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THE INTERSECTION OF RANDOM SPHERES AND THE
NONCENTRAL RADIAL ERROR DISTRIBUTION
FOR SPHERICAL MODELS!

By ANDRE G. LAURENT
Wayne State University

The paper gives an expression suitable for numerical computation and
recursive relationships for the expected volume of the intersection of an n
dimensional sure sphere and an n dimensional random sphere with a dif-
ferent radius, whose center follows a spherical distribution, the center of
which does not coincide with that of the sure sphere. Several expressions
are given for the distribution of the squared noncentral radial error when
the vector observation follows a spherical distribution—a generalization
of the noncentral chi-square distribution. Applications to specific spherical
models are presented.

1. Introduction and summary. Smith and Stone (1961) obtained the “expected
coverage” of a fixed circle by a random circle of different radius, whose center
followed a circular normal distribution. This result was generalized in 1962
to the case of two n-dimensional random spheres by Laurent [4], who also gave
several expressions suitable for computation and recursive relationships for the
noncentral chi-square cumulative distribution. The present paper generalizes
the preceding results (that were presented in an earlier version of this paper
and included in [5]) to the case when the center of the random sphere follows
an n-dimensional spherical distribution. It gives an expression, suitable for
numerical computations, for the expected value of the intersection of the fixed
and the random sphere, together with some recursive relationships. It gives
also several expressions (and corresponding recursive relationships) for the cumu-
lative distribution of the noncentral squared radial error when the vector ob-
servation is spherically distributed—a generalization of the noncentral chi-square
distribution. Expressions for the pdf of the noncentral radial error have been
given, by different methods and under stricter conditions, by Thomas [8].

The motivation for this research stemmed from the consideration of problems
pertaining to bombing, firing, and search theories. In those as in other fields
of application the interest in studying the class of spherical models rather than
the spherical normal distribution rests on the plausibility that, in many instances,
normality is postulated when, actually, only the hypothesis of sphericity, that
is, essentially, of rotational invariance, is intended—this due, likely, to some

Received October 1972; revised April 1973.

1 Partially supported by Goodyear Aircraft Corporation, Dayton, Ohio, and by a summer
grant from Wayne State University.

AMS 1970 subject classifications. Primary 62H10, 60D05; Secondary 44A30.

Key words and phrases. Random sets, spherical distributions, noncentral radial error, multi-
variate transforms.

182

8

[
y
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%%

The Annals of Statistics. RINOIN
www.jstor.org



RANDOM SPHERES AND NONCENTRAL RADIAL ERROR 183

implicit assumption made about the independence of the components of the vector
observation. In bombing theory and, more generally, in the theory of errors
of observations, as has been often suggested by Maurice Fréchet [3], it is plau-
sible that a Laplace I type (double exponential) model is more adequate than
the classical Gaussian model (Lord in [6] has given a spherical multivariate
generalization of the double exponential model; Laurent in several contributed
papers has considered ellipsoidal generalizations of the same model).

2. General formulation and notations. Let S, be a fixed n-dimensional sphere
with radius r centered at the origin. Let the center C, with coordinates &, of
an n-dimensional sphere S, with radius R, follow a spherical distribution about
a point A4 with coordinates ¢, that is, a distribution that is invariant under the
group of orthogonal transformations applied to x = § — {, and whose proba-
bility density function (pdf) will be denoted f,(§; {, 7) = g,(x'x/7*). There will
be no loss of generality in assuming r = 1. One wants to obtain the expected
value p, = E[V(S, n S)] of the volume V[S, n S] of the intersection of S,and S.

Let m be the coordinates of a point M. The indicator of the set S, n Sis the
product of the indicators /s (m; r), Is(m; &, R) of the sets S, and S, the volume
of the intersection is

@) VS, nS)=1§ ISOIS dm = Sso Iy dm
and its expected value, if it exists, is

@) o = §[§ Is, Is dm] f,(S5 C, 1) d€

These formulas admit another interpretation: if' M is uniformly distributed in
Sy, then the joint pdf of & and m is

(©) w(€, m) = fu(&; C Dis/V(S) 5

V(S, n S)/V(S,) is the conditional probability, given &, that S covers M; p, is
the marginal probability that S covers M. Also the integral between brackets
in (2) is the conditional expected value of V(S, n S) given & and the event
{M e S, n S}; hence, one can change in (2) the order of integration and write

(4) = § [§ fulfs § 1) ]l dm,

where the integral between brackets is the probability P((6 — m)'(§ — m) < R?)
that S covers M when M is fixed or, in another terminology, that the noncentral
radial error p = |x| does not exceed R. When ¢ is normally distributed, it is
well known that p* follows the noncentral chi-square distribution with n degrees
of freedom and noncentrality parameter ¢* = ({ — m)’({ — m). In all cases,
this probability depends on M through ¢* and, therefore, is invariant under the
group of orthogonal transformations about A4; it is also the probability that S
covers a point that is uniformly distributed on a sphere of center 4 and radius
0. Smith and Stone have used (2), when § is normally distributed, to obtain
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55 we will derive y, from (4) in the general case, as this will offer an oppor-
tunity to discuss the problem of the noncentral squared radial error distribution.
The latter will be denoted by Q,(R? ¢*) and its pdf by g,(0* 0%); hence,

3) Uy = § Qu(RY; %)y dm .

3. The squared noncentral radial error distribution. We will first obtain dif-
ferent expressions for the conditional distribution of the squared noncentral
radial error given x’x, then use these results to obtain the marginal distribution,
and discuss specific examples.

(a) As x is spherical the statistic x’x is sufficient for the distribution of x; the
conditional distribution of x, given x’x = |x|?, is uniform on the sphere of radius
|x| (and center C); and the conditional and marginal distribution of x/|x| is uni-
form on the unit sphere of center C. The conditional probability P(4; |x|?),
given x’x = |x|’, of an event 4, provides an unbiased estimator P(4; x'x) of the
probability of 4, and if x’x is complete, this estimator is the minimum variance
unbiased estimator of P(A).

As W:Z@—W, Mé2=pz, AC? = lez’ m2=52, p2= |x|’+53—
2|x|d cos @. The conditional distribution Q,(R? ¢*; |x|*) of the noncentral squared
radial error, given x'x = |x|?, which is also the MVUE of Q, (R% %) if x'x is
complete, is the area of the polar cap determined on the unit sphere by the
angle ® = (AM, AC), namely,

(6) 0.(R% &% |x[7) = §2 sin*~* do /B ("5 L %) ,

with
®=0, if R*< (]x| — o)
= arc cos (x* + 0* — R?*)/2x4, if (|x] —0)’ < R* < (|x] + 9)
=TT, if R2>(|XI+6)2’
as can be shown by using polar coordinates and integrating out all angles
except ¢.
It is known (see e.g. Erdélyi [2]) that (6) can also be written as
(1) QR &% x[') = T(n/2)(27) 427 75¥(sin §) =P L2504 (cos )
where P denotes a Legendre function, and, according to Watson ([9] page 411) as
(&) Qu(R% % |x[)
= D(n/2)2R[|x|0)* 7R §5 u= "2 g o(|X|u)] o RU)., 01(0W) A
where J,(f) denotes a Bessel function of first kind of order v. Further, dif-
ferentiating with respect t0 R?, one obtains the conditional pdf of p? given
x'x = |x|*, as
) gal0’ % )
= (DT (/2)2p/|x|0)"7> §5 um "0 o(|x[U) o r(08) o a-r(00) At 5
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an alternative from being (Watson [9] page 411)

(10)  ga(0% 0% |x[")

_ X8 pt — (6 — I + || — ot

- B (” —1 l) ’

2 2

a formula which can be directly established by writing that the projection
X, = —08 4 (x? — p* — §%)/25 of x on AM follows a Thompson distribution (that
is, that x,*/|x|* follows an incomplete beta distribution with parameters 4 and
(n — 1)/2). Equations (8) and (9) can be expressed as Hankel transforms and
can be obtained also by the direct use of discontinuous factors.

(b) To obtain the marginal distribution Q,(R?; %) of R? it suffices to take the
expected value of the estimator Q,(R? 6% |x’x|) with respect to the distribution
of x’x or, equivalently, of x, thus defining an integral transform &(f; R?, ¢%)
and a symbolic calculus relating spherical distributions and the distributions of
their squared noncentral radial errors. As transforms, the latter may be con-

sidered functions of R® with parameter ¢* or functions of ¢* with parameter
R?, Therefore,

(11) Q.(R% 0%) = {7 Q. (R 0% |x[)h,(|x])d|x|"
where

ha(1x[) dx* = 2z2|x¥| =27, (1x[7)
and Q,(R% 0% |x]’) is given by (8).
Assuming that the conditions under which the change of the order of integra-
tion are met (11) reads

(12) Q.(R% 0%

= (R[9)="R § [2r)*|x|"*u=""] o o(x[u)g(|x[")d]x]]

X Jujar(08)]n(Ru) du

= (R[0)* " R § () nja-1(0U)J,n(Ru) du
where ¢(|t|) denotes the characteristic function E[exp(it'x)] of the pdf of x, as
a function of |f] = (¢'r):. It is well known that the characteristic function ¢ of
a spherical distribution, as a function of its argument, does not depend on n,
that is, is invariant under projection (and, therefore, the same for a projective

family f,(x), n < n, for some n, not necessarily finite). In terms of Hankel
transforms one has

(13) R="2Q,(R% 8) = 6"~""H,,,_,[u"t¢(u)J,, (Ru); 9]
and
(14) . R-"0RQ (R 6%) = 0'*H, _j[ut¢(u)],_,(0u); R] .

Q, may be found with the help of tables of the Hankel transform or is amenable
to numerical integration.
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Equation (13) can also be written
(151) R™"*Q(R% 0%) = F, [(2nu)™" $(u)J,o(Ru); 9] ,
where
Fo{ha(w); v} = Qr)* 20t (8wt y(u0)h,(u) du = T, 1,
is the Fourier transform of a spherical function f = k,(x), with u = (#'u)t.

It is essential to note that, up to a factor in x, the operator | is its own in-
verse, i.e., F,F, =7and, as F,f, = ® and F,® = f,, where f, is the projec-
tion of f, on the k dimensional space, the ¥, I, is a projection operator from
the n dimensional space to the k dimensional space.

Equation (15 i) shows R=*?Q, (R ¢%) as (up to factor in x)

(15 ii) R™2Q, (R, &) = Fu= ((RW)F.f. »

that is, Q,(R% 6% is obtained from f, by the application of the operator
R’F, u="J, (RW)F,.
Similarly, one has the dual formula

(15 i) F, [QrR)Q(R% 8%); 5] = s~*g(s)],,(R3) ,
that is,
(15iv) F, Q. = (R[s)"" ], (R)F, f,, = (R[s)**] s/ RS)F, f,

(Q, is spherical as a function of d; therefore, its projection on the k dimensional
space is I, (R/s)**], ,(Rs)¢ and different from Q,, which is [ (R/s)¥2], ,(Rs)¢).

Q. = Fa(R[)" 0 o))/ F 1, Oy

may be considered a recursive formula for Q,.
Similarly, (14) can be written

(16 1) R7Q,(R% 0") = F ., J[(27ud) ="+ ¢(u)],/_,(0u); R]
with dual
(16 ii) Fopa gl (27) " PHRTQ,(RY 6%); 5] = G(8)pja-1(05)(50)~"**1 .

Formula (16 ii) shows that the proper operator, applied to Q,, factors it into
one factor accounting for noncentrality and one factor accounting for the nature
of the original spherical distribution.

If x follows a multivariate spherical Laplace distribution, then ¢(u) =
(1 + #*)~* and

(17) Q.(R% 0% = (R[0)"*],,(R)K,,,_1(0) , R<o,
= (R/o)"v7%1,,(0)K,,,_,(R) , R>09,

where I, and K, denote the modified Bessel functions of first and third kind of
order v. °

4. The squared noncentral radial error pdf. By taking the derivatives with
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respect to R® of the expressions given above for Q,(R* ¢%) one obtains the pdf
q.(0% 0%), namely
(18) qa(0% 0%) = 27X(0[0)"*7* §3 w31 (0U)  a_s(0U) B(4) dut .

This formula has also been obtained by Thomas by different methods and under
more stringent conditions. In terms of Hankel and F transforms one has

(19) qa(0% 0°) = 27X(p[0)* 0} H , 5 s[UPp(u)],./s_1(04); O]

(20) = 27Y(p[0) "V o~ H,, )y [utp(u)],,5_1(0u); p]
(21) 201", (0% 0%) = F, [(2z)~ " p(u)u'=""], 5_(ou); 9] ,
(221) 20*7"q,(0% 0°) = F, [(27)~"p(u)(ud)'=""],s_1(u); 0] ,
the latter with dual

(22i) F, [(27)""20*"q,(0%, 6%); 5] = B(s)(50)' "] /5-1(50)

showing again the factorization into a factor of noncentrality and a factor re-
sulting from the application of the F transform. In case x is spherical Laplace
distributed, then

29,(0% %) = (p/0)"7,5_1(0)K . /s-1(0) , 0<p<a,
= (0/0)**7,;5_1(0)K ,/5-1(P) » p=0,

a result already given by Thomas [8].

5. Recursive relationships. Taking the derivative of (12) with respect to R*
yields (19). If x is normally distributed, integrating (19) by parts yields

(23) 2p, (0% 0%) = (p[0)**=* \& exp(—u*[2)d[J, o1/ 0U)J, /s_,(0u)] du
= Q, (0% %) — Q,(0% ),

which establishes a recursive relationship between the Q,; this relationship,
however, involves ¢,. If x is not normally distributed, integration by part does
not lead to simplifications.

In (12), ¢(u) does not depend on the dimension » and it is possible to estab-
lish recursive relationships between integrals of type § ¢(u)u=*J (6u)J,(Ru) du,
namely, one may express the Bessel’s functions J, ,(Ru), J,,_,(6u), as well as their
product, as functions of Lommel polynomials in #~! and Bessel functions of
order O and 1 if n is even, and of order 4 and —4 if n is odd. Hence, Q,(R? §?)
can be expressed as a sum of integrals of type § ¢(u)u~™sin (du) sin (Ru) du,
§ p(u)u—™ trig (ou) trig (Ru) du, (where trig z stands for sin z and/or cos z) if n is
odd, and § ¢(u)u="J,(0u)J (Ru) du, i, j = 0 or 1, if n is even.

Other recursive relationships involving differentiation can be based on the
relationship

J(woyu=? = (—2[vy d™[J,_,(wv)/u>=m]/d(u)™ .
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If nis even (n = 2m + 2) these lead to
o7 Q0% 8%) = (—2d[d5*)*71 (7 s B(5)., 0(05)o(95) ds
p7"Q,(0% 0%) = 277N(d[dd%)* 7N (d]dp*)** {7 517" p(5)o(05)Io(05) ds -
If nis odd (n = 2m + 1) they lead to
P, (0% 07) = (2[m)H(—2d[dd*) "1 (5 5T B(5)],, o 05) COS (59) ds
p7"Qu(0% 0%) = —(2/m)2"(d[dd?) "~V (d]dp®) I (57D () cos (ps) ©OS (50) dis .

6. The expected value of the intersection. In view of (4) and (12) the ex-
pected value of the intersection, if it exists, is

(24) tn = 5 (R[O)" PR (s $(U)],,/-1(0U)],o(Ru) du dm .
Using polar coodinates /, 8, ¢;, -+, ¢,_, (0 < 0 < 27,0 < ¢, < 7) for m and
integrating out 4, ¢,, - - -, ¢,_, yields
f, = 2702 (0 (2 Q (R 0%) "' sin*~? ¢, dl dp ,
where §* = I* + [{|* — 2/|{| cos ¢,. Interchanging the order of integration with
respect to ¢, and s, which is permissible, and using the formula
§2 J,[(R* + r* — 2Rrcos ¢)}](R* + r* — 2Rr cos ¢)~#2sin* ¢ do
= 2'T(2 + HIE)(R)(r)R-*r—*
gives
ttn = RrRIE)™(C] §5 §5 S n/a(RS) (nrmy -1(|C19) a2y (L) s* ="/ dsi™? dll
and
(25) ta = 2aR[|CN™IL] §7 () /s RS (njr-1(|C[9) T a(rs)s ™2 ds

which shows g, as the result of a linear transform on ¢ or on f(§), and is ame-
nable to numerical computations, or may be expanded through the use of Bessel
functions recursive formulas. It can be shown directly or by a passage to the
limit that the volume V[S, n S] of the intersection of the two spheres is given by

(26)  V[Sy 0 §] = Q2aRr[IE)"1E] §5 Ju/a(RS) a1 1(€]5)n/a(rs)s ™" ds .

An alternative approach consists in taking directly the expected value of this
volume; it leads readily to (25).
In (26) taking the derivative of V" with respect to |§]| yields
dv/d|§|
27) = —Q2aRr[|€) S H ] o(RS)To(rs)s= 7% [€]]

= (Zﬂa/lsl)nﬂ[l&zl — (R — N} V2R 4 r)* — [§]) 0 r <n -; 1> ,
which is the area of the polar cap cut out of S by S,. Recursive relationships

may be obtained for V(S, n S) by integrating dV/d|¢| as expressed by (27) and,
consequently, for the expected value of that volume.
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