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MINIMAX ESTIMATION OF A CUMULATIVE
DISTRIBUTION FUNCTION!

By E. G. PHADIA
The Ohio State University

In this paper the minimax estimators of a cumulative distribution
function F is obtained for four types of loss functions. The result is quite
general in that no restrictions are imposed on the unknown F. Moreover,
the estimates do not depend upon the weight function used in the definition
of the loss functions. It is also shown that the sample distribution function
is minimax under one of these types of loss functions.

1. Introduction and summary. Suppose we are given a random sample
X, -+, X, from an unknown cumulative distribution function ¥ and the prob-
lem is to estimate the function F. One of the most frequently used estimators
is the sample cumulative distribution function. This estimator has some nice
properties, and, in addition, Dvoretzky, Kiefer, and Wolfowitz (1956) have
shown that the sample distribution function is asymptotically minimax for a
very wide class of loss functions. For some classes of loss functions Read (1972)
has shown that it is asymptotically inadmissible. Aggarwal (1955) considered
this problem of estimation using a decision theoretic approach but with the
restriction that the unknown F be continuous. Considering a class of invariant
loss functions he obtained best invariant estimators which are essentially step
functions. Later, Taha (1968) obtained invariant estimators for a different class
of invariant loss functions, but still under the assumption that F' be continuous.
The minimax estimators of F are obtained here with no assumptions on the
unknown cumulative distribution function F.

To obtain the minimax estimators we use a well-known result: If a sequence
of Bayes risks of Bayes estimators of F with respect to a sequence of prior distri-
butions converges to a constant which is not smaller than the risk function of an
estimator then this latter estimator is minimax. The main difficulty arises in
constructing a suitable sequence of priors on the space of all distribution func-
tions defined on the real line. Several attempts have been made in this direction.
Notable among them are those of Dubins and Freedman (1963, 1967), Kraft and
van Eeden (1964), Kraft (1964), and Ferguson (1973). Without going into the
merits or demerits of these methods we use a method which is similar to that of
Ferguson (1973).
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In this paper, we derive minimax estimators for four classes of loss functions.
For one of these classes the minimax estimator is the sample distribution func-
tion. However, for the other three classes they are improper distribution func-
tions. In the sequel we also give necessary and sufficient conditions for the risk
function to be independent of F" and also evaluate the minimum Bayes risk under
a general class of loss functions.

2. Notation. We consider the parameter space ©, the action space Q, and
the loss function L defined as follows.

= {F: F is a right continuous distribution function on the real line R'}.
Q = {¢: ¢ is a non-decreasing right continuous function on R' such that

0 < ¢(—o0), $(o0) = 1).

(2.1) L= L(F,¢) = [F@) — sOFIFOT[1 = FO)dW(1) ,
7,0=0,Fe0,¢ecQ,

where W is a given non-null, finite measure on (R', B), where B is the Borel
field on R'. In the rest of the paper we shall refer to W as a weight function.
We denote the risk function of an estimator ¢, by R(F, ¢) and the corresponding
Bayes risk with respect to a prior distribution z by r(z, ¢).

By L,, L,, L, and L, we shall denote four special cases of the loss function L,
obtained by substituting y = 0,1 and 6 = 0, 1 in (2.1).

L, = L(F, ) = § [F(t) — $(O) dW (1) (for 7 =d=1)
L, = L(F, §) = § {[F() — gOFF@OIL — F()]) dW (@)

(22) (fOI‘ r = 0 = 0)
Ly = L(F, ) = § {[F(1) — $(O0F/F(0)} dW () (for 7 =0,0=1)

Ly = L(F, ¢) = {{[F(1) — $(OT/[1 — F(n]} dW ()
(fOI’ 7T = 1,5:0)

3. Characterization of estimators ¢ which make R(F, ¢) independent of F.
Many of the commonly used estimators of a distribution function are step func-
tions with jumps at the observations. They can be written in the form

(3.1 £(t) = a 4 31 b,0x (=0, 1])

where a, b,, - - -, b, are nonnegative constants o, (A4) = 1 if X, € 4, zero other-
wise. This observation leads us to state and prove the following result for the
class of estimators which are step functions of this type. This result is used in
the derivation of the main result of Section 5.

THEOREM 3.1. Let X,, - -, X, be a random sample from an unknown cumulative
distribution function F. Let
(3-2) ={¢:9() =a+ Xl bdx((—,1]),a=0,5620

and a + Y, b, < 1}
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be a class of estimators of F. Then under the loss functions L, of (2.2), the risk
function R(F, ¢), ¢ € @ is independent of F for all F € © if-and only if ¢ € ®;, where

(3.3) D, = {¢: ¢ €D and condition C;on a, by, ---,b, is satisfied} ,

n

i=1,2,3and 4, and

C: 2a=1-— 35 and (I —Xb)y=2x5"
(3.4) C: a=0 and b, =1

C: a=0 and (1 —=XXb)y=20b’

C: a=1-3b and (1 —=X3b)y=>>0b2.

The summation is over i = 1,2, --., n.

REMARK. It can easily be seen that for the values of y and § other than zero
and one, the risk function cannot be made independent of F. A formal proof can
be provided by evaluating the risk function, expanding the factor [1—F(1)]’~,
collecting the coefficients of the powers of F(r), equating them to zero and
solving.

Proor. We shall prove this theorem only for the cases L, and L,. The other
two cases can be proven similarly.

Case of L;: Now for this loss function and ¢ € @,
R(F, §) = Ex S [F()) — $()] dW (1)
(3.9) — §E[F(1) — a — 3 b0y ((— o0, (D dW()
= §{[(1 = X2 b)" = X b1F()
+ [—2a(l — X b)) + 25 b71F(0) + a*}dW (1)
by expanding and using the fact that
(3.6) Ey[0y ((—o0, t])] = F(1) foreach i=1,2,.--,n.

Here the symbol £, denotes the expectation taken with respect to the distribution
function F.

If ¢ € @,, the coefficient of F*(¢r) and F(r) inside the integral sign in (3.5) vanish.
The risk function is

(3.7) R(F,¢) = a2 dW() for ¢e®,,

which is independent of F.

Also, in order that R(F, ¢) be independent of F for all Fe® and ¢ € @,
equating the coefficients of § F*(r) dW(r) and § F(¢) dW(t) in (3.5) to zero, we
obtain the following conditions on a, b,, ---, b

(3.8) (1 — N by=y5b and 2a=1—3b,.

These conditions imply that ¢ € @,.
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Case of L, When the loss function is L, (2.2) and ¢ ¢ @,
R(F, §) = § EA[F(1) — a
— 56,05 ((—oo, PPIFOA — F(0)]}dW (1)
(3.9) = {0 = Zb) = D67 IFO/[1 — F(1)]
+[=2a(l — X2 6) + X 0[1 — F(1)]
+ @/[F((1 — F()]}dw () .
If ¢ ¢ ®,, thena = 0, 3 b, = 1, and (3.9) reduces to
(3.10) R(F, ) = § (£ ) dW ()

which is independent of F.
To prove the converse, we note that in order that R(F, ¢) be independent of
F for all Fe © and ¢ ¢ @, a must be zero, in which case (3.9) reduces to

(B.11)  R(F, ¢) = S[{FOI(1 — X2 6)* — 261+ Lo H[1 — F(Ol1dW (1) -
In order that this be independent of F for all F ¢ ©, we should have

(3.12) —[( = Xb)— X =10b"
or
(3.13) b =1.

This implies that ¢ € ®,. This completes the proof of the theorem.

If we let all b,’s be equal to, say, b, then the condition C, in (3.4) reduces to
2a = 1 — nband (1 — nb)* = nb*. Thisin turn yields b = (n + n*)~ or (n — n*)~*
and correspondingly @ = [2(n* + 1)]7*and —[2(n! + 1)]~". But the second value
of @ is not permissible, and hence for the loss function L, we get only one esti-
mator for F,

(3.14) Gi(t) = [2(n* + D]+ [n¥(nd + D] 32004 ((—o0, 1))

which makes the risk function R(F, ¢) independent of /7. Similarly, for the loss
function L,, the condition C, reducestoa = 0,6, = b =n"'fori=1,2, ..., n,
and the resulting estimator

(3.15) Put) = n7 - 3 0, (=00, 1))

is the only one which makes R(F, ¢) independent of /. Thus we have the fol-
lowing corollary.

CoROLLARY 3.1. Let X, ---, X, be a random sample from an unknown cumula-
tive distribution function F. Let

(3.16) OF ={p: (1) =a+ b3 0, ((—o0,t])ya=0,b6=0 and
a+ bn < 1}

be a class of estimators of F. Then under the loss function L, the risk function
R(F, ¢), ¢ € ®*, is independent of F for all F ¢ © if and only if ¢ = ¢, fori =1,
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2, 3 and 4 where ¢, and ¢, are defined in (3.14) and (3.15) respectively, and

(3.17) Po(f) = (n* 4 m)71 37 0y ((— o0, 1])
Pur) = (0t + 17T+ (nt + )7 2 0y (o0, 1])
It is easy to see that the risks of ¢,, ¢,, ¢,, ¢, under their respective loss func-
tions L,, L,, L, and L,, are R, R,, R; and R, respectively, where

R, = Ry(g) = (1/4(n* + 1)} § dI(1)
3.18) R, = Ry(g) = {1/n} § d1W(1)

Ry = Ry(p) = {1/(n* + 12} § dI/(1)

R, = R($) = {1/(nt + 1%} § dW(s) .

4. Minimum Bayes risk. In this section we define a sequence of prior distri-
butions for ¥ on © and evaluate the minimum Bayes risk for this sequence.

The sequence of prior distributions {r,} may be described in the following
way.? The kth member of the sequence, r,, chooses a distribution function at
random as follows. First choose p at random from the beta distribution with
parameters a, 3 > 0 (to be denoted by Be (a, §)) and then let

F()=0 for 1< —k
4.1) =p for —k<i1<k
=1 for r>k.

Thus we see that the prior distribution z, is essentially concentrated on a sub-
space of all distributions which have jumps only at the two points —k and
+k. In other words, under this prior all the observations would be +k with
probability one.

Next we obtain the minimum Bayes risk corresponding to the prior distri-
bution z,.

THEOREM 4.1. Let X,, ---, X, be a random sample of sizen > 2 — a — f3 —
7 — 0 from an unknown cumulative distribution function F € © and let t, be the prior
distribution on ©. Then for the loss function L in (2.1) the minimum Bayes risk is
given by

G Bt 6 s
St B 7+ 04 n— D@ PETHEED
(4.2) —l—a—p)Bla+7,8+06—1 4+ n) - Loy(a +7)

—(I=pF=0)Bla+7r—1+np+0- 1,48+ 0} dW(r)
where 1,(+) is the indicator function of set A and

(4.3) B(a, B) = §§ x* (1 — x)P~1dx.

% Originally the results were derived using the method of the Dirichlet Process (Ferguson,
1973). The author is grateful to Professor Ferguson for pointing out this alternative form for
the priors, which simplifies the argument considerably.
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Proor. The Bayes risk of an estimator ¢ with respect to the prior 7, is

(4.4) "t §) = B EL[L(F, §)] = § E., E[L(F(1), $(1))] dW (1)
where L,(F(t), ¢(r)) is the integrand of the loss function L. It is minimized by
choosing ¢(r) for each 1 so that

(4.5) Eo, Ef[L(F(1), (1))]
is minimized.
For t < —k, according to the prior 7,, F(f) = 0 with probability one. So
EL[L(F(1), $(1))] will be minimized by taking ¢(r) = 0. Similarly for r > k,
F(t) = 1 with probability one, and hence (4.5) is minimized by taking ¢(r) = 1.
Now for —k < t < k, according to the prior r, F(¢) is distributed as Be(a, f)
and the posterior distribution given the sample is Be (« + 3 9, ((—co, 1]),
B+ 20, ((1, ). E., E[L(F(1), ¢(¢))] will be minimized for this interval if
the conditional expectation of L,(F(r), ¢(r)) given the sample is minimized.
That is, if

(4.6)  [Bla + X0, (=0, 1), B+ 20, ((t, o)) Si [p — ¢()]
% [p]”+f+z5xl”‘°°'t]"2[l _ P]ﬁ+a+zaxlut,m>>—z dp

is minimized. However, the integral involved in (4.6) will be finite only if
a+7y—1+20,((—~o0,t])>0and §+6—1+ 3d,(( o)) > 0. Since
2.0, ((—o0,1]) and 37 4, ((1, o0)) take only nonnegative integral values, this
would amount to requiring ¢ to be in the interval [X;, . .1+ X ra_p_s1+41)
where x,, is the value of the rth order statistic, x, = —oo, x,,, = oo,
[4]" = max ([A4], 0) and [ 4] denotes the greatest integer less than or equal to A.

So for each 7 in [Xy_p .14y X(u(a_p_s1+41) (4.6) will be finite and it can
easily be seen that the minimum is achieved if we let ¢(r) be the mean of the
Be(a +7— 1+ 30,((—o0,1]), 4+ —1+ X d,((t, ))). The minimum
value of (4.6) is the variance of this distribution times the factor

Bla+7—1+30,(=c0,1]), 8+ —1+ 39,(( o))
Bla 4 21 0,((—o0, 1), B + X 9,,((1, o))

Bla + 7 4 2 0,((—o0, 1)), 8+ 0 + 35 4,,((1, )))
@+ B+7+0+n—2)B@a+ X o (o0 1)+ X0, ))
Forvaluesof tin[ —k, x,_,_,1+)), we take #(t)=0and for £in[x,,_(,_s_s1+41)> K)»
#(t) = 1 in order that ¢ be non-decreasing for all values of a, 8, 7, and 4.
Thus for —k < ¢ < k, the minimum of (4.5) will be equal to

E. Er {1[~k,x(m_a_,]ﬂ)(f)[F(f)]’“[1 —FOP 7+ lix ooy inmpamposrt 410 (D)

Bla+ 7+ 2 0x((—c0s 1])s B4 0 + 3 9x,((t; 00)))
[(a+ﬁ+r+5+n—2)3(a+ 20x,((—00,1]), B+ 205 (2, 00)))]

T pen s OO — FOP}

or

(4.7)

(4.8)
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Noting that 3} 6, ((— oo, 7]) is a binomial random variable with parameters n
and F (1), evaluating the expectations and simplifying we can show that (4.8) is
equal to

[Bla+7.8+3) — (1 —a—pBa+7,p+05—1+n)
(4.9) X Log(@ +7) — (1 = 8 — OB+ 7 — 1+ n, 8 + 3)
X Lon(B + )@ + B+ 7+ 0 +n— 2B, p).

This together with the above arguments for the cases t < —k and ¢ > k, gives
the minimum Bayes risk as in (4.2). This completes the proof.

The above proof is simplified considerably if we assume a, g = 1. Also,
since the integralin (4.6) is finite for values of ¢ in the interval [x,_, .+
X(n_ra-p-s1+4+1)» W€ may allow negative values for y and § with appropriate re-
strictions on @ and B. A typical Bayes estimator with respect to the prior 7,
would be of the form

at7— 1+ So(—cot)

£ U S g

5. Minimax estimators. In this section we prove our main result; namely,
the estimators ¢, defined in (3.14), (3.15) and (3.17) are minimax under loss
function L, for i = 1, 2, 3 and 4 respsctively. To do this we use a well-known
lemma which we state here without proof.

LEMMA 5.1. Let F, be the sequence of Bayes estimators of F with respect to the
priors t, and let r(z,, F,) be the corresponding sequence of Bayes risks for any loss
function. If r(z,, F,) — ¢, a constant, as k — oo and if F is any other estimator
such that R(F, I:“) is < c for all FecO, then F is minimax.

THEOREM 5.1. Let X\, ---, X, be a random sample from an unknown cumulative
distribution function F on R*. Then for the loss function L;and action space Q, ¢, as
defined in (3.15), (3.16) and (3.17) is minimax estimator of F for i = 1,2, 3 and 4
respectively.

Proor. For the loss function L, we take a« = 8 = n}/2 for the prior distri-
butions r,. The corresponding sequence of minimum Bayes risk is (by proper
substitution in (4.2))

-1 § w2 + 1, n})2 + 1j[[(n* 4 m)B(n}[2, n[2)]} dW (1)

= § L {1/4(n* + 1)} dW (1)
which converges as k — oo, to
(5.2) {1/4(nt + 1)%} . § dW(1) .
From (3.18) we see that the risk of ¢, for this loss function is (5.2) and hence
by Lemma 5.1 we conclude that ¢, is minimax estimator of F.

For the loss function L,, we take a« = 8 = 1 for the parameters in the prior
distribution z,. Then, the corresponding sequence of minimum Bayes risk is
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obtained from (4.2) as

G-3)  § (B, 1)/nB(1, 1)} dW (1)
=n'§ 1, () dW() > nt § dW(D) as k—oo.

Again from (3.18) we have the risk of ¢, for the loss function L, as n=! § dW (1)
and hence by Lemma 5.1 we conclude that ¢, is minimax.

For the loss functions L, and L,, by takinga = 1, p = ntand a = nt, g =1
respectively, one can prove similarly that ¢, and ¢, are minimax estimators of F.

6. Discussion and remarks. The above minimax results obtained in Section
5 are for an arbitrary unknown F. Both Aggarwal (1955) and Taha (1968) have
restricted their consideration to unknown F belonging to a family of continuous
cumulative distribution functions and to invariant loss functions. Our results
are stronger in the sense that the estimators do not depend upon the weight
function W unlike the best invariant rules of Aggarwal and Taha who have used
the unknown F as the weight function.

The most frequently used estimator of a cumulative distribution function is the
sample distribution function. Aggarwal (1955) has shown that if F is assumed
to be continuous then the sample distribution function is the best invariant esti-
mator under the loss function

(6.1) L(F, F) = §={[F(1) — F()PIF()[1 — F()]} dF(7) .

Dvoretzky, Kiefer and Wolfowitz (1956) have shown that the sample distribution
function is asymptotically minimax for a very wide class of loss functions. We
have shown here that the sample distribution function is minimax under the loss
function L, described in Section 2.

We have obtained the minimax results only for four special cases of the general
loss function L. For other cases, however, the risk function cannot be made
independent of F and hence the above method fails to give the minimax esti-
mators. It should be observed that the estimators are of the form a + b 3 4,
and in some cases are not proper distribution functions. The loss functions of
the form

(6.2) L(F, ¢) = § |[F()) — ¢(n)] dW ()

are not easy to handle. The main difficulty arises in evaluating the Bayes risk.
Moreover, the Bayes estimator with respect to this loss function is the median
of the posterior distribution which is not necessarily of the form a + 6 3] O,
and hence the above method of choosing @ and b which makes the risk function
independent of F fails.

If we take the weight function W to assign all the mass at a point, say ¢, then
the problem reduces to that of finding the minimax estimator of a binomial
parameter F(t,) which is seen as a particular case of the above result,

(6.3) F(ty) = [172(n* + 1] + [1/(n* + m)] T 05 (=00, 15]) -
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Here d, ((— oo, £,]) are independent and identically distributed Bernoulli random
variables, each with the success probability of F(t)). F(t,) can also be written
in a more familiar form

(6.4) F(t) = 1/2(nt + D] + [n¥/(nt + 1)]5(z)

where d(t,) = [1/n] 3 0y ((—o0, t]). In fact in the case where W is degenerate
at a single point, the minimax estimator of F(¢,) is unique, and so admissible,
minimax estimator (Lehmann, 1949-50). For more complicated W, however,
the problem is not simple.

Since the sequence of prior distributions used above depends on the sample
size n, it is not possible to extend this result to the sequential case, except for
the loss function L,. The extension of these results to higher dimensions should
be straightforward.
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