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BALANCED OPTIMAL SATURATED MAIN EFFECT PLANS
OF THE 2" FACTORIAL AND THEIR RELATION
TO (v, k, ) CONFIGURATIONS!

By B. L. RAKTOE? AND W. T. FEDERER
University of Guelph and Cornell University

This paper characterizes balanced saturated main effect plans of the 2»
factorial in terms of D’/D rather than X’X, where D is the (n + 1) X n treat-
ment combination matrix and X is the (z + 1) X (z + 1) design matrix.
Besides this result, balanced optimal (in the sense of maximum determinant
of X’X) saturated main effect plans of the 24m~1 factorial are discussed for
various classes of designs, each class consisting of designs having (0,0, - - - 0)
and n treatment combinations with exactly ¢ 1’s among them. The opti-
mality results are achieved by applying theorems associated with incidence
matrices of (v, k, 2) configurations. In addition results are given for designs
associated with the permuted (v, k, 2) configurations. Finally, the approach
taken in the paper can be applied to 2~ factorials with n # 4m — 1.

1. Summary. This paper presents a characterization of balanced saturated
main effect plans in terms of D’D rather than X’X, where D is the (n 4 1) x 1
treatment combination matrix consisting of 0’s and 1’s and X is the (—1, 1)
design matrix of order (n + 1) x 1. Balanced optimal saturated main effect
plans are discussed for various classes of the 2¢»~* factorial, each class consisting
of designs having (0, 0, - - -, 0) and n treatment combinations with ¢ 1’s among
them. The results rely heavily on an optimality theorem concerning (v, k, )
configurations, where the number of 1’s in the incidence matrix is equal to .
Also, complementary results are obtained by using a permutation of the levels.
Finally, the results can be extended to 2" factorials with n == 4m — 1.

2. Introduction. Fractional factorials present some challenging problems in
treatment designs. Even when dealing with the simplest situation, such as main
effect plans of the 2" factorial, one is confronted with problems of a highly
complex combinatorial nature. Some of these problems have been pointed out
and investigated by Federer, Paik, Raktoe, and Werner (1972), Paik and Federer
(1970), (1972), and Raktoe and Federer (1970b), (1971). Problems for other
types of plans from the 2" factorial and other factorials are currently being studied
intensively by Srivastava and Chopra (1971), Srivastava and Anderson (1970),
Banerjee (1970), Srivastava, Raktoe, and Pesotan (1971), and Pesotan, Raktoe
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and Federer (1972). These and other authors have demonstrated the mathematical
and statistical richness of factorial experiments.

To make this paper relatively self-contained we introduce the following nota-
tions and definitions:

(i) In a 2" factorial experiment with n factors at two levels each, a treatment
combination is an n-tuple (x;, x,, - - -, x,), with x; e {0, 1}.

(ii) A set of (n 4 1) treatment combinations arranged in arbitrary order in
an (n + 1) x n matrix D (a row being a treatment combination) with the aim
of estimating the vector 8, consisting of the mean and the main effects (when
the assumption that all other eﬁ'ects are negligible is ]ustlﬁed) is called a satu-
rated main effect plan.

(iii) The (n 4 1) x (n 4+ 1), (—1, 1)-matrix X, correspondmg to D and the
parameters in (ii) is called the design matrix of D; XX, is called the informa-
tion matrix of the design D.

(iv) 1 will be a square identity matrix, J a rectangular matrix consisting of
+1’s and 1 will be a column vector of +1 s; 0 is either a matrix or a vector
of zeros.

(v) A balanced saturated main effect plan of the 2" factorial is a design D
such that: (a) each element of j is estimated with the same variance, (b) the
covariance between the estimates of the mean y# and a main effect is a constant,
and (c) the covariance between estimates of two main effects is another constant.

(vi) Optimality of a saturated main effect plan may be defined in many ways.
We will be using maximum determinant of X,’X}, as our criterion for denoting
a design optimal.

3. Balanced saturated main effect plans. Let &7 be the class of all possible de-
. signs which can be formed by selecting n + 1 treatment combinations from
among 2" treatment combinations. Obviously the cardinality of < is equal to
2™)/(n 4+ 1)! (2 — n — 1)!. If Dis any arbitrary design in =7, then the relation

(3'1) XD = [1(n+1)x152D(n+1)xn - Jm+1)xn]

leads at once to the following result (which has already been established through
a different approach in a paper by Raktoe and Federer (1970a).

‘ n+t+1; 2
3.2) X)X, = I: ........ z ....... ZJ ,
where
an1 = —(m+4 1)1, 4 2D, i Lininxi s and

= (1 + Waxa — 2D5x iy insnxe — 2axman Daniyxa
+ 4an(n+1)D(n+l)xn .
Utilizing (3.2) we see that a design D will be balanced if and only if

(3.3) DD =3+ 1 — b, + 3(n + 1 + 2a + b,
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where a and b are integers such that L(n 4- 1 + @) and 1(n 4 1 + 2a 4 b) are
integers between 0 and n + 1.

The proof of this proposition is as follows. From the definition in (v) of
Section 2 we know that a design D is balanced if and only if the information
matrix is of the form

n+ 1} al,,

(3.4) X)X, = :

L alnxl (n + 1 - b)Inxn + anxn
Hence, from (3.2) we have a1’ = —(n 4 1)1 + 21'D and (n + 1)J — 2D"J —
2)’D +4D'D = (n + 1 — b)I + bJ, so that (n+ 1)J — (@ +n+ 1)J — (a +
n+4 1)J +4D'D = (n + 1 — b)I + bJ. Hence:
(3.5) DD =3n+1—bI+3n+1+2a+b)J.
Since a diagonal element of D’D is the squared length of a (0, 1)-vector, it
follows immediately that i1(n +1 —b) + t(n 4+ 1+ 2a + b) = 3(n+ 1 + a)
is an integer between 0 and n 4 1. The innerproduct of two (0, 1)-vectors is
quite clearly an integer between 0 and n 4 1 and hence }(n + 1 + 2a + b) is
such a number. This completes the proof of the proposition.

ReMARK 3.1. One of the referees has pointed out that result (3.3) may also
be proved by noting the following:

(i) Each column of D must have the same number of 1’s, say r, since a =
(number of 1’s) — (number of 0’s) for each column. Since the (number of
1’s) ++ (number of 0’s) = n 4 1 it follows that 0 < r =4(n 4+ 1 +a) <n 4 1.

(ii) It is easy to show that for any two columns of D the number of (1, 1)
matches must be constant, say 2, since for any pair of columns b = (number of
(1, 1) matches) — (number of (1, 0) matches) — (number of (0, 1) matches)
(number of (0, 0) matches). Hence b =2 — (r—2) —(r—2A) +[(n+ 1) —
2 —=2(r—2)]

(iii) Therefore 2 = 1[b + 4r — (n + 1)] = X(n + 1 4 2a + b), sothat D'D =
rl 4+ A(J — 1) = (r — 2)I + 2J. This proof does not depend on result (3.2).

ReEMARK 3.2. From (3.4) one can show in a straightforward manner that
the characteristic roots of the information matrix X,'X, for a balanced design
D e & are:

h=((m+1-=0) with multiplicity » — 1,
(3.6) A= 4[2(n + 1) + (n — 1)b] + L[(n — 1)* 4 4na®]*,

2y = 4[2(n + 1) + (n — 1)b] — 3[(n — 1)b* + 4na’]*.
Using (3.6) it follows that a balanced design will be singular (i.e. det X’ X, = 0)
if and only if @ = {(n + 1)/n[(n + 1) + (n — 1)b]}* or b=n 4+ 1. Hence a
singular balanced design D € &7 is characterized by

DD =1Ln+ 1+ a) or
3.7 D'D = 1(n+1—0b)
+ 40+ 1]+ 2{(n + Dfnl(n + 1) + (n = o]} + b
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How useful the singularity test (3.7) is depends in practice on whether calcula-
tion of the rank of [1:D] or the determinant of [1:D] requires more time
than the calculation of D’D and seeing if it is of the form. Aside from the
practicality of (3.7) this characterization could become a tool in enumeration
problems.

REMARK 3.3. Using (3.6) the maximization of det X,’X), results in the solution
a=0and b = 0. This then provides us with a characterization of optimal
balanced designs, or Hadamard designs. In this case D'D = L(n + 1) +
1(n 4+ 1)J. Denoting the class of balanced designs in & by <7+ we should ob-
serve that the Hadamard designs are not only det-optimal in &7+ but also in <.
Of course this fact was observed by Plackett and Burman (1946) and also by the
authors (1970a). Since a necessary condition for the existence of these plans is
that (n 4 1) is divisible by 4 we may write n 4 1 = 4m so that the character-
ization becomes D'D = ml 4 mJ.

4. The weight of a design, (v, k, 1) configurations and optimality. Let w(D) =
1’D1 (= the number of 1’s) be the weight function for a design De 7. The
weight function can be given the following interpretation. If the low level 0 of
any factor costs 0 and the high level 1 costs 1 unit then w(D) is the total cost
of design D. Define two designs D, and D, in &7 to be weight equivalent, in
symbols D, = wD,, if and only if w(D,) = w(D,). The equivalence relation = w
leads to a partitioning of <7 into the set of equivalence classes =7/_,. This
means that if 277 is an equivalence class in <7/_,, all designs in 5%~ have the
same weight. Werner (1971) in her masters thesis has given a counting formula
for the cardinality of <7/_,, and also for any equivalence class 7"e Z/_,. These
results are reported in the paper by Federer, Paik, Raktoe, and Werner (1972).

Consider the class &7° C <7 consisting of all designs such that each one has
(0,0, -.-,0)in it. Clearly the cardinality of <2 is equal to (2" — 1)!/(n!)(2" —
n — 1)!' The cardinality of <7°/_, and of any equivalence class in &°/_, was
also developed by Werner and is given in the above mentioned paper. If a de-
sign D° e 7° is selected, then from Raktoe and Federer (1970a) it follows that

’

(4.1) [det Xyo] = 27 |det 1: ;| = 2°[det D¥|

where D* is an n x n (0, 1)-matrix without rows consisting entirely of zeros.
From Williamson (1946) and Ryser (1956) we know that

(4.2) |det D*| < 27"(n 4 1)+br2

with equality holding if and only if D* is obtained from a Hadamard matrix,
i.e. in the case of equality we have

(4.3) det D*| = 2-Um=1(4m)m .

Let &7* be the class of designs such that a design D* e Z* consists of n
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treatment combinations and such that (0,0, ..., 0) is not in D*. Clearly the
cardinality of <7 * is equal to the cardinality of <2°. Under the equivalence
relation = w, similarly defined for two designs in <7'*, the set of equivalence
classes is Z*/_,. Let 2£7*(t) denote the equivalence class in &*/_,, such that
each D* e ZZ7*(r) has w(D*) = t. It can be easily verified that for the 2" fac-
torial the range of ¢ is given by

4.4) n<t<nm—n+1.

Following Ryser (1963) we define a v, k, 2 configuration (or v, k, 4 design) to
be an arrangement of v elements into v sets such that each set contains exactly
k distinct elements and such that each pair of sets has exactly 2 elements in
common, where 0 < 2 < k < v. (Note that we are allowing 2 to be equal to
0.) In design terminology a v, k, 2 configuration is a balanced incomplete block
design with parameters v, b = v, k, r = k, and 2. The v x v (0, 1)-incidence
matrix of a v, k, 2 configuration satisfies the properties:

(4.6) |det 4] = k(k — 2)@-br2,

Let Q be a (0, 1)-matrix of order v, containing exactly 7 1’s,i.e. w(Q) = 1’01 = .
Let k = t/v and set 2 = k(k — 1)/(v — 1), with 0 < 2 < k < v, then it follows
from Ryser’s (1956) results that:

(4.7) det Q| < k(k — 2)-vr

with equality holding if and only if Q is the incidence matrix of a v, k, 2
configuration.

Taking (4.4) into account, we note that for a v = n, k = t/n, 2 = (t/n)(t/n —
1)/(n — 1) = «(t — n)/n*(n — 1) configuration to make sense, we must consider
the values n, 2n, 3n, .-, (n — 1)(n) for ¢t. Setting t =dn,d =1,2, ---, n — 1,
we see that k =d, A =d(d— 1)/(n — 1). Hence for a v =n, k =d, A=
d(d — 1)/(n — 1) configuration to exist we must have that 1 is a nonnegative
integer, i.e., d(d — 1) is divisible by (n — 1). As an illustration, the following
table shows values of v, k, Aforv =n < 7:

v 2 3 4 5
(k, 2 (1,0) (1,0),(2,1) (1,0),(3,2) (1,0),(4,3)
v 6 7 etc.
(k, 2 (1,0), (54 (1,0),(3,1),4,2),(6,5) etc. )

(4.8)

Clearly, 2 is a nonnegative integer for all n if t = nor t = (n — 1)n. In these
cases we have the n, 1,0 and n, n — 1, n — 2 configurations respectively. Using
the definition of £7* and denoting an equivalence class of fixed weight ¢ in
2°/|_, by F77°(1), it follows immediately that the cardinality of S#7°(n) and
27°(n(n — 1)) is equal to 1. The unique optimal balanced design of weights n
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and n(n — 1) are therefore:

00 0...0 0 00 0..-00
1 00..-.00 01 1..-1 1
49 D°=|0 1 0...0 0] D’=|1 0 1.-.-1 1
00 0-.-0 1 11 1-.-1 0

These designs are such that D, D, = I'and D,"D," = I + (n — 2)J.
There are various classes of 2" factorials one can study taking into account
the weight function. There are four exhaustive cases, namely:

(4.10) (i) n=4m, (ili) n=4m —2
(i) n=4m—1, (iv) n=4m—3.
Let us limit ourselves in this paper to case (ii). The same approach however

can be used to resolve the other cases. If n = 4m — 1, then the range of w(D*)
for any design D* ¢ Z'* is:

(4.11) dm — 1 <t = w(D*) < (4m — 1)(4m — 2) + 1.
For the v =4m — 1, k = t/(4m — 1), A=t — 4m 4 1)/(4m — 1)*(4m — 2)
configuration to make sense, we must have e {4m — 1,2(4m — 1), - .., (4m —

2)(4m — 1)}. Let t = g(4m — 1), with ge{1,2, .-, (4m — 2)}, then k = ¢,
2= g(qg — 1)/(4m — 2). Now, 2 must be a nonnegative integer, i.e. g(¢ — 1)
must be divisible by 4m — 2. The only choices of ¢ which satisfy this condition
are ¢, = 1, g, = 2m, ¢, = 2m — 1, and ¢, = 4m — 2. The first and last solutions
lead to the configurations corresponding to the unique designs in (4.9). The
solutions ¢, and ¢, along with (4.7) lead us to the following result:

THEOREM 4.1. The balanced saturated main effect plans corresponding to the
v=4m — 1, k = 2m and A2 = m configuration is det-optimal in the equivalence
class Z7°(2m(4m — 1)) and the balanced saturated main effect plan corresponding to
thev =4m — 1,k =2m — 1, 2 = m — 1 configuration is det-optimal in the equiva-
lence class 527°((2m — 1)(4m — 1)).

REMARK 4.1. The balanced saturated main effect plan in the first part of
Theorem 4.1 is the incidence matrix of the Hadamard (v, k, 2) configuration
augmented with (0,0, ..., 0). It is well known that when ¢ is not fixed, then
the plan is optimal in £7° and in 7. But clearly we are not interested in these
classes but rather in classes consisting of designs with fixed weights. Note that
the balanced optimal plans of Theorem 4.1 satisfy the following equations
respectively:

(4.10) DD = ml + mJ
D"D" = ml + (m — 1)J.

5. Permuted optimal plans and permuted v, k, 2 configurations. Again restricting
ourselves to the 241 factorial and looking at the four configurations of the
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previous section, i.e. (i) v =4m — 1, k=1, 2= 0 (ii) v =4m — 1, k = 2m,
A= m, (111)”0:4”1—1, k=2m—1,2:m—1,and(iv)v=4m—1,k=
4m — 2, 2 = 4m — 3, then if we permute 0’s to 1’s and 1’s to 0’s in the inci-
dence matrices of these configurations we obtain the permuted configurations
Dv=4m—1, k=4m —2,2=4m =3, (iH)v=4m — 1, k=2m — 1, 2=
m—1,({i)v=4m —1,k=2m, A=m,and (iv)v =4m — 1, k =1, 2=0.
Clearly the configurations (i) to (iv) are closed under permutation of 1’s to 0’s
and 0’s to 1’s.

Consider the permuted saturated main effect plans obtained from the configura-
tions (i) to (iv) and augmentation of 1’ = (1,1, ---, 1). [Equivalently these
designs are obtained by the permutation map: :

o’ 1
-

where D* is the matrix obtained from D* by replacing 0’s by 1’sand 1’s by 0’s.
In other words, if D* is the incidence matrix of a v, k, 2 configuration then D+
is the incidence matrix of the permuted v, k, 2 configuration.

Paik and Federer (1970) and more recently Srivastava, Raktoe, and Pesotan
(1971) (in a more general setting) have shown that if DeZ is a saturated
main effect plan and D e & is obtained from D by permuting the levels 0 and
1 of the factors, then the corresponding information matrices have the same
determinant.

By invoking this invariance result it follows immediately that the permuted
designs corresponding to configurations (i) and (iv) are unique optimal designs
with weights equal to (4m — 1)* and 2(4m — 1) respectively. A theorem similar
to Theorem 4.1 can be stated which has as results that the permuted designs
corresponding to configurations (ii) and (iii) are optimal in the equivalence
classes 27 (2m(4m — 1)) and S#°((2m + 1)(4m — 1)) respectively, where 227
is an equivalence class in Z%/_,, 7" being the class of designs in &7 having
always the treatment combination (1,1, .-+, 1) in them. The four optimal de-
signs are characterized by the following four equations:

DVD* = I + (4m — 2)J

(5.2)  D'D'=ml + mJ
DVDt = ml + (m + 1)J
DVD'=1+J.

REMARK 5.1. From Srivastava, Raktoe, and Pesotan (1971) it follows that
the information matrices of the optimal designs and the corresponding permuted
ones are orthogonally similar. From the fractional replicate viewpoint and
optimality criteria based on the spectrum of the information matrix, the optimal
designs and the corresponding permuted ones are information wise equivalent.
However, physically and economically these designs are quite different, so that
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choosing among them can be done on the bases of a physical property or as set
out in this paper on the basis of the weights.

6. Discussion. In this paper we have explored the case n = 4m — 1, i.e. the
number of two level factors is equal to 4m — 1. The results may be extended
to the other three cases mentioned in the paper. To our knowlege, this is the
first paper which shows how the number of 1’s are important in classifying and
characterizing balanced optimal plans. Work on the distribution of 1’s in satu-
rated main effect plans and their relation to values det X,’X, was started by
Werner (1971). She attempted to tie up the value of the determinant of X,’X),
with the number of 1’s in D. The results obtained herein apply to this problem
in that for a given number of ones in D* it is shown that when a v, k, A con-
figuration exists then the corresponding plan D° is optimal in the sense that the
determinant of X’0X,0 is maximum. When a v, k, 2 configuration does not exist
then one may study (v, k, 4,, 4, - - -, 4,) configurations (i.e. partially balanced
configurations) for the various values of weight function of D*. Proceeding in
this manner, one may be able to determine the various values for the determi-
nant of X70X .

7. Acknowledgment. The authors appreciate the thoughtful and constructive
comments of the referees, which were helpful in obtaining the present version.
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