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ASYMPTOTIC SUFFICIENCY OF THE VECTOR OF RANKS
IN THE BAHADUR SENSE!

BY JArROsLAV HAJEK
Florida State University

We shall consider the hypothesis of randomness under which two sam-
ples X, « -+, Xy and Y1, .- -, Y have an identical but arbitrary continuous
distribution. The vector of ranks (Ry, - - -, Raym) Will be shown to be as-
ymptotically sufficient in the Bahadur sense for testing randomness against
a general class of two-sample alternatives, simple ones as well as composite
ones. In other words, the best exact slope will be attainable by rank sta-
tistics, uniformly throughout the alternative.

1. Introduction. We shall consider the hypothesis of randomness under which
twosamples X}, - - -, X,and Y}, - - -, Y, havean identical but arbitrary continuous
distribution. The vector of ranks (R, - - -, R, ,,) Will be shown to be asymp-
totically sufficient in the Bahadur sense for testing randomness against a general
class of two-sample alternatives, simple ones as well as composite ones. In other
words, the best exact slope will be attainable by rank statistics, uniformly
throughout the alternative.

Our basic tool will be a law of large numbers for simple linear statistics and
a large deviation theorem for those statistics due to G. Woodworth (1970).
Established properties of simple linear statistics will have important consequences
for the rank likelihood ratio statistic, without which the composite alternative
could not be treated.

We shall also provide a specialized version of the Berk-Savage theorem [3].

The reader not acquainted with Bahadur’s theory may consult papers [1] and

[2]-
2. The two-sample case. Fix two densities f and g defined on R, and a number
2,0< A< 1. Put F(x) = §2, f(y) dy, G(x) = {*.. 9(y) dy and
H(x) = AF(x) + (1 = D)G(x) —oo0 < x< oo.

Introduce new densities
ry d -1 ) d -1
Sfwy = — F(H\(u)) , g(u) = — G(H'(u)), O<u<l.
du du
Obviously, if f and g correspond to X and Y, then fand g correspond to H(X)
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and H(Y), respectively. Since AF(H (u)) + (1 — A)(G(H™'(u)) = u, we have

(1) Af(w) + (1 — Dgw) =1, oO<u<l.
Now given a vector of ranks (R,, ---, Ry) and a double sequence of scores

ay(i), 1 £i < N < oo, let us consider simple linear rank statistic

(2) Sy = Xix aN(Ri) .

We shall assume that for some integrable function ¢(x), 0 < u < 1, the follow-

ing holds:

(3) limy._.. §3 lay(1 4 [uN])) — $(u)| du = 0,

where [uN] denotes the integral part of uN.

Statistics S, satisfy the following law of large numbers:

THEOREM 1. Assume that the functions ay(1 + [uN1]) have uniformly bounded var-
iation on closed subintervals of (0, 1). Let X,, X,, ---, Y,, Y,, - - . be independent
random variables, the first sequence having density f and the other density g. Let
R,, ---, Ry be the ranks corresponding to (X, ---,X,, Yy, ---, Y, ), where n 4
m = N and

4) <=7 0<1<1.
Then, under (3),

1 -

- Sx = 251 6(fw) du

holds with probability 1, with f(u) defined above.
Proor. For every 6 > 0 we can find K > 0 such that truncated scores
a,(i) = ay(i), if Jay()| =K,
=0, otherwise
satisfy
1 -
(5) N D lay(R) — dy(R)| < 0
for all N > N,and (R, ---, Ry). Similarly
$(u) = ¢(u), if |p)| =K,

=0, otherwise
will satisfy

§il¢(u) — g(u)| du < 6.
Relation (1) entails 2f(x) < 1, so that we also have
(6) \ |2 83 p(u)f(w) du — 2§ G(u)f(u) du| < 5.

From (5) and (6) it follows that it is sufficient to prove the theorem for the case
when ¢ and a,(-) have bounded variations over all (0, 1).
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Denoting by F, the empirical distribution function corresponding to (X, - - -,

X,) and by H,, the empirical distribution corresponding to (X, --«, X,, Y3, - -+,
Y,), we can write
1
~ Sw = 7 Bax(l + [uN]) dF (Hy ™)
™ = Sian(l + [uN]) dF, ()
I

LG ofdu+ LSy — 9)f du + L Shayd(F — F).
where _ _
F(u) = F(H™Y(u)),  F,(u) = Fy(Hy™'(¥)) -
Now (3) and (4) entail
(8) %S},(a,,,—¢)fdu -0 as N— oo .

Moreover, by the Glivenko-Cantelli theorem
Hy(x) — H(x) , F.(y)— F(y), Fy(u)y — F(u), as N— oo,

the convergence being uniform. Thus, if the variations of ay(+) are bounded
by V, we have

©) ~ Sayd(Fy — F)| = T |§ (F, — P)day ()

= MaX,c, < |Fn(u) - F(u)l V—0.

Substituting relations (8) and (9) into (7), we can see that the theorem is proved.

Our next aim is to establish the Bahadur exact slope for S,-tests used for
discriminating the hypothesis of randomness from the alternative considered in
Theorem 1. The necessary (extra) large deviation result is contained in the paper
by G. Woodworth (1970). For any p satisfying

Afsddu < p <sup,{§,pdu:§,du=2}
we have, under the hypothesis of randomness (the distribution of (R, - - -, Ry)
is uniform over the space of all permutations), that

lim,.... % log P (% Sy > p) = —b(4, 0)

where
(10) b(2, o) = pH + (1 — 2) log R — §ilog (™™ + R)du

— AlogA — (1 — 2)log (1 — 2)
with (H, R) being the unique solution of the following two equations:
(11) §3[1 + Rexp(—Hp(u)] " du = 1,
12 5 ()1 + R exp(—H(w)] ™ du=p.
It is obvious that —b(4, p) is continuous in p.
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REMARK 1. G. Woodworth, in applying his Theorem 1 to the two-sample
case, assumes that a,(-) — ¢ in L,. But it is possible to show that convergence
in L, is also sufficient for establishing Property A of his article.

The above rather complicated result simplifies tremendously, if applied to ¢
and p of our specific interest. We shall put

— log J®
(13) $(u) = l°g‘g@ ;
and B
(14) p = 2§} f(u) log—-g% du = 2K(f, 9),

K(-, -)denoting the Kullback-Leibler information number. Note that (1/N)S,—
p under the alternative (f, g), and also ( f, g), according to Theorem 1, if ¢ is
given by (13). Introduce

(15) J(fs9,8) = 2§ flog fdu + (1 — 2) §iglog g du .
THEOREM 2. Let (3) be satisfied for ¢ given by (13). Then, under the hypothesis
of randomness,

(16) 1iqu°,,%1og P(% Sy > K(f, g)) — —Jf, 9,3,

where J(f, g, A) is given by (15), and K(f, g) by (14).
Proor. For ¢ and p given by (13) and (14), the equations (11) and (12) become
(17) B[+ R@/)"du = 2,

(18) S3log L [1 -+ R@/)"1 du = AK(F, ),
which is solved by H = 1and R = (1 — 2)/4, as may be easily seen. Substituting
for p, ¢, H and R into (1), we obtain
b(4, p) = AK(f, 9) + (1 — A)log [(1 — 2)/4]
— Silog [ f/g + (1 — 2)/2)du — 2log 2 — (1 — 2)log (1 — 2)
= 2K(f, g) + Silog g du = J(f, g, 2) .

This completes the proof of Theorem 2.
Putting

Ly(t) = P (% S, > t>

we are now able to compute the exact slope of the Sy-test for the (f, g, 2) al-
ternative. See Bahadur (1967) for details.

CoRrROLLARY 1. Under conditions of Theorem 2,
’ . 1 1
(19) lim, ., - log L, <W SN> — —J(fr 9,7

with probability 1 under the (f, g, 2)-alternative described in Theorem 1.
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Proor. We know that (1/N)log L,(f) — —b(4, t) which is continuous in
t. Further (1/N)Sy — K(f, ) with probability 1 under the alternative and
b(2, 2K(f, §)) = J(f> 9, 2). This completes the proof of Corollary 1.

The most striking feature of Corollary 1 is that the exact slope for S, is the
best possible slope at all.

COROLLARY 2. Under conditions of Theorem 2, ¢ = 2J(f, g, A) is the best exact
slope for testing the hypothesis of randomness against the alternative
G(x1s + v s Xy Yo -+ 5 Ym) = [T f(x) 1170 9(25) -

Proor. The hypothesis of randomness H, is composite and is satisfied when-
ever X, X,, ---, X,, Y, - - -, Y, are independent and have a common distribution,
which may be arbitrary but continuous. The best exact slope cannot be larger
for H, against ¢ than for p against ¢, where p is a particular member of H,.
Since the best exact slope for testing

JZ ST Y v ’)’m) = H?:l.ﬁ)(xi) H?=1f0(yj)
against ¢ is known to satisfy
(20) c§2[2§°_°°,,flog£dx+(l —Z)S"_"wglog-}idx],
9o 0

(Raghavachari (1970) Theorem 1) the least favorable p will correspond to f, that
minimizes the right side of (20). It is easy to see that the minimum occurs for

fi=4+ (1=

and that for this choice of f, the right side of (20) equals 2J(f, g, ). Thus
2J(f, g, A) actually is the best possible exact slope.

REMARK 2. The Raghavachari result [5] corresponds to a “one-sample” situa-
tion. However, it extends easily to a two-sample situation as well.

3. The rank-likelihood ratio statistic. We intend to prove that the rank-

likelihood statistic also provides the best possible exact slope. If (R, - -, Ry)
is the vector of ranks and r = (r,, - - -, ry) is a particular permutation, we have
under H,

P(R=r)=1/N!.

If the density ¢ is true, let us denote the probability of the same event as
Q(R = r) and put

@21) T\(r) = log [N! Q(R = r)].

Let U," be the ith order statistic from a uniform sample over (0, 1) of size
N. Consider again densities f, g and their “normed” counterparts fand §. Put

22) ay(i) = E{log [ f(Uy)/g(Ux")]} -
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THEOREM 3. If the scores are given by (22) and T, is defined by (21), then for
every R = (R,, - -+, Ry)
(23) Ziaay(R) + N §ilog g(u) du < T(R) .
Proor. Introducing
Ay = X1, log f(X) + X5 log §(Y))
T, = log E\(e*¥ | R)
where E(+ |R) refers to the conditioning given R via the uniform density
p(xl, ...,xn,yl’ ""ym) = 1, ngl, -'-,ymé 1. Now
log E(e*¥R) = E,(Ay|R)
= Xl Eflog fAX)| R} + X7 Eflog §(Y)) | R}
= Nr,ay(R) + Nilogg(u)du.
This completes the proof of Theorem 3.
Theorem 3 entails

we have

THEOREM 4. The exact slope corresponding to the rank-likelihood ratio statistic
Ty of (21) equals 2J(f, g, ), if testing the hypothesis of randomness against the
alternative described in Theorem 1, and if log f(u)/G(u) is integrable and of bounded
variation on every closed subinterval of (0, 1).

Proor. Let L, be the level attained by T,. Since T, is a likelihood ratio
statistic, we have
(24) - ‘

log L, ~

v

T, .

2|~

Now by Theorem 3,

1 1
25 Ty = —
(25) S TwZ
where S, is given by (2) with scores of (22). From Theorem 1 we conclude that

(26) % Sy — 4 S(l, ¢(u)f(ll) du = 2 S},f-(u) log % du

Sy + Viloggdu,

since (3) is satisfied for ¢(u) = log [ f(#)/g(u)] in view of (22). (In order to prove
it we may use the martingale argument of Lemma 6.1 in [4].) Putting (24)
through (26) together, we obtain

L L, o7 ) Tog L)
1 f ——logLy |= 445 log L= d
im in N_m[ ~ og N] = 4§ f(w) log 3 u
+ §ilog g(u) du = J(f, g, 3) .
Again the Raghavachari theorem (Theorem 1 in [5]) implies that
lim supy_... [—% log LN] <Jf, 9, 2.

This cdrnpletes the proof of Theorem 4.
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Thus it was easier to establish the exact slope for the rank-likelihood statistic
than for the linear rank statistic S: the only tools used were the strong law of
large numbers for S, the Raghavachari theorem and inequality (23).

4. Composite alternatives. We shall now show that a rank statistic can serve
efficiently any finite number of alternatives as tested against the hypothesis of
randomness.

THEOREM 5. Let log f(u)/g(u) be integrable and have bounded variation on every
closed subinterval of (0, 1). Let X,, X,, - - - have density f, and Y, Y,, - - - density
gy, and n|[N — A¢(0, 1).

Then

27) lim ian_,‘,,_]lV Ty = 2§} filog fdu + (1 — ) §37, log g du

with probability 1, where again f, = [F(H,™)], g, = [G,(H,™Y)].
Proor. Theorem 1 entails

1 - = . _
~ r1ay(R) + Ssloggdu — 23 flog[ f/g) du + §}log g du
= A\ filog fdu 4 §i[1 — 2f,]logg du .
Theorem 5 now follows by noting that 1 — 2f, = (1 — 2)§, and by using in-
equality (23).
Consider a composite alternative given by k pairs
(28) A={(fp9,) 1 =j=k}.
For each member of the alternative, let us establish the rank likelihood ratio
statistic
TNj(r) = log [N! QJ(R = r)] , 1 é] < k
where Q; corresponds to X, - - -, X, having density f;, and Y, ---, Y, density
g;. Put
Uy(ry = max ;. Ty(r) -
THEOREM 6. Letlog f,(u)/G;(u), 1 < j < k, beintegrable and have bounded varia-

tion on every closed subinterval of (0, 1), and n/N — 2¢(0, 1). The exact slope of
U, equals

¢ =228} f;log f;du 4 2(1 — 2)§39,log g, du
= 2J(f}» 9,5 A)

for the jth member of the alternative A of (28), and it is the best attainable exact
slope.

Proor. We have, under the hypothesis of randomness,

1 1 _
P(W Uy > z) < k max, ., P(_ﬁ Ty, = t> < ke=Mt
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since Ty, are log-rank likelihood ratios. Thus the level obtained by U,, say
M s satisfies

1 - 1 1
—logM, < —logk — —U,.
N BMy = N g N
On the other hand, if (f;, g;) obtains
lim sup,_,,, (—_Ilv_ UN> < lim sup,_,., (——LN TNJ.> < —Jfp 354

according to (23) and Theorem 1. Consequently,
lim sup, _.., {lﬁlog MN} < —J(fin9; 7).

However, the sharp inequality can hold only with probability 0, since —J( fis
g, 2) is a lower bound according to the above mentioned result by Raghavachari
(1970). This completes the proof of Theorem 6.

As a side product we obtain the following inequalities for the log-rank-
likelihood ratio statistic.

THEOREM 7. If under conditions of Theorem 6, T, refers to (f;, 9,) and (f;, 9;)
obtains, then with probability 1

ASs filog fidu + (1 — 2) §3g,log g, du
(29) < liminf, .., [lﬁ T,,,} < lim supy.... [lN TN,.]

<A\ifilogfidu + (1 — 2)§3g,logg, du .

Proor. The first inequality is obtained from Theorem 5, and the violation of
the last inequality would conflict with the Raghavachari result, since for (f;, 9,)
the exact slope of U, would exceed 2.7( fi» 90> A).

REeMARK 3. If f; = f;, g, = g, the inequalities become equalities and we ob-
tain a special case of the Berk-Savage Theorem [3] under somewhat relaxed
conditions.

REMARK 4. The above result for the finite alternative A4 could be extended
to infinite but compactifiable alternatives in a standard way. This is not done
here.
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