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For a sequence of random variables forming an m-dependent stochastic
process (not necessarily stationary), asymptotic distribution and other con-
“vergence properties of the extremum of certain functions of the empirical
distribution are studied. In this context, it is shown that the asymptotic
probability of the classical Kolmogorov-Smirnov statistic exceeding any
positive real number provides an upper bound for the corresponding proba-
bility when the underlying random variables are not necessarily identically
distributed. The theory is specifically applied to the study of the limiting
distribution, strong convergence and convergence of the first moment of
the strength of a bundle of parallel filaments (which is shown to be the
extremum of a function of the empirical distribution).

1. Introduction. Let X, , < ... < X, be the nordered values of X, - - -, X,
representing the strengths (nonnegative random variables) of individual filaments
in a bundle of n parallel filaments of equal length. If we assume that the force
of a free load on the bundle is distributed equally on each filament and the
strength of an individual filament is independent of the number of filaments in
a bundle, then the minimum load B, beyond which all the filaments of the bundle
give way is defined to be the strength of the bundle.

Now, if a bundle breaks under a load L, then the inequalities nX, , < L,

(n—nHX,,<L,---, X,, = L are simultaneously satisfied. Consequently, the
bundle strength can be represented as
(1.1) B, = max {nX, ,, (n — D)X, , -+, X, .} .

When the X; are i.i.d. rv (independent and identically distributed random varia-
bles), Daniels [4] investigated the probability distribution of B, and established
the asymptotic normality of the standardized form of B, by very elaborate and
complicated analysis.

We observe that if S,(x) be the empirical distribution function for X, - . -, X,,,
then n~'B, can be written as sup,,, x[1 — S,(x)] (see Section 7). This leads us
to consider a general class of statistics of the form sup, ¢(x, S,(x)) to which B,
belongs, and by probabilistic arguments on the fluctuations of §,, we are able
to study the distribution theory even in a more complicated situation when the
{X;} forms an m-dependent process, not necessarily stationary.

Section2is devoted to the detailed statement of the problem. The main theorem
along with the needed regularity conditions are stated in Section 3. In Section 4
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some preliminary results including the derivation of the Kolmogorov-Smirnov
bound in the case of non-identically distributed random variables are obtained.
These results are then used in the proof of the main theorem in Section 5. In
Section 6, under a convexity assumption, moment convergence of the statistic
is proved. In Section 7, it is shown that if the X; are i.i.d. rv with a distribution
function F(x) and if x[1 — F(x)] besides having a unique maximum #, is mono-
tonically decreasing for x > x,, where x, is finite, then n}E[sup,.,{x[l —
S, (x)]} — k| —0asn— co. Some possible generalizations are briefly sketched in
Section 8.

2. Statement of the problem. Let {X,, X,, ...} be a sequence of rv’s forming
an m-dependent stochastic process, not necessarily stationary. The marginal and
the joint df of X; and (X;, X;,,) are denoted by F;(x) and F, ,(x, y), respectively,
for h=1,...,m,i=1,2, ..., and let F,(x) admit of a continuous density
function f;(x). The empirical df (distribution function) when the sample is
(X5, - -+, X,) is defined by

(2.1) S (x) =nt Y o(x — X)), —0 < x < oo,

where c(u) is equal to 1 or 0 according as # > 0 or not. Also, the average df
F,,(x) is defined by

(2.2) Fo(x) =n1 3 Fy(x), so that ES,(x) = F,(x),
—oo < x < oo,

Consider a sequence of nonnegative real valued functions #,(x) = ¢(x, F,, (x))
(—co < x < o) where h,(x) assumes a finite global maximum #,° at a unique
(unknown) point x = x,°. Our primary concern is to provide a suitable estimator
of &,’ based on the sample (X, - - -, X,). Since S,(x) unbiasedly estimates ¥, (x)
for all x, we are intuitively led to the following estimator of #,°. Let

(2'3) Zni - (/)(Xz’ Sn(Xz))’ l = 1727 cee, R,
(2.4) Z,* = max,.;., Z,

i

Our central problem is to derive the asymptotic normality of n¥(Z,* — £,°%). Since
Z, s Z,, are not independent (even when m = 0) nor necessarily identically
distributed, the usual techniques of deriving the distribution of the sample maxi-
mum fail to provide our desired result.' The task is accomplished here by first
showing that under certain regularity conditions, to be stated in Section 3, as
n — oo, n¥(Z,* — h,°) is, in probability, proportional to n[S,(x,%) — F,(x,9],
and then applying the central limit theorem on the latter variable.

3. Basic regularity conditions and the main theorem. Let
3.1) A={(x,)): —c0 < x< 0,0y 1},

We assume that ¢(x, y) is a nonnegative, continuous function defined for all
(x,y) € A. We impose the following regularity conditions on 4,°, x,° and F,,,:
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@

3.2) 0 < inf, 4,° < sup, ,° < oo and sup, |x,'| < oo .

(IT) The sequence of the marginal densities {f;(x)} is assumed to be equal to
{F,(x)} and is equicontinuous and uniformly bounded in the interval [inf, x,* — o,
sup, x,* + p], where p (> 0) is arbitrarily small. This implies that
(33) Supn ﬁn)(xno) —é— .fo < 0 where ﬁn)(x) = (d/dx)F(n)(x) ‘

In addition, it is assumed that

(34) lnfn ﬂn)(xno) ; fo > 0.
Also, let p, = F,,(x,%). Then, Assumption II implies that
(3.5) 0 < p < inf,p, Ssup,po=p < 1.

(III) For every 7 > 0 and p > 0, let

(3.6) B =Und(x )i xS —pS xS X'+ o p— 7Sy =put}

Let ¢,(x, y) and ¢,(x, y) denote the partial derivatives of ¢(x, y) with respect to
xand y respectively whenever they exist. We assume that ¢,,(x, y) exists and is
jointly continuous in (x, y) for all (x, y) € B(p, 1), where both p and 5 are small.
Also ¢y (x, y) exists and is jointly continuous in (x, y) for all (x,y)e 4. It is
assumed that

(i) if &, = Pu(X,’ pa), then
(3.7 0 < inf, |&,] < sup, [§.] < oo
(ii) for every y: 0 <y < 1, |¢u(x, y)| < g(x) where g(x) is continuous in
x(—o0 < x < ), and
(ili) ¢*(x) is uniformly integrable with respect to the {F;}, which ensures that
(3.8) SUP; §ycarss 9'(%) AFi(x) = a*() >0 as t—co,

(IV) To avoid the possibility of having another local maximum of h,(x) to be
arbitrary close (in abscissa or value) to h,° = h(x,°), we impose the following
separability and monotonicity conditions. Let &, be a second largest local
maximum of A,(x) (if any), then

(3.9) inf, [h,(x,)) — B,@] = h* > 0.

Also, the continuity and differentiability of #,(x) in the neighborhood of x,°,
implied by (III)is strengthened to the following: there exist positive finite constants
C,k(>1),i=12, independent of n, such that for x: |x — x,°| < o(> 0),

(3'10) hn('xno) - Cllx - xn0|k1 é hn(x) é hn(xno) - C2|x - xnolk2 >

where p may be taken sufficiently small. In fact, if #,(x) has a continuous second
derivative which is negative and uniformly (in n) bounded away from 0 and
bounded below in the interval [x,° — p, x,° + p], then (3.10) holds with
k, =k, =2.
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We now introduce the following notations. Let
(3.11) f-mu(xno) = ;7 2085 frnomen(%20) 3
mp=ln 4 Lbm = fm+ D j =1, m+ 1,

where [q] is the largest integer contained in ¢,

(3.12) F(x:0) = 072 Zmdin, fo,i(x,0)
where we note that n/n; — (m + l)asn — oo, forj=1,...,m+ 1;
(3‘13) . Pn,i:Fi(xno)’ i = 1, R (O

Fop(x, y) = (n — By T390 Fi (%, 9) 5
(314) X p = En)h(xno’ xno) - Pnz ’ ﬂn,h = (n - h)_l Z;z:—lh {Pn,ipn,i+h - Pn2}

forh=1,...,m,and a, = p,(1 — p,), Buo=n" 20, (Pn: — Pa)’. Let then
(3‘15) uft,m = (an,o - ﬁn,o) + 2 Z;znzl {(n - h)/n}{an,h - ﬂn,h} >
(3'16) Tfn,m = yfi,m nz; fn = ¢ol(xno’ Pn) .

Then, the main theorem of the paper is the following:

THEOREM 3.1. Under the conditions stated above, if inf, vy, . > 0, then for all
real x,

(3. 17) lim,_, P{n}[Z,* — b,°)/10m < x} = (2r)72 {2 exp (—42%)dt.

n—00

The proof of the theorem is postponed to Section 5.

It may be remarked that if the { X;} forms a stationary m(= 0)-dependent process
where the marginal df of X; is F(x), then all the Conditions, (I) to (IV), simplify
considerably. Here £,(x) = ¢(x, F(x)) does not depend on n, and hence, 4, = A°
and x,° = x° do not depend on n. Thus, (3.2) is not needed. Also, instead of
(3.3) and (3.4), we need tc assume only that in the neighborhood of x°, f(x) =
F'(x) is continuous, positive and finite. B(p, 7) reduces to a neighborhood of
(x°, p) (where p, = p = F(x°) does not depend on n), and §, = § = ¢, (x°, p) has
to be only nonzero. (3.8) is automatically granted by the square integrability
of g(x) (with respect to F), while, in (3.9) and (3.10), the uniformity conditions
with respect to n are not needed.

4. Some preliminary results. LetY,, < ... < Y, , be the order statistics cor-
responding to the random variables
(4.1) Yo = 9(X;, Fio (X)) i=1,2,..-,n.
Now Y,;, ---,Y,, form an m-dependent stochastic process with the marginal

df’'s G, (x), - - -, G,™(x), respectively. Note that by Assumption II,

(4.2) sup, ¢(x, F\(x)) = h,' = G,™(h,’) =1 forall 1<i<n.
LEMMA 4.1. Under the regularity conditions of Section 3, for every ¢ > 0,

(4.3) lim, ., P{Y,,=hC—¢n}=1,

n—0 n,n =
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Proor. By virtue of (3.9) and (3.10), it follows that for every ¢ > 0, there
exists an n, say ny(¢), such that e/n < h* for all n = ny(¢), and there exists {e(n)}
such that for all n = n(e),

(4.4) {x:h(x) = h, —¢/n} D {x:|x — x,9 < Je(n)},
where [by (3.10)]
(4.5) lim, . ¢(n) =0 but lim,_,, {ne(n)} = oo .

Hence, for every ¢ > 0, n = ny(e),
(4.6) 1 —G"™0h, —¢/n) = P{|X; — x,"| £ 3e(n)}

= Fi(x,* + de(n)) — Fi(x,) — 3e(n)) = e(n)fi(x,)
by Assumption II. Let then

YgZL)) = max [Ynj’ Ynj+m+1’ DR Ynj+(nj—1)(m+1)] ’ .] = 1’ s, m + 1 .
Then, Y, , =Y forallj=1,...,m+ 1. Thus,
(4.7) P{Y,, < h — ¢/n} < min, P{Y@) < h,* — ¢/n} .

Now, Y is the maximum over n; independent random variables. Hence,
PY < k. — e/n} = [1360" Giumn (B’ — ¢/n)
(4.8) < [n7" 200" Ceeman(h’ — e[m)]"d
Z [ = emfix,  j=12 - m4 1.
Since sup; fi,)(%.°) = fiu(x,%) > 0 by (3.4) and ne(n) — oo as n — oo, we have
(4.9) min; P{Y%) < h,° — ¢/n} = [1 — e(n)fy(x,)" —0  as n—oo.
Hence the lemma follows from (4.7) and (4.9). [J

LEMMA 4.2. Let {X,} be a sequence of m dependent random variables with con-
tinuous df {F,} and let S,(x) and F,,(x) be defined as in (2.1) and (2.2), then for
every ¢ > 0, there exists a finite c(¢) > 0 such that

(4.10) lim sup, P{sup, n#|S,(x) — F,,(x)] > c(e)} < e
Proor. Let us define
(4.11) S, i(X) = n;7t kit e(x — Xjipmen) and

Fipi(%) = 0,7 205" Fippman(%) 5
forj=1,...,m + 1. Then by definition,
(4.12)  sup, |nH{S,(x) — Fi(x)}| = D74 (n/n;)~Hsup, |n,}{S, ;(x) — Fis(x)}} -
Since (m + )n; ~n,j=1,...,m + 1, itsuffices to prove the following theorem.

THEOREM 4.3. Let {X;} be a sequence of independent rv’s with continuous df’s
{F.}, and let S,(x) and F,,(x) be defined as in (2.1) and (2.2). Then, for every
A>0,

(4.13) lim sup, P{sup, n}|S,(x) — F,,(x)] > 4} < 2 5., (— L)k+le %2

where the equality sign holds when all the F; are identical.
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Proor. Define Q,; = F,,(X,), t,; = P[0, < 1},0<¢t< 1,i=1,...,n. Then
ntyrt,=1t:0Z 1< 1. Also, let
(4.14) U, (t) = n}[G, *(t) — 1]; G*H)=ntXr c(t — Q,),
01,
Note that U,(0) = U,(1) = 0. Thus, is suffices to show that for all {F,},
(4.15) lim sup, P{sup,c,.; |U, ()] > 2} £ 2 5, (— )k+le %2

Since U, () has n discontinuities (jumps of n~%), it does not belong to the space
C[0, 1] of all continuous real functions on [0, 1]. We consider the space D[0, 1]
of real functions y(r) defined on [0, 1] with the properties that (i) y(+ — 0) and

y(t + 0) exist for all 0 < ¢ < 1, (ii) y(f) = y(t + 0), 0 < r < 1, and (iii) y(7) is
continuous at r = 0 and r = 1. With D[0, 1], we associate the Skorokhod J;-
topology
(4.16) 0p(%,y) = infye, [sup, [x(1) — y(A1))| + sup, |t — A(H)]] »
where A is the class of strictly increasing, continuous mapping of [0, 1] onto
itself. Then, for every n > 1, U, = {U,(r): 0 < ¢ < 1} belongs to D[0, 1].
Note that forevery (0 ) r, <<, (£ 1)andn > 1,
E{[U.(0) = U()IU.(t) — U (O]}
= T D Dier Do B ds)
(4.17) = T E(d3d) + Xl E(d)E(d))
+ 2 Xk E(d ) E(d )}
= X E(dGd3) 4 [ L E(@R) 1 25 E(d:2)']
+ 2[ 25 E(dd))}

where
(4.18)  di=c(t — Q) —c(ti — Q) —pls PR =P =0.=1,
(4.19)  df =c(ty— Q) —c(t — Q) — piils pi =Pt <0, =t}
fori =1, ..., n. On denoting by
(4.20) p=t—1, pr=1t—t, p=p+p.=t—1t,
and noting that
(i nt e p8=p,s=1,2,
(i) n7* 2 pR [T = (07 T pi) (07t i [pET) £ (n D pid) X
(n7 i1 pd) = PP Slmﬂarly, n= i (PR Tpd éplpz, and
(i) (n7" i, pipd)t = [0 2 (Pii,’ 1[n7 i (pid)'] = pupas We obtain
from (4.18), (4.19) and (4.20) that the right-hand side of (4.17) can be written
as
WSt PPELP + P — 3ppi]
(4.21) + [ZF 1P232(1 PSZ)][Z’-‘_li’iﬁ)(l Pl + 2 2 pipid T
= n R [P TP + D pilpll + m'pips + 2n°pipi}
S 5pip, = §3(py + po)? = 1.25p* = 1.25(t, — t)*.
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Now, for every n = 1, let Z, = {Z,(f): 0 < ¢t < 1} be a Gaussian process with
EZ,(f) = 0and E[Z,(NZ, ()] = n* 1y su(l — 1,,), 0 < s <t < 1, where s,,=

P{Q,; < s}, i =1, ..., n. This Gaussian process can be conceived as an average
of n independent Gaussian processes. Since, by definition, uniformly in n > 1,

E[Z,(1) — Z,(9)]' = HE[Z.(1) — Z,()I'}’

(4‘22) = 3{n_l Z?:l [sm'(l - sm’) - zsn'i(l - tni) + tm(l - t'ni)]}2
=3{(t — ) — nt 11 (ty — 5.0)F
< 3(r — ), 0<ssrl,

according to the Kolmogorov existence theorem [cf. Hajek and Sidak ((1967)
page 177)], such a process exists in the space C[0, 1] of all continuous real func-
tions on [0, 1].

For every finite m(= 1), 0 £ 1 < ... < t™ < l,and 4,, = (4, - - -, 4,,) With
real and finite 2’s, the random variable Z, = 1, 2, Z,(¢'#) is distributed normally
with 0 mean and variance ¢,> = E(Z,%) < XX ™, |4;|)* < oo, where, of course,
¢, may be arbitrarily close to 0, depending on the G, (+?), i =1, ..., n,j =
1,...,m. Let U, = ¥ ,2;U,(t?), which has also mean 0 and variance ¢,>.
Since U, involves a summation over n independent (bounded valued) random
variables, by the classical central limit theorem [viz., Loéve (1963) page 277],
U, is asymptotically normal with 0 mean and variance ¢,?, whenever ng,? — co
as n — oo. On the other hand, if n¢g,* does not go to co as n — oo, ¢,2— 0 as
n — oo, and hence, both Z, and U, have asymptotically a degenerate distribution
which attaches a unit mass at the point 0. Hence, for every finite m(= 1), and
0tV < e <t < L [U,(e), -, Uy (t™) ] and [Z,(¢Y), - - -, Z,(1™)] have
convergent equivalent finite dimensional distributions. Consequently, by (4.21)
and Theorem 15.6 of Billingsley ((1967) page 128), it follows that U, and Z, are
convergent equivalent in law in the Skorokhod J;-topology on D[0, 1]. Hence,
to prove the theorem, it suffices to show that for every 4 > 0,

(4.23) lim sup,_., P{SUpyc,<; |Z, ()] > 2} < 2 T, (— 1)ktle 222

Consider now a Brownian bridge [Z(f): 0 < ¢t < 1] with EZ(f) = 0 and
E[Z(s)Z()] = s(1 — t) for 0 < s < t =< 1. For finitely many 0 < 1V < ... <
t™ < 1, let D, and D™ be the covariance matrices of [Z,(tV), - .-, Z,(t'™)]
and [Z(t?), - .., Z(t™™)] respectively. It is then easy to verify that

(4.24) D(m) i Dn(m) — ((n-l ?21 (t(njz) _ t(j))(tibli) — t(l)))) — D*(‘m) s

where D*™ is positive semi-definite (p.s.d.) and D™ is p.d. Also, by the well-
known Kolmogorov-Smirnov theorem

(4.25) lim,, ., P{max,_,., |Z(t'?)] > 2} < 2 Yz, (— 1)ktlew

m—oo

So the desired result will follow if we can show that for every m and 0 <
P < 0 L t(mg 1,

(4.26) P{max,_,,, |Z,(t9)| > 4} £ P{max,;_, |Z(+'?)| > 4}.
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which really follows from (4.24), (4.25) and the following lemma due to Anderson
[1].

LEMMA 4.4. Let C, be a convex set (in p-dimensions) symmetric about the origin.
Let X and Y be independent normally distributed random variables (p-vectors) with
null means and dispersion matrices B, and B, respectively, where B, is p.d. and B,
and B, = B, — B, are at least p.s.d. Then

(4.27) P{XeC} < P[YeC)}.
where the equality holds only when By is a null matrix.

Now, by definition, Y, ,, defined just before (4.1), is equal to max,.;<, ¢(X;,

F. (X)) = ¢(X,,> F.,(X,,), where r is a random variable which can assume
integral values between 1 and n,and X, , < --- < X, , are the ordered variables
corresponding to X, - - -, X,.

n

LemMma 4.5. n'r — p, — 0, in probability, as n — oo.

ProoF. By Lemma 4.1, (3.9) and (3.10), it follows that | X, , — x,°| —, 0, and
hence, by Assumption IT of Section 3, F,, (X, ,) — F(x,") —,0as n— oco. Now,
upon noting that §,(X, ,) = r/n and F,(x,%) = p,, we have

(428) F(n)(Xn,r) - F(n)(xno) = [F(n)(Xn,r) - Sn(Xn,r)] + (r/n - Pn) >

where by Lemma 4.2, the first term on the right-hand side of (4.28) is O,(n™%),
and hence, the convergence of the left-hand side to zero, in probability, as n — oo,
implies that r/n — p, —,0as n — co. []

Consider now a sequence of intervals
(4.29) L(0)={x:x—0=x = x4 d}, n=1,0>0.
Let then
(4.30)  J,(0) = sup,cr,m {|IP[Su(x) — Foy(x)] — n*[S,(x,") — pull} -
LEMMA 4.6. For every positive ¢ and 7, there exists a 6(> 0), such that
(4.31) lim sup, P{J,(0) > ¢} < 7.

The proof readily follows from (4.12) and the tightness of the m + 1 com-
ponent processes as shown in the proof of Theorem 4.3. A direct consequence
of the preceding two lemmas is the following.

LemMA 4.7. |m[S(X,.,) — Fo(X,.)] — ni[S,(x,") — p,]| —,0, asn — co.
Also, writing

(4.32) W,* = nS,(x,0) — Pl

we obtain from Lemma 2.3 of Sen [9] the following.

Lemma 4.8. Ifinf, v, > 0, then (W, *[v, ) — A0, 1).
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We define g(x) as in after (3.7) and denote the df of g(X;) by H;(¢), 0 < ¢ < oo,
1 < i < n. Then, we have the following.
LEmMMA 4.9. Under (3.8), max,_;_, n™tg(X;) = o,(1) as n — oo.
Proor. Let us write g; = g(X;), i = 1, ..., n, and let
(4.33) 9,9 = max{g;, 9;imi1s ""gj+<nj-1>(m+n}s j=1...,m+1,

where n; are defined by (3.11). Then, max,., ¢9(X;) = max,_;.,,, 9,7, and
hence, for every ¢ > 0,

(4.34) P{max,_;_, g(X;) > ent} < Y"1 Plg, @ > ent}.

Now, for every j(= 1, ---,m + 1), by Lemma 3.1 of [10], P{g,” > ent} -0
as n — oo, and therefore the lemma follows.

LEMMA 4.10. Under (ii) of Assumption 111 of Section 3, as n — oo
(4.35) max, ., [¢(X;, F(n)(Xi)) — DX S(X)) = o,(1) .
Proor. The left-hand side of (4.35) is bounded above by
(4.36) [max,;, 9(X;)l[max,;, [F. (X)) — S.(X)I],
and hence, the lemma directly follows from Lemmas 4.2 and 4.9.

5. The proof of Theorem 3.1. Let us recall that Y,, = ¢(X;, F, (X)), Z,; =
(X, S(X)), 1 <i<n,and Z,* = max ;. Z,iy YV, = MaX,go, Voo = O(X, s

nid n,m

F, (X, ,)), where the random variable r is a positive integer < n. Also, leta,™
and a,” be so defined that

(5.1 h(x,* —a,V) = h(x,* + a,”)=h —cntlogn, c>0.
Then, both 4,V and a,” — 0 as n — oo, and by Lemma 4.1
(5.2) P{X,,e[x, —a," x4+ a,P]}—1 as n— oco.

Consider now three random subsets

(53) Sn(l) :{Xi:xn07an(1)<Xi<xn0+an(2)’i: 17 ] n}7
(5.4) SO =1{X;: X; ¢ [x,° — an(l)’x%0+an(2>] but X, — x| < p,i=1, .- -, n},
(55) Sn(g):{Xi: |Xi_xn0| '> P’l: 17"’, n}’

where o(> 0) is small, and it leads to the satisfaction of the Conditions II, III
and IV of Section 3. Using then the Conditions I, II, IIT and IV of Section 3
along with the Lemma 4.6, we obtain that

(56) Sup'i {|n%(Zm - Ym) - stl(an’ Pn) Wn*l ie Sn(l)} - Op(l) i

as n — co. By (5.2), max; {Y,

hence, by (5.6), as n — oo

(5.7) Zi o =max; {Z,:ieS,V} =Y, , 4+ ntu(x,’, p) W, * + o, (nt).

ieS,V}=Y,,, in probability, as n — co, and
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Also, by Lemma 4.1, |n¥(Y, , — h,%)| = o,(n"*), and hence,

(5.8) Zr, = h0 4 nE W, F 4 oo (nY), as n— oo,
where £, = ¢u(x,’ p,). Consequently, by (3.16) and Lemma 4.8,

(5.9) AmZr, — b7 am) — A0, 1) as n—s oo,
provided inf, 7, ,, > 0. Hence, for every ¢ > 0,

(5.10) P{ZY, =z h, — }cn~tlogn} — 1 as n— oo .
Thus, to prove the theorem, it suffices to show that as n — oo,

(5.11) foe Plmax; [Z,;:ie S, = h,° — Len~tlogn} — 0,

(which implies that n¥(Z,* — Z¥ ) = 0, in probability, as n — c0). By (3.2),
and the continuity of g(x) in the closed interval [x,° — p, x,° + o], we have
sup, [sup, {¢(x): xe[x," — p, x,° + p]}] < oo, and hence, by Lemma 4.2,

sup; {|n¥(Z,; — Y,;)|: ie S, ¥}

(5.12) < [sup, {9(x): x € [x,0 — p, x,0 + p}]
X [sup, {nH|F,(x) — S,(0)|: x€ [x,5 — o, %, + p]}]
=0,1).

On the other hand, by (5.1) and (5.4), max; {Y,;: i€ S,®} < &, — cn~* log n.
Hence, by (5.12), max;{Z,;: ie S,*} < h,° — Len~tlogn, in probability, as
n— oo. Finally, by (3.9), (3.10) and Lemma 4.10, it follows that for every
p > 0, there exists a p*(> 0), such that

(5.13) max; {Z,;:ieS,*} < h,' — p*, in probability, as n — co .
Consequently, (5.11) holds, and the theorem follows.

6. Moment convergence of Z, *. We impose the following additional regularity
conditions:

(@) ¢(x,y)isconvex in y(0 < y < 1) i.e.,

(6.1) $(x,p) £ (I — P, 0) + yg(x, 1), ¥ye(0, 1), where
(b) ¢(x, d), 0 = 0, 1 are nonnegative,
(6.2) ¢(x,0) is 1T in x and ¢(x,1) is | in x:
' —oo0 < x < oo, and
()
(6.3) sup,, §& ¢¥(x, 8) dF,, (x) £ py(6) < oo for 6 =0,1.

THEOREM 6.1. Under the conditions of Theorem 3.1, and (6.1)—(6.3),
lim,_., |E(Z,*) — h,°| = 0.

Proor. Let X,, < .-+ £ X, , be the order statistics, and let Z,"* = ¢(X, ,,
S.(X,:), 1 £i < n,sothat Z,* = max,_,_, Z,"”. Then, by (6.1)

n

(6.4) 2,0 = [(n — Dn)p(X, 0 0) + (ifm)(X, 55 1) 1

IA
IA
S
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Now, by (6.2),

65 "I, 00= Ly, 0)
< Ly, 0= L e 0
n n
(6.6) Lo Lyiex,
n n

i Z;‘L:l ¢(Xn,j’ 1) = "1— i=1 Sb(Xj’ 1) .
n n

Therefore, on writing ¢, = n™' 2, {¢(X;, 0) + ¢(X;, 1)}, we have

(6.7) 0<z*<4¢,.

Let @,(x) be the cdf of §,. Then, by (6.3), ¢, is uniformly integrable, i.e., the
identity function is uniformly integrable with respect to {®,}. Now, by Theorem
3.1, Z,* converges in probability to 4,°. Hence, the theorem follows by using
the dominated convergence theorem.

The next problem is to study conditions under which #,° may be replaced by
E(Z,*) in Theorem 3.1. This is of interest as often we want to study the rate of
convergence of the bias of Z, * relative to its asymptotic standard deviation.
This problem is studied in the case of i.i.d. rv’s in Theorem 7.1 (see also the
remark following it).

In the remainder of the paper, we consider a simple ¢ where all these results
apply directly.

=

7. A special case. In (1.1), B, has been introduced to describe the strength of
a bundle of parallel filaments. Let B,* = n'B, = max,_;, {[1 — (i — 1)/n]X, .},
where X, ;, i = 1, ..., n, are the ordered values of the nonnegative random vari-
ables X, ..., X, representing the strength of the individual filaments in the
bundle. Observe that B,* = max, ., {X;[1 — S,(X; —)]} = sup,.,{x[1 — S,(*)]}
(see [10]). Now, if the X; are i.i.d. rv’s with E(X?) < oo, it is easily seen that
ntB,* — max,_, X[l — S,(X,)]| —,0as n— co. Thus, we are led to consider
a simple ¢ where ¢(x, y) = x(I — ), 0 < x < 00, 0 < y < 1. We define h, =
sup,, {x[1 — F(x)]}, so that by assumption, #, = x,[1 — F(x,)] where #, and x,
are both unique. Fori.i.d. rv’s, Daniels [4] has given a very elaborate deduction
of the asymptotic normality of the standardized form of B, *. It would be very
complicated to extend his method if the variables are not identically distributed
or independent. On the other hand, our Theorem 3.1 yields a very simple proof
valid under more general conditions. Further, it is shown in [10] that when the
X; are i.i.d. rv’s with finite expectation, {B,*} forms a reverse sub-martingale
sequence, and when E(X;*) < oo, B,* — hya.s. and E(B,*) — h,asn — co. Hence,
Z,* —hyas., as n— oo. Moreover, (6.1)—(6.3) hold for this particular case,
and by Theorem 6.1, E(Z,*) — h, as n — co, which also follows from the fact
that E(B,*) — h,as n — co.
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For a sequence of estimators {7} of a parameter #, the ARB (asymptotic rela-
tive bias) is defined as the limit of the ratio of the bias of T, to its asymptotic
standard deviation. In addition to the criterion of consistency, it is quite natural
to seek that the ARB of an estimator should be equal to 0, so that all the con-
clusions derived from the asymptotic distribution of the standardized form of T,
remain valid no matter whether we substitute § or ET,. We shall show that in
the case of i.i.d. rv’s, the ARB of {Z, *} is equal to 0. For simplicity of proof,
we first consider the particular case of ¢(x, F(x)) = x[1 — F(x)].

THEOREM 7.1. If p) = E(X;®) < oo, x[1 — F(x)] assumes a unique maximum h,
at x = x,, and if for some x,(> x,), x[1 — F(x)]is | for x > x,, then

lim, ., {n#|E(B,*) — h|} = 0.
Proor. Let M, = x,n[S,(x,) — F(x,)]. Then, by definition,

(7.1) B,* =sup, x[1 — S,(x)] = x,[1 — S,(x)] = hy — n~ M, ,
where E(M,) = 0 and E(M,?) < 1x?, Vn = 1. Hence,
(7.2) n¥(B,* — h) + M, = 0 and EB.* = h,, vnz>=1.

Also, as a special case, we obtain from Theorem 3.1, (5.8) and (5.11) that
(7.3) n¥(B,* — h) + M, —, 0, as n— oo .

Therefore, the proof of the theorem will follow from (7.2), (7.3) and the domi-
nated convergence theorem (cf. [8] page 125), provided we can show that there
is some nonnegative random variable W, such that for all »,

(7.4) n¥(B,* — h) < W, where W, is uniformly integrable.
With this end in view, we choose a positive number ¢(> x,) such that ¢ > 1,
(7.5) sup,., X[l — F(x)] = c[1 — F(c¢)] = b, < 1Ay, and F(e) > 1.
Then, we have

B,* = max [sup,., x[1 — S.(x)], sup,, x[1 — S,(x)]]

max [h) 4 sup,<, X[F(x) — S,(x)], sup,s, x[1 — S.(x)]]
= max [k 4 csup, [F(x) — S,(x)], sup,,, x[1 — S.(0)]]

(7.6)

and as sup, [F(x) — S,(x)] = O (the equality always holds at x = 0), we have
n¥(B,* — hy)

max {c sup, n{[F(x) — S,(x)], max [0, n}{sup,., x[1 — S,(x)] — h,}]}

cfsup, nt[F(x) — S,(x)]} + max [0, n}{sup,., x[1 — S,(x)] — A}]

efsup, n¥[F(x) — S,(x)]} 4+ max [0, n¥{sup,, x[F(x) — S.(x)] — §hol]

w4+ W =Ww,, say,

(7.7)

IATIAIA

Il

where both W, and W, are nonnegative. Now sup, n}[F(x) — S,(x)] has the
same distribution as of sup, n*[S,(x) — F(x)], and hence, by Lemma 2, page 646,
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of Dvoretsky, Kiefer and Wolfowitz [6], we have
(7.8) P{sup, n}[F(x) — S,(x)] > r} < ¢,e™*, forall r>0,
where ¢, does not depend on n. (7.8) implies that W, is uniformly integrable.

Since p,” < oo, there exists an #(> 0), such that

(7.9) x[F(x + h) — F(x)] £ {z*" x dF(x) < th, for all x > x,
Define then a countable set of points

(7.10) b, =c+ b, j=0,1,2,.--,00,
where we let & < }. Also, let

(7.11) Uy; = b,[F(b,) — S,(6,)] J=0,1,2,

Then, for every x & [5,, b;,.]. X[F(x) — $,(0)]| < b,7(b,.)(max [|U,], U] +
bF(b;41) — F(b )N} < (1 + BY{max [|U,,], [Uysl] + $ho) < H{max[|U,, [, U, ]} +

Lhy, forj=0,1,2,.... Thus, W, < max [0, n¥{max,,, 3|U,,| — 4h,}]. Hence,
(7.12) P{W,» = o} £ P{max,, |U,;| > 2h, + %n"tw}, forall = 0.
Now, some standard computations yield that E{U, ;| U,,, - - -, U,; ,}=U,; {6;,[1—

F(b))]/b; 4[1 — F(b; )]} = ¢,U,,_,, say, j = 1, where by the assumed mono-
tonicity of x[1 — F(x)] (for x > x,),
(7.13) ¢, = b1 — F(b)]/b, o[l — F(b;_)] < 1 forall j>1.
Thus, E{|U,;| [ U, -+, Upj i} 2 ¢5lU, 5000, Vj = 1, and E[US;] = n7'0,2F(by)[1 —
F(b;)], j = 0. Hence, by Theorem 2.1 of Birnbaum and Marshall [3], we obtain
that for all w > 0,
P{max ., U, > §hy + §n~ i}
< Gk + §nio) (Do [0 F (B — F(b))

— @202 F(by)(1 — F(b;_)}] + beF(b)[1 — F(by)])
(3rthy + 30) (X3 b, 1F(;) — F(b;)I[1 — BN — F(b;-,)]

+ bo2F(bo)[1 - F(bo)]
(Bnihy + ) {25 0;7[F(b;) — F(b;-)] + b1 — F(bo)]}
(§nthy + §0) {2 {7 x* dF(x)}
< 41p/{nthy + 30}72.

(7.14)

Il

I\ TIA

This implies that W, is also uniformly integrable. The proof of the theorem
follows then from (7.4), (7.7), (7.8) and (7.14). []

REMARKS. (i) The assumption of monotonicity of x[1 — F(x)] in the tail,
though not restrictive, can be removed at the cost of the existence of y," = E(X,")
for some r > 2; for brevity, the proof is omitted. (ii) For general ¢(x, F(x)),
by (III) of Section 3, |¢(x, S,(x)) — ¢(x, F(x))| < g(x)|S,(x) — F(x)|, and hence,
whenever max,_;_, ¢(X;, S,(X;)) = sup,., ¢(x, S,(x)), Theorem 7.1 holds if x[1 —
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F(x)] be replaced by g(x)[1 — F(x)] i.e., if E{g*(X,)} < oo and g*(x)[1 — F(x)]is
| in x = x,. The proof is analogous.

8. Some possible generalizations of Theorem 3.1. (i) Multivariate case. Let
X, =Xy, -, X,,)),i=1,2, ..., nbeindependent stochastic p-vectors, (p = 1),
with continuous df’s F,, - - ., F,, respectively. For the jth variate, let F; ;(x)
be thedfof X;,, i =1,..--,nj=1,...,p, and let

159

(8.1) Fo(x) = nt Ty Fin(x) Supn(x) =nt X e(x — Xyy)
o | . j=ter

Consider a real nonnegative valued function

(8.2) hy(X) = $(X, Fopay(x1), -5 Fupp(x,)) XeRr.

As in Sections 2 and 3, we assume that #,(x) has a unique (finite) maximum #,°
at x,’ where £,° satisfies (3.2) and ||x,°|| satisfies (3.2); ||x|| being the Euclidean
norm of x. Let then Z,* = max,,., Z,,, where

(83) Zm = gb(Xz? Sn[l](Xil)’ ] Sn[p](X'lp)) ’ i = 1’ R

Replacing y in ¢(x, y) by a vector y = (y,, ---, y,) and x by x, we impose the
same conditions as in Section 3, and denote the partial derivatives of ¢ with
respect to y, - -+, y,, evaluated at (x,°, F,13(x%1), -« 5 Forp(X3,)), by £,%5 -+,
&, which are assumed to satisfy (3.7). Let then

(8.4) W, = (Wep s Wi Wi = niS,;(xh;) — Fup(xa)]s
j= I ... P

§, = (5,2, ---,&,7) and let v, be the covariance matrix of W, *. Finally, let
(8.5) 7.l = §,/v,.&, and assume that inf, y, > 0.
Then, by the same technique as in Theorem 3.1, it can be shown that
(8.6) |n¥(Z,* — k") — §,/W,* —, 0 as n— oo,
and hence, as n — co,
(8.7) LZ,* — hO)Jr) — A0, 1) .

(ii) Vector case. Suppose now thath,(x) = [,V (x), - - -, b, (x)], x € R, where

b, P(x) = ¢ ;) (x, F,,(x)) satisfies the conditions of Sections 2 and 3; the vector
of sample and population maxima are denoted by Z,* and h,’, respectively. Then,
by the same technique as in Theorem 3.1, we have

(8.8) & (nZ,* —h])—> 4 ,0,T,),

where T, is the dispersion matrix of ni¢ ;)0 (x%;, Fy(x3))[Sa(X%;) — Fiuy(X%5)1

j=1,- ., pyand B, = ¢ (x5, Fp(x3,)), j=1, -+, p.
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