by:
o 0 o —p
j r 2 3.
SetX=Zand Y = (Y,, Y,, Y,)" where Y, = 31(Z,"—2)), Y, = Y. 1(Z, " —Z,)?,
and Y, = }7(Z," — Z,)(Z,” — Z,). Finally, let £, >0, &, = £ > 0 and the
loss function be
V(j,d,y) =0 if j=1,d=1 or j=2,3,d=2
=1 if j=2,3,d=1

2
:exp[—l‘olpz, +y2)J if j=1,d=2.
- M
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The unique test Bayes in the class of invariant tests rejects H, when |Y;| is large.
Furthermore, any such test is Bayes in this class for some choice of £, > 0 and
52 = 53 > 0.

Clearly Assumption 2’ is satisfied.

With 6, = d, the inner integral in (5.6) decreases exponentially as L — oo.
Hence, Assumption 3’ is satisfied.

Extending the application of Lemma 5.1 in the obvious way to this case we
find we are able to set C¥(y) = a < 1, and D (y) = E,(y) = e *h(y) where A* is
p-integrable. Then, k(v) = 4e~", integrable. This verifies Assumption 4'.

Thus we see that, for any C > 0, the test which rejects /, when |Y,| > C is
admissible in our problem.

The admissibility of this test with this loss function is not as interesting as is
admissibility under the loss function

V(j,d,y)=0 if j=1,d=1 or j=2,3,d=2

=1 otherwise .

Admissibility in this case may be obtained as above by observing that the cal-
culations from (5.2) to (5.4) are valid even if £ depends on y. We will write £(y).
Thén set
2
S(y) = 1/[1 + a exp<_1_f‘,’}?,§ (O + y2)>:l
— "1
for @ > 0 and §,(y) = &(») = [1 — &(»)]/2.

This result for the 0-1 loss function clearly implies admissibility of this test
for any alternative which includes symmetrically placed values of p and, in
particular, the known result. for the alternative o = 0. In these cases we may
even let the loss function be any symmetric function of p for the case of accept-
ing H, when false.

We have been unable to extend these methods to show that, if the variances
are unknown, then the test which rejects when |Y;|/(Y,Y,)! > C is admissible.
However, an extension is possible to show admissibility of the previous test when
the variances are unknown but their product is known.

6. Examples. The examples of thissection fail to satisfy the moment condition
(Assumption 2) and the conclusion of the theorem. Unfortunately, we have been
unable to verify all the remaining assumptions. No proofs of assertions made
will be given.

ExaMPLE 6.1. Estimation. This example is patterned after Perng’s (1970).
Let &7 = ..»* with L(d, 0, x, y) = ||d — 0]*. Let .~/ = .+ and %, be the
usual Borel ¢-field. Finally, for y > 0, let
p(dy) = Ky=e=vdy if y>1
=0 if y é 1.
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Set p(x, y) = y~*h(x/y) where
h(z) = 1= if 7] < 1
=0 if 7] =1.

The unique a.e. (y) best invariant procedure is d,(x, v) = x. Furthermore,
§ 1(dy) § IX[]"W(dy(x, ¥), X, y)p(x, ¥) dx < oo if, and only if, a < 2 — 7.

It is easy to verify (2.9) of Assumption 4. However, (2.10) does not hold. If
6(x, ¥) = x 4+ y(y) with |[y(»)|]*>, then the integral on the right side of (2.14) is
finite provided a < 4 — 7 while the left side behavesas v=“~7~*, not integrable
when @ = 3 — 7. We have been unable to verify Assumption 3.

A better estimate is d(x, y) = x + yA(x/y) with

Aty = —ea(l — &) if ] < /e
=0 if ltf] = /e
where «, ¢ > 0 are small, « small relative to e.

EXAMPLE 6.2. Tvesting. This example is patterned after that in Fox and Perng
(1969).

Let & = {1, 2}, V(j,d,y) =1—9,, .~/ =.+*and .4, be the usual Borel
o-field on . »”*. Consider Y in the form (Y}, Y,) with Y, taking values in ..+’and
Y, taking values in . »*. Let Y, and Y, be independent. Let (y,, y,) be the cor-

responding decomposition of ye.*. Let Y, have density with respect to
Lebesgue measure g, when j = 1 and g, when j = 2 given by

g(u) = g(—u) = Cyu® if u>1
= C,lu|™? if u < —1
=0 if Ju <1
where C,/C, < §,/§, < C,/C,. For j =1, 2let Y, be distributed uniformly in the
first quadrant on the perimeter of the unit circle. Then,
Oy(x,y) = 1 if yy<0
=2 if N > 0
is the a.e. (y2) unique best invariant procedure.
Let Z be distributed uniformly in the first quadrant in the interior of the circle
of radius . When j =1 let
X=YW™Y,+Z+60 if Y,>0
=—Z+0 if ¥,<0
and when j = 2 let
X=—-Z+90 if Y,>0
=Z+0 if ¥Y,<50.
Clearly, Assumption 2 fails to hold. In fact, E,||X||* < co forall @ > 0 while
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E, || X||* < oo if,and only if, « < 2/(1 + ¢). Unfortunately we shall have to take
0 < ¢ < 1 with ¢ sufficiently large in order to obtain inadmissibility.

We have been unable to verify Assumption 3. However, both parts of As-
sumption 4 are readily verified either directly or using Lemma 5.1. See the
Remark below.

For 7 > 0, sufficiently small, ¢ < 1, sufficiently close to 1, C, < C,, sufficiently
close to one another, and a > 2, sufficiently close to 2, a better procedure is

i(x,y) =1 ity > Ly S X[ = ap X x, x, > a — |1
=2 if y<=L|x s x,x,>a—1
= 0y(x, ¥) otherwise .

ReMaRK. The verification that this example satisfies Assumption 4 could have
used Lemma 5.1.

7. A further application. In this section we give a generalized version of the
application given in Section 5. A special case of this generalization would be
estimation of a parameter 7 in the presence of a nuisance location parameter 6.

We generalize (5.1) to ’

P,,J/{X, YeS} = SSSf,/(x —0,) dxv,/(dy)

where ¢ H. Let ../ be a g-field of subsets of H and ¢ be a probability measure
(prior distribution of ») on ... Assume

(i) f,(x,y) is jointly measurable in x, y and 7;
(ii) f,(x,y) is a probability density function on ..»** for each fixed 7 and y;
(iii) v,(B) is measurable in 7 for each fixed B;
(iv) there exists a probability measure ;2 such that v,  p for all p € H; and
(v) §(dv,[dp)(y)é(dn) = 1.
We wish to make a decision d € &/ subject to loss V(z, d, 0, x, y). Proceeding
as before, set
dv

= (¥)

§ &dn)V(n, d, 0, x, y)f (x — 6, ) i

L(d, 0, X, y) = o
§ &(dy)f (x — 0, ,V)d—” ()
/,t

For (2.2) to be valid we require a similar statement for V, that is,

V(ps dy 0, %, 9) = V30, 9yds X — 0, ) .

Also set
plx — 0,3) = § &y, (x — 0) 22 ().
2
Then,
PX, Y e S} = {4 § plx — 0, y) dxp(dy)
and

§p(x —0,y)dx =1.
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Furthermore, assuming Fubini’s theorem applies (which only requires that ¢
have finite risk),

R(0,0) = § &(dy) § V(d, 0, 7, x, »)f (x — 0, y)v(dy)
the usual Bayes risk for fixed 6.
Assumptions 1-4 in this case are implied by the following.
AssuMPTION 1”7, The Bayes invariant procedure exists.
AssumPTION 2”. For all y ¢ H we have
§ v, (@) S IX[[PV (7, d, 0, x, y)f (x, y)dx = M < 0.

AssumpTioN 3", If d isany procedure for which R(4, §) < R, for all § .5,
then there exist procedures d,, L — oo with the following properties
(i) R(0,6,) < R(0,9) for ||0]] < L;
(i) for ye H, L < M, ||x|]| < 3L/2 we have

s V(“/], g—(z—z)al.(x’ }’)’ X =121 y)fv(z’ _,V) dz
é S V(7]’ g—(z—z)aﬁl(x’ Z)’ X — 1,1z, _V)f,/(Z, ,V) dz ;
and

(i) § v (dv) §inicrndx § iz Vg, 9-40.(x, ), 0, x — 0, N (x —8,y)d6 —0
uniformly in y € H as L — oo.

AssUMPTION 4. There exists a non-increasing function & : (0, co) — (0, o)
satisfying (2.11) such that for all € H and d € .»" we have

§ v (V) § 010 [V 00(X, ¥), 0, x, ¥) = V(3 6(x, ), 0, x, y)]f,(x, ¥) dx
= k(S p(dy) § [W(9(x, ¥), X, ¥) = W(O(x, ¥), x, )] p(x, ) dx}?

and

§ v,/(dy) §oais0 [V (0, 04(x, ), 0, x, ¥) — V(n, d(x, y), 0, x, ,V)]J'f,/()(, y)dx
= k(S 1(dy) § [W(0(x, p), %, ¥) — W(0y(x, ), X, )] p(x, y) dx} .
We then obtain ’

COROLLARY 7.1. [In the problem of this section suppose Assumptions 1"'—4'" are
satisfied. Then the procedure 6, which is Bayes in the class of invariant procedures is
almost (§) admissible.
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