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ASYMPTOTIC NON-NULL DISTRIBUTIONS OF THE LIKELIHOOD
RATIO CRITERIA FOR COVARIANCE MATRIX
UNDER LOCAL ALTERNATIVES!

By NARIAKI SUGIURA
University of North Carolina and Hiroshima University

Asymptotic expansions of the non-null distributions of the likelihood
" ratio criteria for testing the equality of a covariance matrix, equality of a
mean vector and a covariance matrix, independence between two sets of
variates, equality of two covariance matrices, in multivariate normal dis-
tributions are derived under the sequence of alternative hypothesesconverg-
ing to the null hypothesis when the sample size tends to infinity.
Numerical accuracies of the asymptotic formulas are also examined.

1. Introduction. Asymptotic expansions of the distribuitions of the likelihood
ratio (=LR) criteria based on a random sample from a multivariate normal
population under fixed alternative hypothesis have been derived by Sugiura [17],
(1) for the equality of covariance matrix to a given matrix, (2) for the equality
of mean vector and covariance matrix to a given vector and a given matrix, and
also by Sugiura and Fujikoshi [18], (3) for testing the hypothesis of independence
between two sets of variates. The limiting non-null distribution of the LR cri-
terion (4) for the equality of several covariance matrices has been obtained by
Sugiura [17], asymptotic expansion of which was obtained recently by Nagao
[12]. These limiting non-null distributions always degenerate at the null hypothe-
sis so that the asymptotic formulas do not give good approximations when the
alternative hypothesis is near to the null hypothesis, as we have experienced in
calculating the approximate powers of Bartlett’s test for homogeneity of variances
in Sugiura and Nagao [20].

In this paper, we shall derive limiting non-null distributions of the LR criteria
for the problems (1) and (2) under sequences of alternatives converging to the null
hypothesis with the rate of convergence N-7, where N means sample size, for
arbitrary positive number y and then asymptotic expansions of the non-null
distributions in the case of y = { and y = 1 in the next two sections. With the
help of the hypergeometric function of ‘matrix argument due to Constantine [3],
we shall derive an asymptotic expansion of the distribution for the problem (3)
in the case y = } in Section 4, and an asymptotic expansion of the distribution
of the modified LR criterion, given in Sugiura and Nagao [19], for the equality
of two covariance matrices under the sequence of alternatives with y = 1 in
Section 5. The formulas in this paper can be applied to compute the approximate
power, when the alternative hypothesis is near to the null hypothesis. Some
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numerical examples are given to indicate the accuracy of our formulas, some of
which are compared with the known results.

2. Asymptotic expansions of the modified LR statistic for X = X,.

2.1. Asymptotic expansions. Let A* be the modified LR statistic, based on a
random sample of size n + 1 = N, from a p-variate normal distribution, for
testing the equality of a covariance matrix (= X) to a given matrix (= Z,). The
unbiasedness and the monotonicity of the 4,*-test were established by Sugiura
and Nagao [19], Nagao [11], and Das Gupta [4], respectively.

Let the sequence of alternative hypotheses be

(2.1) K :Z, 453t =1+ n70

for y > 0 and symmetric matrix ®. When y > 4, the characteristic function
of —21log 4,* under K, can be written from the moments of 4,* given by (2.3)
in Sugiura [17] as
@2)  (2)"IT a1 — 200)/T,Gm)1 — 2ifrra-son

e

X | + n=1®|7|I — 2itn~1O/(1 — 2it)|-a-%0/2

The first factor is simply the characteristic function under the null hypothesis,
which was expanded asymptotically for large n by Sugiura [17]. Especially it
tends to (1 — 2ir)=/”* for f = p(p + 1)/2 as n — . Applying the asymptotic
formula for symmetric matrix Z:
(2.3) —log|l — n7'Z| = 3l nitr Zi[j + O(n~'7),
to the second factor of (2.2) we have

exp [n-¥rit(1 — 2if)~' tr Y2 + m=¥(tr ©%/6)

(2.4 X {2 — 3(1 = 2it)™ 4 (1 — 2i)7?} + n*~*7(tr ©4/8)
X {—=3 4+ 6(1 — 2it)™ — 4(1 — 2i)~* + (1 — 2ir)~3}
+ O(n*~*7)].
It follows that the characteristic function of —2 log 2,* can be expressed by
(2.5) (1 — 2if)~72 4 o(1), when 7 > %

(1 — 2ir)y~"?etr {3it ©*(1 — 2ir)7'} 4 o(1) , when y =},
which implies the first part of Theorem 2.1. We can also get the asymptotic
expansion of the characteristic function (2.2) for any given y. For y =1,

(1 = 2it)~"2[1 4+ n7'(4s, + B){(1 — 2ir)™* — 1}
(2.6) + 4n*{3B, + 4B, — 6B}(1 — 2ir)™* 4 (3B — 4By)(1 — 2in)~?}

+ n7? Yaeo Yaul(l — 2i0)7%] + O(n7%) ,
where s; = tr ©/ for abbreviation and

B,=p2p' +3p— 124, By = —p(p" — 1)(p +2)/32,
2.7) O = 1ByS, + %5 + 555, %= —2g, + %55,
9e=00— $5% -
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For y = 4,
(1 — 2it)~/7etr {Lit @*(1 — 2ir)~}
(2.8) X [l 4 gn~ttr 02 — 3(1 — 2in~ + (l — 2ir)7%}
+ 17t 3 (1 — 2i0)7%] 4 O(n7Y),

where

hy = —By — 85, + {557, hy = By + 35, — s,
(2.9) - h, = _%54 + %%532 > hy = %54 - T1§532 >

hy = A58 .

Let P(f, 6*) mean the lower tail of the probability distribution of the noncentral
x2-distribution for f degrees of freedom and the noncentrality parameter ¢*. Put
P(f) = P(f, 0) and

Py(=2log 4* < 1) = P(f) + n7'B{P(f + 2) — P(f)}

(2.10) + $n7{(3B) — 4B)P(f + 4)
— 6B2P(f + 2) + (3B + 4B,)P(f)}
+ 0(n™),

which is the asymptotic expansion under the null hypothesis given in Sugiura [17].
Then inversion of the characteristic functions (2.6) and (2.8) yields:

THEOREM 2.1. Under the sequence of alternatives K, defined by (2.1), the limiting
distributions of the modified LR statistic —2log A,* is y* with f = p(p + 1)/2 degrees
of freedom, when y > }, and noncentral y* with f degrees of freedom and noncentrality
parameter * = L tr ©*, when y = 4. Wheny =1,

2.11)  P(—2log&* < x) = Pu(—2log 4* < ) + tn~is{P(f + 2) — P(/))
+ 17 Dm0 92 P(f + 20) + O(n7),
where g,, are given by (2.7). When y = }, we have
(2.12) P(—2log 2* < y*) = P(f, &) 4 n~'s{P(f + 4,0°) — 3P(f + 2, 5"
4 2P(f, )} + 17 Do P(f + 20, Py,
+ O(n7Y),
where the h,, are given by (2.9).

Considering the characteristic function of (—2 log 4,*)n"~%, based on the mo-
ments of 2,*, when y < §, we can conclude:

THEOREM 2.2. Under K, for 0 < r < 3, the statistic
(2.13) nr=i =2 log A% — n{tr (ZZ, — I) — log |ZZ,71}]
has asymptotically normal distribution with mean zero and variance 2 tr ©".

Noting that the asymptotic variance 2 tr ©* is equal to 2 tr (£X,'—1)* - n’7, we
can see that the limiting distribution in Theorem 2.2 is of the same form as under
fixed alternatives given in Sugiura [17].



LIKELIHOOD RATIO CRITERIA FOR COVARIANCE MATRICES 721

2.2. Numerical examples. 1t may be useful to note that by applying the general
inverse expansion formula of Hill and Davis [7] to the asymptotic null distribu-
tion of —2 log A,;* given in Theorem 2.1 in Sugiura [17], we can get an asymptotic
formula of the 100« 9%, point of —2 log 4,* in terms of the 100a 9, point of the
x* distribution with f degrees of freedom, giving

2B 1 u? u
2.14 25, 4{4_ _6B} — 4B *632—43}
(2.14)  u + nfu+3n2 ﬁ(f+2)( 2 f3)+f2( s — 4fB;)

+ n—3(u3g3 + u’g, + ugl) + 0(”_4) s
where u is so chosen that P(y,* > u) = a and

_ 4 np 3
0= g (P8 = 2BB + BY)
(2.15) g, = #fz’) (f*B, — 2fB,B, — SB}),
5= WT) (B4 435+ 48

with B,, B, in (2.7) and B, = p(6p* + 15p* — 10p* — 30p + 3)/480. Some 5 %
and 19, points of 4,* have been computed recently by Korin [10], using the
slightly different asymptotic expression of the distribution.

When p = 1 and n = 10, the exact 5 %, point of —2 log 4,* can be obtained
from Table 1 by Pachares [12] as 3.9682. The asymptotic formula (2.14) gives
3.9683, which shows good approximation for the percentage point. Also for
p=2,n=100and a = 0.05, the formula (2.14) gives 7.87173. Specifying the
alternatives K as £,7#2%,~% = (1 + A)I, we have ¢* = nA?/2 and the following
case 1 (A = 0.5) is computed by the formula (2.16) in Sugiura [17] with the
normal distribution function and its derivatives, as well as cases 2 (A = 0.1) and
3 (A = 0.02) by the formulas (2.12) and (2.11) respectively.

approximate powers, when p = 2 and n = 100
A=0.5 A=01 A=0.02

0? 12.5 0.5 0.02
first term 0.8651 0.1134 0.05
second term 0.0714 —0.0033 0.00229
third term 0.0052 0.0018 0.00001
approximate power 0.942 0.112 0.0523

3. Asymptotic expansions of the LR statistic for ¥ = X, and ;2 = 1, Let 4, be
the LR statistic for testing the equality of the covariance matrix X and the mean
vector p of a p-variate normal population to a given Z, and a given ,, based on
a random sample of size N. The unbiasedness of the LR criterion without mod-
ification was proved by Sugiura and Nagao [19] and Das Gupta [4]. The asymp-
totic expansions of —2 log 4, both under the null hypothesis and under a fixed
alternative hypothesis have been derived by Sugiura [17].
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Specifying the sequence of alternatives
(3.1) K.:p— py= NT1Z}, Xy tEE;t =14 N77O,
and exactly the same computation as in the previous section, based on the mo-
ments of 4, given in Sugiura [17], yields the following theorems:

THEOREM 3.1. Under K, for 0 < y < %, the limiting distribution of the statistic
(3.2) Nr=—2 log 2,

— N{tr (B2, — 1) — 1og [Z5,7'] + (1 — o) 2 (et — peo)}]

is normal with mean zero and variance 2 tr ©* 4 4v'v as N tends to infinity.

THEOREM 3.2. Under K, fory > %, the LR statistic —2 log 2, has asymptotically
x*-distribution with f = p + p(p + 1)/2 degrees of freedom.

When y = 1, putting 5; = tr 7 and 1, = V'O,

P (—=2log i, < %)
(3.3) = Py(=21log 2 < x*) + N7'(§sy + $1){P(f + 2) — P(f)}
+ N7 S, i P(f + 20) + O(N7Y),

where the first term P, (—2log 2 < x?) is the asymptotic expansion under the
null hypothesis given by

(34)  P(f) + NTBIP(f + 2) — P()} + INTH(3B," — 4B))P(f + 4)
— 6B,"P(f + 2) + (3B, + 4B/)P(f)} + O(N7),
and
B = p(2p" + 9% + 124, B/ = —p(p + 1)(p + 2)(p + 3)/32,
(3.5) 9 = By + k53 4+ 5557 4+ $vv(ds, + BY) + 1t + 7,
9 = =29 + 8%, 9/ =09/ — .

When y = 4, the limiting distribution of —2 log 2, is the noncentral y-distri-
bution with f degrees of freedom and the noncentrality parameter 2 = L tr 0 +
3v'v and we have

P(=2log 2 < y) = P(f, 8" + §N7H(s; + 30)P(f + 4, &)
(3.6) — (35, + 61)P(f + 2, 0% + (25, + 31)P(f, 0%}
+ NP 34 B P(f + 2a, 0%) + O(N7Y),

where

hy = —By — §s, + 55" — 3. + §0.° +  §bss,

h, B + 35, — &5+ 31, — 30 — Lus,,
3.7) h' = —3s, 4 135 — 31, + 312 + 315y,

hy' 38, — 1558 4 o — 3P — Shss,

2
hel = 725 + %t12 + T1§t153 .
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If we consider the more general sequence of alternatives
(3.8) K, . 27 — p) = Ny, 3, Xt =14 N 720,

the asymptotic distributions of —2 log 2, can easily be investigated; namely, they
are normal, noncentral y*, and y* according to min (7,, 7,) < 4, = 4, and > 1,
respectively. Exact descriptions of each of the parameters of the limiting distri-
butions and normalizing factors are omitted here in order to save space.

4. Asymptotic expansion of the LR statistic for independence. The problem con-
sidered here is to test the hypothesis of independence between p, and p, sets of
variates (p, < p,) in a p-variate (p, + p, = p) normal population, based on a
random sample of side N. Put m = pN for the correction factor p = 1 — (p +
3)/2N and let 2; be the LR statistic for this problem. We can write the charac-
teristic function of —2p log 4, under the sequence of alternatives K, : P = m~*©
from the moments of 2, given in (2.5) in Sugiura and Fujikoshi [18] as

T, (m(1 — 2it) + 3(p, — p, + 1))
@.1) X T, (3m + DT, (m + 3(p— pu+ 1)
X T, (3m(1 = 2it) 4 B)] - | — mo@3imes

. (Gm+ D) 7 C(®)
X 280 2o |:mk(%m(§1 — 2it) + A)x—‘l k!

’

where P = diag (p,, - - -, p,) for the population canonical correlation p; and
A= (p, + p, + 1)/4. The first factor gives the characteristic function of
—2p log 4, under the null hypothesis, which can be expanded using Box [2] or
Anderson ([1], page 239), as
(42) (1 =2i) 771 + fsm™~ppp* + pi* = 5)
X {(1 — 2it)* — 1} + O(m™)],
where f = p,p,. The second factor in (4.1) can easily be expanded using (2.3)
(4.3) I — m™'@%im+s = etr (—©?%2) - [1 — m~*(As, + 1s,)
+ m{3(As, 4 §5)° — 3As, — s} + O(m™)],
where s; = tr 7. Noting that
(am + b), = (am)"[1 + (am)~'{kb + la,(x)}
(4.4) + Ja(am)~12b%(k — 1) + 12(k — 1)bay(x)
+ 3a,(k)* — ay(k) 4 k} + O(m™)],
and using a lemma in Sugiura and Fujikoshi[18], the third factor can be evaluated
etr [10%/(1 — 2ir)] - [1 + m™*{2As,(1 — 2ir)™*
4.5) + (s, — 2As5,)(1 — 2it)~* — Ls,(1 — 2it)~%}
+om Y g1 — 2if) 4 O(mY]
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where
g, = 24%,,
g0 = A + D)5, + (242 + 1)s? — 4A%,

(4.6) 95 = 85 + Asys, — (48 + 3)s, — (24° + 3)s)’ + 2%, ,
Uy = %57 — 5o — As,;s, + BA + Ds, + (B4 + D)’
G = —452 + 58 + 2As,s,,
Gz = 495, -

Multiplying these three factors and inversion of the characteristic function yields:

THEOREM 4.1. Under K,: P = m~*®, the LR statistic —2p log 1, for testing the
independence between p, and p, sets of variates (p, < p,) has asymptotically noncentral
2 with [ = p,p, degrees of freedom and noncentrality parameter §* = tr ©%/2 and

P(—=2plog 2, < x) = P(f, &) + m™{—(s + Asy)P(f, 0°)
+ 2As5, P(f + 2, 0% + L(s, — 2As5,)P(f + 4, 0%
4.7 — 1 P(f + 6, )} + m~ s f(p” + p* = 3)
X {P(f + 4, 0°) — P(f, 0")}
+ 2o Moo P(f + 20, 0°)] 4 O(m™)
where s; = tr ®7 and A = (p 4 1)/4 and

E)

= 1(ds, + Asy)* — §s, — $As,,

= —}As,s, — 2A%, 4 24A%;,,

— 152 — A5, + (3D + Ds, + (AT + 152 — 4A7s,

= 52 + §As,s, + 35, — (4 + §)s, — (20° + D)s + 2A%, ,
h, =g, (a=S8,10,12).

a

Y

(4.8)

N

h
h
h
h

)

Based on the moments given in Theorem 2.1 in Sugiura and Fujikoshi [18],
we easily get:

THEOREM 4.2. Under the sequence of alternatives K, : P = m~70, the statistic
m—# —2p log 2; — mlog |l — P?|}

has asymptotically normal distribution with mean zero and variance 4 tr ©?, when
0 < y < 4. Fory>1},the LR statistic —2plog 2, has asymptotically y* distribution
with p, p, degrees of freedom.

Under K, asymptotic expansions of Hotelling’s statistic and Pillai’s statistic
for the same problem were obtained recently by Fujikoshi [6]. Noting that the
asymptotic expansion of P,(—2p log 4; < y*) has the same form as in the case of
the multivariate linear hypothesis given in Box [2] or Anderson ([1], page 208),
we can use the asymptotic formula for the percentage point of the LR statistic for
linear hypothesis given by (2.8) and (2.9) in Hill and Davis [7] for our present pur-
pose, that is, only v, p, ¢ are replaced by p, p,, p;, p, respectively in their formula.
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ExAMPLE 4.1. When N = 87, p, = 2 and p, = 3, our asymptotic formula gives
the approximate 5 9%, point of —2p log 2, as 12.5932, the exact value of which
can be obtained by Table 8 in Pillai and Jayachandran [14] (lower 5 9, points
of (W}, m = 0and n = 40) as 12.59316. For the alternatives K, : p,2 = 0.001,
)’ = 0.05, the asymptotic formula (4.7) gives the approximate power as 0.2921,
the exact value of which is 0.2919 given in Table 9 in Pillai and Jayachandran
[14]. For K,: o> = 0.05, p; = 0.1, the asymptotic formula (2.12) in Sugiura
and Fujikoshi [18] gives the approximate power as 0.806. The exact value is
not tabulated.

5. Asymptotic expansion of the LR statistic for £, = X,.

5.1. Moments of the statistic under local alternatives. Let 1,* be the modified
LR statistic, as given in Sugiura and Nagao [19], for testing the equality of two
covariance matrices, based on random samples of size n, 4+ 1 and n, + 1 from
p-variate normal distributions with covariance matrices X, and X,. Unbiasedness
of this modified LR criterion was proved by Sugiura and Nagao [19]. The limiting
distribution of —2 log 2,* under the fixed alternative K was obtained by Sugiura
[17], asymptotic expansion of which for the k sample case was obtained recently
by Nagao [12], who used a different approach. We shall now consider the mo-
ments of the statistic 4,* under the sequence of alternatives K, : 2,155, =
I + m~'0, where the matrix © is symmetric and m = pn, with the correction
factor due to Box [2],

(5.1) p=1 = AL L 1)

6(p + 1) n,  n n
Without loss of generality, we may assume that £, = ' and X, = I, where
' = Z,7#%,%,"t. We can express the hith moment of 1,* as

(n"my ="y =2 2207 EL (m, [2)T (g 2) )
(5'2) X S Hi:l |Sa|(na(l+h)—p—1)/2 . |I‘|—n1/2|}$'1 + Szl—’nh/z
X etr {—4(S, + S,) + 3(I — I'"1)$,} dS, dS, ,
where the range of integration is such that two p x p symmetric matrices S, and

S,are pd. We can expand the last part of etr {(/ — I'~!)S,/2} in an infinite series
by zonal polynomials

(33) =0 Lo C(I — T79)S/2) k!
Transforming the variables (S,, S,) to (U, U,) by U, = S, and U, = U,~S,U,~*
(U,}is chosen pd) with the Jacobian |3(S,, S,)/0(U,, U,)| = |U,|**"”* and integrating
out with respect to U, by the gamma type integral formula (12) in Constantine
[3], we can write the integral in (5.2) as
(5-4)  27PT,Gm)IT 1™ B, X {(Gn) k)

X S |U2|(n2(l+h)7p—l)/2|1 _+_ U2|—n(l+h)/2cx((1 _ F—l)([ _|_ Uz)—l) dU2 .
Putting V' = (I + U,)~* with the Jacobian |9U,/dV| = |V'|~*~! and integrating out
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with respect to V' by the beta type integral formula (22) in Constantine [3], we
can finally get the 2th moment of 2,* as

(n"my ="y~ (n{T(3n(1 + m))}
(5‘5) X Hi:l {Fp(%na(l + h))/rp(%na)}
X U= Fy(3n, $n,(1 + h); dn(1 + h); T — T77).
This expression can be obtained also from the joint distribution of the charac-

teristic roots of W = S,(S, + S,)~'in Khatri [9]. However, for our purpose our
derivation is more direct.

5.2. Asymptotic distribution under K, (y = 1). Applying the Kummer trans-
formation formula ,F(a,, a,; b; Z) = |I — Z|~2,F(b — a,, a,; b; —Z(I — Z)™)
in James [8] to (5.5), we can write the characteristic function of —2p log 2,*
under K, as

(mmmy=mm, =2y (4m + AYT,(4m(1 — 2ir) + A)}~
(5.6) X [Tai T ,(3m (1 — 2it) + A,)/T (3m, + A} + m™O|"™i
- (—mit) (3my(1 — 2if) + Al)x} C(—0)
X Lo Zeo { (Em(1 — 2ir) + A), m*k!
where m, = pn, and A, = (n, — m,)/2 = O(1) with m = m, + m,, and A =
A, + A,. Computation similar to that in the previous section yields:

s

THEOREM 5.1. Under K, : 2,7*%,%,"t = I 4+ m~'@, the distribution of the modi-
fied LR statistic A,* for testing X, = X,, has asymptotically
P(=2plog 4* < 1) = P(f) + hospam™ tr @(P(f + 2) — P(f))
(.7) + m7 o P(f + 4) — P(f)}
+ Xm0 92 P(f + 20)] + O(m™),
where f = p(p + 1)/2 and for s; = tr ©7,

— Plpzsz_Pl_zs_As}
9o ‘01‘02{—32 2 6 3 2 2

(5.8) g = pp, {—% st Pos k(A + Pt %slz} ,

1 -2
gy = 010, {% S+ —6‘8‘1‘53 - (%A + 7})52 - %slz} ’

0y = g5p(P" — 1)(p + 2)(0,7" + 0,7 — 1) — $p(p + 1)A*.
Under the null hypothesis H, we can get
P(_zlo log '24* < Xz)
(5.9) = P(f) + mo{P(f + 4) — P(f)} + m~o{P(f + 6) — P(f)}
+ m~o{P(f + 8) — P(f)} — o {P(f + 4) — P(/H)]]
+ O(m™),
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where
@y = 73 p(6p" + 15p° — 10p — 30p + 3)(p,° + p,~° — 1)

= f2P(P — (P + 2)A(0* + o7t = 1) + 4p(p + 1A,
(5-10) o, =30 + g4 p(p — D)(2p* + 89" + 3p* — 1Tp — 14)(0,™* + 0,7 — 1)

— thop(6p* + 15p° — 10p* — 30p + 3)(0,™* + 0,7 — 1)A

+ 1p(p* — D(p + 2)A%0,* + p, 7" — 1) — 3p(p + 1)A*.
The inverse formula can also be computed from (5.9) in Hill and Davis [7], in
terms of u such that P(y,* > u) = a:

20u(u + [+ 2) 204 2 4
Sy ) TR T R A
4 2 m-* Zou
HU A+ D)
(5.11) S (4 O+ (F 4 6)f + D+ (f + O + D/ +2))

,’u 3 _ 2 _
- ?7(7:2_)2 {8 + (f =2 + (f + 2)(f — 6)u

+ (f+ 20— 2} | + O(m™).

ExAMPLE 5.1. Specifying the alternatives K as X,~#%,%,~% = diag (d,, - - -, 4,),
and using the 5 9, points 3.801 for p = 1, n, = 4, n, = 20 in Sugiura and Nagao
[20] and 7.82241 for p = 2, n, = 13, n, = 63 computed from (5.11), we can get
the approximate powers 0.104 for 6, = 0.5 in the first case and 0.05130 for
0, = 0, = 1.05 in the second case. The exact power in the first case can be found
in Table 744a in Ramachandran [16] as 0.113. In the second case, we can see
from Table 2 in Pillai and Jayachandran [15] (m = 5, n = 30) that the powers
of the other tests, based on the largest root of §,S,7%, tr S, 5,7, tr S,(S, + S,)™*
and |I + §,8,7'| are 0.0670, 0.0701, 0.0703.and 0.0703 respectively. However
this does not mean that the modified LR criterion is worse, because the above
four test criteria are to test H: X, = X, against K: 6, = 1 fora = 1,2, ..., p
and }2_, 0, > p, which is an extension of the one-sided test, and our modified
LR criterion is against all alternatives K: X, s X,, which is an extension of the
two-sided test.
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Added in proof. Theorem 4.1 was independently obtained by Yoong-Sin, Lee,
“Distribution of the canonical correlations and asymptotic expansions for dis-
tributions of certain independence test statistics” [Ann. Math. Statist. 42 (1971)
526-537] and by R. J. Muirhead, “On the test of independence between two
sets of variates” [Ann. Math. Statist. 43 (1972) 1491-1497]. The first paper was
based on our result in [18] and the second paper was based on the system of
differential equations for hypergeometric function ,F, of matrix argument.

Extension to independence between k-sets of variates from two sets of variates
under fixed alternative was performed by H. Nagao, ‘“Non-null distributions of
the likelihood ratio criteria for independence and equality of mean vectors and
covariance matrices” [Ann. Inst. Statist. Math. 24 (1972) 67-79].



