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ON SOME PROPERTIES OF HAMMERSLEY’S ESTIMATOR
OF AN INTEGER MEAN!

By RasurL A. KHAN
Mathematics Research Center, University of Wisconsin

Let Xj, -+, X be iid. M, 1), i=0, 1, +2, ---. Hammersley [2]
proposed [X,], the nearest integer to the sample mean, as an estimator of
i. It is proved that d is minimax and admissible relative to zero-one loss.
However, it is shown that relative to squared error loss, the estimator is
neither admissible nor minimax.

1. Introduction and summary. Let X, X,, - .., X, be independently and identi-
cally distributed N(i, 1) random variables, and set S, = X; + --- + X,. The
mean i is an unknown integer 0, +1, +2, . ... Using the method of maximum
likelihood, Hammersley [2] proposed d = [S,/n] (nearest integer to the sample
mean) as an estimator of /. He showed that d is unbiased for i and computed
its variance.

Lindley suggested that the proposed estimator is minimax relative to zero-one
loss, and Stein conjectured its minimaxity relative to squared error loss (see the
discussion in [2]). In Section 2 it is proved that 4 is in fact minimax and admis-
sible relative to zero-one loss. In Section 3 it is shown, however, that relative
to squared error loss the estimator is neither admissible nor minimax.

2. Minimax property and admissibility relative to zero one loss. We consider
the loss function

L(a,i):O, if a=i,
=1, if a;&i.

To show that the estimator d = [S,/n] is minimax and admissible, we use the
Bayesian argument. The joint probability density function of (X, - - -, X,) given
iis

1) S(X Xy -+, X, |1) = 2r)™exp[—§ 25 (X; — )]
Assume that the prior {, is given by .
() P(i = r) = K, exp(—r*/20%), r=20,+1, +2,

where K,7' = > = __, exp(—r?/2¢?). Then the posterior probability function is

r=—00
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given by
_(n + (1/02)) i— Sn 2
G PAX, e, X) = ! (n2+ (1/0(2)) .n+(1/?)>} =
Do op | = (1= )

i=0,x1, £2

It is known (cf. [1]) that the Bayes estimator relative to zero-one loss is the
mode of the posterior distribution. Thus it is easily seen that the Bayes estimator
of iis
4) d, = [S,/(n 4 (1/o%))] -

Recall that d = [S,/n], so that lim ., d, = d. Thus the estimator d is a limit of

g— [

Bayes estimators. Let R(d, i) denote the risk of an estimator d, i.e., R(d, i) =
E,L(0,i) = Py(0 #+ i). Then
> ”’)
2

(5) R(d, i) = Pi< % -
-2(1-o(3)

where ®(x) = (2x)~% {*., e "2 du. We obtain the minimax property by showing
that

(6) lim, ... B, €)= 2 (1 = @ (%)),

where B(., {,) refers to the Bayes risk relative to the discrete normal prior given
by (2). Now

n — i L}
n+ (1)0%) ’

R(d,, i) = Pyd, # i) = Pi{
ez (k) o 220 ) gk

o’nt no? o’nt

S,
n

S

v

where Z denotes a N(0, 1) variable. Setting ¢, = ¢,(¢) = 1n¥(1 + 1/ng?), u,(i) =
¢, + (i/a*nt), v,(i) = —c, + (i/o?nt), and w,(i) = ¢, — (i/o*n?), it follows that
(™) B(d,, {,) = K, e [Vi,0 0(0) &y + Y27 o(y) dyle 2"

where ¢(y) = e *"?2/(2x)}. We can rewrite B(d,, {,) as

B(d,, C,) = K, i [§2,0 0(0) dy + §228 o(y) dyle="
®) + K, 22 e [So o) dy + §220 o(y) dyle=*1a

=G, (o) + G_(s), say.
Now

G (o) = K, Do [{§2 — §en® + §2 + §259%0(y) dyle-i*
= 2(1 - D(e,)K, Drge

+ K, Do [§729 o(p) dy — §in) o(y) dyle=r" .
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Also

G_(O') = z=—co [{Sun(,) + S:; :Zg" —_ ”n(”}(p(y) dy]e—zz/mﬂ
= 2(1 - (D(C”))K Zz:—oo _12/2”2
+ K z——°° [Su (4) ¢(y) dy S n(” (p(};) dy]e—z2/2a2
=2(1 — O(c,))K, Tl . e
+ K, DR [0 o) dy — §i g(y) dyle™
Hence from (8) we obtain
©) B, L) =21 — ®(c,) + 2K, Do [§2 o) dy — §i2¥ ¢(y) dyle=**"
= 2(1 — ®(c,)) + 2K,F,(9) .
In what follows we shall use the notations c,, ,(i), v,(i) and w,(i), which were

introduced before the equation number (7). All that we prove in this section is
based on the following lemma.

LEMMA. If Fo(0) = Do [ @(y) dy — §22¥ @(y) dyle= /", then

(10) 11 a—»oo 'n(a) - 0 s
and
(11) lim, . K,F,(0) = 0.

Proor. We rewrite F,(0) as

F,(0) = 215 [Sz’)nn(” o(y) dy — Su @ o(y) dy]e‘”/z"z

= 20 (Y2, (9(y) — @y + (ifo*nt))) dy)e /" .
Now

o) — o(y + (Ffon)) = S (1 — exp(—3[(P/no*) + Riyjont)]))

(2 )*

< € -vi2 < i " iy )
= @2n)t \2n0* ' ont/)’
and it follows that

F,,,(U) < _1— ?=0< :l;n ) e —y2/2 (__12__ _|__ }’ ) dy> —42/242
— (20 " 2ns* | otnt

1 o 1
- 2n0"(2m7:)é = 0*(2nz)?

j3e—1%/202 -+ ol l’(e-iwnz(i) _ e—l_xcn2)e—i2/202

< {rxle M dx
= 2n0"(2m7:)é

T R )
sy o P

02(2mr)* ' o*nt 2ng*

< X3 —22/202 9, —pw, 2(i) p—12/202
= 2naﬁ(2mz)% Vg xemT R 4(2n2n)% re e

1 —w2 —w2
£ 0 W3e w2/2 dw 2e w2/2 d .
= notanay O t @y 0(2 Sy Y Y
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The right-hand side approaches 0 as ¢ — oo, and hence

(12) lim sup,_., F,(0) £ 0.
We may directly verify
o) = 2 (Z:r)é §5 i) (emimextlon lwnD} _ g=ien?) dygit/tol |
and thus
(13 )2 o TR — e
g nw
g _¢n(0) s

where

g/)n(a) = 0-—2(2_1,1_7;5; 2 i(e—ic,ﬁ _ e—gmaxﬂcn,lw"(i)n)e—«;?/zﬂ .

Note that ¢,(s) = 0. However,

1 .o _ oL

9a(0) = W Diizocepsina i H(e )
1

= ¢*(2nm)?

e ton’

= 2n0®(2nz)}

. .
. 1.9 l ic —32/942
Z. ) e ic,n< . n)e 12/2¢’
120ic, S| wy,(4)]
= m 2ngt  g’nt

. s 1
;o=0 lae—ﬂ/z.ﬂ § Sgo xae—z2/202 dx ,
2no(2nx)}

which approaches 0 as ¢ — co.
Thus lim,_,, ¢,(¢) = 0. It follows from (13) that

(14) lim inf, ., F,(c) = 0.

Hence (10) follows from (12) and (14). Moreover, it is easy to see that [1 +

o(27)}]7' £ K, < 1, and essentially the preceding argument also proves (11).

Alternatively, it is easy to show that lim,_,, K, = 0, and hence (11) follows from

the fact that F,(¢) remains bounded. This completes the proof of the lemma.
It follows from (9) and (11) that

b
lim,._.. B(d,, C,) = 2,<1 — 0 (%)) — R(d, i).
Hence 4 is minimax. As usual, we now prove admissibility by contradiction.
Assume on the contrary that 4 is not admissible. Then there exists a § such that
(15) R(d, i) < R(d, i) for all i,

and
R(9, i) < R(d, iy) for some i, .

So there exists an ¢ > 0 such that

(16) R(@9, i) — R(d, i)) < —¢ for some i, .
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Since d, is Bayes, we have
(17) liminf, . K,7'[B(3,(,) — B(d,,{,)] = 0.
Now

K,7'[B(3,¢,) — B(d,, (,)]
(18) = Lo (RO, i) — R(d,, i))e™*
= -« [R(0,i) — R(d, i) + R(d, i) — R(d,, i)]e~*/"

i=—o00

< —cem 4 KB, C,) — B(d,, L,)].-
From (9) we have
B(da’ Ca) = 2(1 - (D(cn)) + 2K0Fn(0)

= B, ) + 2 (® (g) — () + 2K,F\(0) -
Thus
(19)  KB@ ) - B(d, 6)) = 2K, [0(e,) — @ (2] - 27,0)
It follows from (18) and (19) that
(20)  K,7[B@, &) — B(d,, {,)]

< —eet?2e? 2Kﬂ‘1[®(cn) — (?)1 — 2F,(0) .

It is easy to see that

k™ [‘I’(%) -0 (n?éﬂ = K, §h e o) dy

K™ 1402t

= = — as o -—oco.
~ 20°(2nm)t T 20*(2nr)}

Hence from (10) and (20) we obtain
(21 liminf,  K,7[B(d, (,) — B(d,,{,)] < —¢ < 0.
Since (21) contradicts (17), 4 is admissible.

3. Inadmissibility and the non-minimax property relative to squared error loss.
Once and for all we set d, = [S,/n], and d, = S,/n. We will show that 4, is
inadmissible and non-minimax relative to squared error loss. We note that E,d, =
E.d, =i, and ¢ = 1/n. Moreover, from Hammersley [2] we have

(22) ot =9 (%) - 20(n),
where
() = @[m)t L5 j 5 e dx = 2 T3, j(1 — @(jy)) -

It is interesting to note that in the regular case N(z, 1), —co < gt < o0, X, =
S,/n is a complete sufficient statistic, UMVU estimator, and also admissible for
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¢ relative to the loss function |a — p|*, k = 1,2. Though X, continues to be
sufficient, it fails to be complete when Q = {0, 4+-1, 42, -..}. This is trivially
seen on taking g(X,) = d, — d,.

Before showing inadmissibility and non-minimaxity we observe the following
relevant fact. We then have

Cov (d,, d) = E(X, — )([X,] — i)

= () §2 O = D] — Demro-ordy

It is easy to show that [y] — i = [y — ], therefore
3
(23) Cov (dp dz) = (;—) %o X[X]e_"ﬂ/2 dx .
T

Thus the Cov (d,, d,) (hence the correlation p) is independent of i. Now we
will exhibit a uniformly better estimator than d, relative to squared error loss.
To this end, we set

(24) d,=ad + (1 — a)d,, a real.
Then d, is also unbiased for i since d, and d, are so. We have
Ma) = o;, = a’oy + (1 — a)’oy, + 2a(l — a)po, 0, .
It is easily seen that the optimum a, which minimizes V(«a) is given by
(25) ay = (03, — p04,0,4)[(0, + 04, — 200,,0,,) .

We now show that a, # 1. It suffices to show that Cov (d,, d,) +# ¢; . From [2]
we know that

4 )
() o= (2) T sl e an.
/s
From (23) we have

n\} o —nz2/2
Cov(d, d,) = <_> §2e X[x]e™ "2 dx

27
LI
(27) = <21> lim,_, Sk__, m §nth xe="=*2 dx
T
1 . omty) L, a2
lim, ., Jk__, m iyt xe =2 dx

(2nz)t
2\¢ o oz endi+d) g2
(2} Zrasstt e
nw
Now,
. ond(G+3) —y2 9 end(i+d) L2
J$aiGth (/e v dy < JPGIE e dy
i+ N o—y2
= $uiih (y — e dy < 0
< nh Sé—& ue—n(u+j)2/2 du < 0
- Sg ye— MUt __ Sg ue" =1 dy < 0 Vi > 1,
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which is true. This together with (26) and (27) implies
Cov (d,, d,) + 031 =a # 1.

Therefore d, = a,d, + (1 — a,)d,, where «, is given by (25), is uniformly
better than any unbiased estimator given by (24) and hence, in particular, uni-
formly better than 4, (i.e. Hammersley’s rounded mean). Since d, has constant
risk and is uniformly better than d,, this shows that 4, is neither admissible nor
minimax relative to squared error loss.

That the sequential methods have potential for such problems has been shown
by Robbins [5]. Though the basic object of [3] is to decide among a countable
set of probability distributions, the methods are applicable to the problem of
estimating restricted parameters (see also [4]).
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