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WEAK CONVERGENCE OF THE SAMPLE
DISTRIBUTION FUNCTION WHEN
PARAMETERS ARE ESTIMATED

By J. DURBIN

London School of Economics and Political Science

The weak convergence of the sample df is studied under a given se-
quence of alternative hypotheses when parameters are estimated from the
data. For a general class of estimators it is shown that the sample df, when
normalised, converges weakly to a specified normal process. The results
are specialised to the case of efficient estimation.

1. Introduction. Suppose we have a sample of independent observations
Xy, - -, x, from a distribution with continuous df F(x, #) depending on a vector
6 of p parameters. Let F,,(f) denote the proportion of the values x;, - - -, x, for
which F(x;, 0)) < 1,0 <r < 1. It is well known that when 6 = 6, the sample
process n*{F,,(t) — t} converges weakly to the tied-down Brownian motion pro-
cess. In this paper we extend this result to the case where a set of nuisance
parameters is estimated from the sample and where the remaining parameters
take values specified by a given sequence of alternative hypotheses.

Let 6 = [0/, 6,'] where 8, is a vector of p, parameters specified as equal to 0,,
on the null hypothesis H, and where 6, is a vector of p, parameters whose value
is unknown and is to be estimated from the data. Let f,, be an estimator of 6,
from a class to be specified later, let 8, = [6), 6.,] and let £,(¢) denote the esti-
mated sample df, i.e. the proportion of the values x,, - - -, x, for which F(x;, 9n) <
Lo 1.

We shall study the weak convergence of the estimated sample process p,(f) =
n#{F,(t) — t} under the sequence of alternative hypotheses H,: 0, = 0,, = 0,, +
ynt, n=m, m+ 1, ... where y is a given vector and m is a given positive
integer. Under conditions to be stated, Theorem 1 proves that p, converges
weakly to a normal process with mean function (4) and covariance function (5)
below. Theorem 2 specialises this result to the case of efficient estimation.

These results are needed for the derivation of the asymptotic distributions of
statistics proposed for tests of goodness of fit of composite hypotheses and for
studying the asymptotic powers of these tests against alternative hypotheses of
interest. For example, the results will be used elsewhere for studying the con-
struction and performance of tests of normality and exponentiality based on
statistics of Kolmogorov-Smirnov and Cramér-von Mises types.

The relation of the results obtained to previous work by Chernoff and Lehmann
(1954), Darling (1955), Kac, Kiefer and Wolfowitz (1955), Roy (1956), Barton
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(1956), Watson (1957, 1958, 1959), Chibisov (1965) and Moore (1971) is dis-
cussed in Section 6.

2. Preliminaries. The exposition will be based freely on the techniques and
results of Billingsley (1968), referred to henceforth as B. We shall be concerned
with the convergence of sequences of constant and random elements of various
metric spaces. Where possible without ambiguity, a real or vector-valued func-
tion z(#), 0 < + < 1, will be denoted simply by z. The special functions z(r) = ¢,
z(t) = f,(r) and z(r) = 0, 0 < ¢ < 1, will however be denoted in bold type by
t, t, and 0.

Our basic spaces will be the space C of continuous functions on [0, 1], the
space D of right-continuous functions with left-hand limits on [0, 1] and Euclidean
spaces E* for various k. On C we use the uniform metric ¢ defined for a pair
of elements x and y by

(X, y) = SUPogigy [X(1) — Y(1)] »
on D we use the Skorokhod metric d = d(x, y) defined on page 111 of B and
on E* we use the metric defined for a pair of elements x = [x,, - -+, x,]", y =
[Yis +++5 yi) by e(x,y) = max,_, ..., |x; — yi|, Kk = 1,2, ... This metric is also
used for matrices by writing the elements of a matrix as a vector. If x =
{[xi(8), - -+, x, ()]0 < ¢ < 1} is a vector-valued function where each x; € C we
use the metric max,_, .. , {SUpy<.<s |X:(1) — yi(D)|}

The terms weak convergence and convergence in distribution are used in the
following sense. Let X, be a measurable mapping from a probability space
(Q, &, 1) to a metric space (S, p) for n =0,1,2,.... If lim,_, E{f(X,)} =
E{f(X,)} for all bounded real functions f which are continuous in the metric p
we say that X, converges weakly or converges in distribution to X, and we write
X, —. X,. The notation —, indicates convergence in probability. The o-field
of (S, p) under consideration is that generated by its open sets.

When x is a scalar or scalar-valued function and « is a vector [ay, -- -, a,]
we write dx/da for the vector or vector-valued function [dx/day, - - -, dx/0a,]’.

3. Asymptotic distribution of y, for general §,,. Suppose that the vector 6, of
nuisance parameters is estimated by f,, and that we wish to consider the con-
struction and performance of tests of the null hypothesis

(1) Hy: 0; =0,

based on the estimated sample process

(2) Pat) = n¥{E(t) — 1}, 0<r<1,
where F,(¢) is the proportion of x,, - - -, x, for which F(x;, §,) < ¢ with 4, =

[07 9;n]’. Our objective is to study the limiting distribution of y, under a se-
quence of alternative hypotheses {H,} defined as follows. Let 6, be a specified
value of 6,, let v denote the closure of a given neighbourhood of 6, = [6},, 05’
and let m = min {k: [0}, 4 yn~%, 6] e v for all n = k > 2} where 7 is a given
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constant vector. Then take
3) 1ma:m:wq with 0, =04y + 7n %, n=mm-+1,-...
20

The limiting distribution of y, on H, with 6, = 6,, can be obtained by putting
ry = 0.
We assume that 6, satisfies the assumptions

5 1
(Al) n%(02fn - 020) = 71; Z?:1 l(Xi, 0,”) —|— AT + 61,”

where [ is measurable and, for a random observation x,
(i) E{i(x,0,)|0 = 0,} =0, nzm,

(i) E{l(x,0,)(x,0,)0 =0,} = L(0,), a finite nonnegative-definite matrix
for each n > m which converges to a finite nonnegative-definite matrix L = L(0,)
as n — oo, and where

(iii) A is a given finite matrix of order (p, X p,),

(iV) €1 —p 0.

Estimators satisfying these assumptions exist, e.g. where F is N(6,, 6,), 6,, = 0,
I(x;,0,) = x;, A =0 and ¢, = 0. At first sight it may appear strange that we
have chosen to make the estimating function /(x, 6,) depend on 6, since in prac-
tice the estimator 9% would not, as a function of the observations, depend on
the alternative hypothesis. However, it would in any case be necessary to con-
sider the mean of ni(ﬁzn — 0y) on H, and this would generally, to the first order,
take the form Ay. Given this, it is mathematically convenient to separate off
the part with zero mean, as is done in (Al). It should be emphasized that this
formulation has been adopted to facilitate consideration of distributions under
H,. If null-hypothesis distributions only are of interest one takes #, = 6, and
7 = 0 in (Al) and the point does not arise.

The following assumptions will be made in addition to (Al).

(A2) (i) F(x, 0) is continuous in x for all f € v.

(i) The vector-valued function g(t, 6) defined by (6) exists and is continuous
in (¢t,0) forallfevandall0 < ¢t < 1.
Let x(1, 8) = inf {x: F(x, §) = r} be the inverse of the transformation t = F(x, 6).
Our main result is '

THEOREM 1. On Assumptions (Al), (A2) and under the sequence of alternatives
{H,}, J, converges weakly to the normal process z(t), 0 < t < 1, in D with mean
function

(4) E{z(1)} = 7'{9:(1) — A'g,(1)}
and covariance function
(5) C{z(1y), 2(1,)}
= min (1, t,) — 1,4, — h(1)'9:(ts) — h(5,)'95(1)) + 9(11)' Ly(1,)
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where
RGN . . _ 0F(x, 6)
©) [gz(t)} = 9(0) =9, 0)  with g1, 6) = 00 le=sit.0r
and
(7 h(t)y = h(t, 8,) with  h(t, 0) = §24% I(x, ) dF(x, 0) .

From this theorem we deduce two corollaries, the first of which gives the
limiting distribution under H, and the second of which gives the limiting dis-
tribution when the estimator 4,, is “superefficient” (L is a null matrix, i.e. a
matrix of zeros) or #,, is known exactly (/(x;, 6,) = 0, A is a null matrix and
¢, = 0).

CoROLLARY 1. Under the null hypothesis H,, but otherwise under the conditions
of Theorem 1, $, — . z where z is distributed as in the statement of Theorem 1 with
y =0.

COROLLARY 2. When n*(ﬁm — 0y) —, Ay and Conditions (A2) are satisfied,
V. —. 2z, where z, is the normal process in D with mean function (4) and covariance
function

(8) Clzo(tr), 2o(1,)} = min (1, 1,) — 1,2, 5
A may be taken to be a null matrix.

The proof of Theorem 1 will be based on the following five lemmas.

LemMmA 1. Let F () be the proportion of x,, - - -, x, for which F(x;, 0,) < t, let
©) Yult) = n{{F,(1) — 1}, 0=sr=1,
and let i (f) = F(x(t,0,), 0,). Then
(10) Yalla(1) = (1) + €0a(1) 5 0=sr=1,

where ¢,, —, 0.

PrOOF. Let x,(1) = x(t, 0,) and (1) = F(x,(t), 0,) for0,,0,cvand0 < ¢+ < 1.
Then
Supf |;([) - t| = Supxa |F(xa’ 0b) - F(xa’ 041)'
OF(x, 0)
00

where 0* is between 4, and 6,. By (A2) (ii) every component of |0F(x, §)/00] < M
for all x and 6 € v for some M since 0F/d6 = g(t, §) and this is continuous on
the compactset # ev, 0 < r < 1. Hence #(r) converges uniformly to ¢ as §, — 6,
and 6, — 6,. Thus sup, |7,(t) — 1] — 0 as 6,6, and 0, — 0,. Using a slight
modification of the usual proof of the multivariate central limit for independent
and identically distributed random vectors (e.g. as in Breiman (1968) page 238)
to allow for the fact that the variance matrix of ni(d,, — 6,,) depends on n we
deduce from Assumptions (A1) that ni(8,, — 6,)) —_ N(Ay, L). Thus 8, —, 0,
s0 0, —, 6,. Consequently sup, |#,(1) — 1| —,0, i.e. f, —,t.

r=2xgq

0=0*

= sup, (6, — 0,)
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Now y, —. y where y is the tied-down Brownian motion process, i.e. the zero-
mean normal process in D with covariance function E[y(tl));(t2)] = min (¢, t,) —
tt, (B, page 141). Since y, — , y, t, —,tand (D, d) is separable, Theorem 4.4
of B implies that (y,, t,) —_ (y, t) where (y,, t,) and (y, t) are random elements
in the product space D x D. Moreover, the mapping from (y,, t,)in D x D
to ¢,, in D is continuous in the product topology determined by metric ¢ at the
point (y,, t) where y, is any continuous element of D. This is proved as follows.
Given ¢, choose d so that 0 < ¢/3 and so that e(t,, t) < o implies sup, | y,(7,(t)) —
¥.(t)] < ¢/3. Then for any y, satisfying ¢(y,, y,) < 0 we have

sup, [e;,(1)] = sup, |y, (f,(1)) — ya(1)
< sup, [|7.(5.(1)) = yelF(D] + [2(E(1) = 2(O] 4 [7a(5) — y.(D)]]
< 2sup, |y.(1) — y(n)] + sup, [y(i,(1)) — y.(1)]
<204 ¢/3<e which proves continuity.

Since y is continuous with probability one and t is continuous, and since
convergence in metric 4 to a continuous element is uniform, the mapping
(Vs tAn) —¢&,, from D x D to D is continuous with probability one in the product
topology determined by metric 4 with respect to the distribution of (y, t). Hence
by Theorem 5.1, Corollary 1, of B, ¢,, —_y — y = 0 and this in turn implies
€y, —p 0, which proves the lemma. This argument has been based on the treat-
ment of random change of time on pages 144-145 of B where further discussion
of measurability considerations can be found.

LEMMA 2. Let

(11) z,(1) = yu(t) + 7{0:(1) — A'9x(0)} — w,/9,(1), 0=t 1l,nzm,
where
(12) W= LS Ux,0).
nt
Then
Vo = 2, + €, where ¢, —, 0.

ProOF. Let x,(f) = x(1, 0,), 0 < t < 1. Then F,(¢) is the proportion of x,, - - -,
x, < x,(1). Now (1) = F(x(t, 0,), 0,) = F(x(t), 0,). Thus F,(7,(r)) is the pro-
portion of x;, - - -, x, < x,(f). Consequently F,(t) = F,({,), on suppressing the
argument ¢ of 7,(z), so that '

};n(t) = ni{ﬁn(t) - t}
(13) = n}{F,({,) — i} + ni{, — 1), ie.
yn(t) = yn(fn) + n%(fn - t) .
Suppressing the argument ¢ of x,(z), for f,cv we have
(14) ni(i, — 1) = n{F(x,, 0,) — F(x,, 0,)}
9F(x, 0)

00 (6=1%

= ni0, — 0,y
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where 6, * is between 6, and 4,. Let 1,* = F(x,, 6,%). Then

By the proof of Lemma 1, on taking 6, = f, and 0, = 0, * it follows that 7, * =
F{x(t, 0;), 67,;"} converges to F{x(¢, 6,), 6,} = ¢ uniformly in r as 6, — 0, and
0,* —0,. But (8,,0,%) —, (0, 0,). Hence on writing t * for (£,*,0< 1< 1)
we have t,* —  t.

For a typical component function g,(z,*, ,*) of g(z,*, ,*) we have

Supt [gu(tn*’ 0n*) - ga(t’ 60)| g Supt |ga(tn*’ 0n*) - ga(tn*’ 00)]
+ Supl, |ga,(tn*’ 60) - ga,(t’ 00)] ‘

Now Assumption (A2) (ii) implies that g(z, #) is continuous in 6 at § = 6, uni-
formly in ¢ so sup, |g,(¢,*%, 0,%) — g.(1,*, 0,)| = sup, g.(¢, 6,%) — g.(t, 6,)] —,0
as 0,* —, 0, Assumption (A2) (ii) also implies that g(z, #) is uniformly con-
tinuous in ¢ at 6 = 6, so sup, |g,(t,*, 0,) — g.(1, 0,)| —,0 as t,* —,t. Since
0,* —,0, and t,* — t it follows that sup, |g,(7,*, 0,%) — g.(¢, 6,)] —,0 and
hence that

(15) 9(6,%, 0,%) = 9(1) + e(1)

where ¢, —, 0.
We also have

(16)  n¥0, —d,) = n%[al” - ‘?w] - [ 7 ] for n
020 - 02n _n%(am - 020)

v
3

where
né(ém —Oy) =w, + Ay + ¢,
from (A1) and (12).
Substituting from (16), (15), (14), and (10) in (13) we obtain

Yu(t) = yul0) + &) + [1's —wa — 74" — el ]{9(1) + (D)}
= Zn(’) + 63%(’)

where

ean(t) = ea(1) — €l 9o() 4 7esu(t) — (Wh + 77 A)e0u(1) — erueu(?)

with e, (1) = [&,(?)'s €6, (1)']. Now if u, is any element of D, d(u,, 0) = c(u,, 0) =
sup, |u,(?)]. Thus u, —,0 if and only if sup, |u, ()] —,0. We use this fact to
prove that ¢, —,0. By Lemma 1 we have ¢,, —, 0. Since g,(¢) is continuous
for 0 < ¢+ < 1 and therefore bounded and ¢, —, 0 we have ¢/, g,(¢) —, 0. Also
w, —. w where w is N(0, L) and ¢, —, 0; thus w,’¢;, —, 0. Similarly, each of
the remaining terms of ¢,, —, 0. Thus ¢,, is the sum of a number of functions
each of which —, 0. Consequently ¢,, —, 0.

The remaining step in the proof of Theorem 1 is to show that z, converges
weakly to the normal process with mean and covariance functions (4) and (5).
It might appear at first sight that this could be done by proving that z, is a



CONVERGENCE OF THE SAMPLE DISTRIBUTION FUNCTION 285

continuous function of y, and using Theorem 5.1 of B. However, it turns out
that w,, and hence z,, is discontinuous in y, in metric d, and indeed in metric
¢, for estimators important in practice such as the sample mean from a normal
distribution. Consequently the proof cannot be based on a continuity argument.
Darling’s (1955) proof of convergence of the Cramér-von Mises statistic seems
faulty at this point, notwithstanding the “auxiliary assumption” on page 9 of
his paper. We shall therefore use instead the basic technique for proving weak
convergence, i.e. first prove convergence of the finite-dimensional distributions
and then prove tightness.

LemMA 3. For z, defined by (11) and for all 0 < t;, < -+ <1, < 1,
[2u(ta)s -+ o5 ()] = [2(1), - - -, 2(8)]

where z is a normal process in D with mean and covariance functions (4) and (5).

Proor. Letd;; =1 — ¢, if F(x;,0,) < t,and d;; = —¢, if F(x;,0,) > 1, i =
I,...,kandj=1,...,n Then y,(t;) =n* 37, d;;, E(d;;) =0, Ed;d;,) =
min (¢, t;,) — t;t;, and d;;, d;; are independent for j+ j'. Let ¢; =d;; —
7{9:(t) — A'go(1)} — U(x;z 0,)95(1:). Then z,(1;) = n™* 315, ¢, E(¢i;) = 7'{g(8:) —
A'gy(t;)} and

Clc;;, ¢y) = min (8, 1) — 6, — h(t;, 0,)9,(8,) — h(t, 0,)9,(%;)
+ 9:(4) L(0,)9:(t;:)

since E{d;;l(x;, 0,)} = {22 I(x, 0,)dF(x, 0,) = k(1,,0,); also ¢;; and c,; are
independent for j # j’. Thus [z,(¢), - - -, z,(#,)]’ is the standardised sum of in-
dependent and identically distributed vectors with mean given by (4) and variance
matrix converging to the form given by (5). The lemma then follows by a mul-
tivariate central-limit theorem of Lindberg-Lévy type obtained by slightly modi-
fying the usual proof, e.g. that given on page 238 of Breiman (1968), to allow
for the fact that the variance matrix of [z,(t), ---, z,(¢,)]’ depends on n but
converges to a positive-definite limit.

Note that the existence of A(t, 6,) for 0 < ¢ < 1 follows from the existence of
h(1,0,) = E{l(x, 6,)} which we assumed to be zero in (Al) (cf. Apostol (1957)
Theorems 9-21). The existence of a process z in D with the distribution specified
follows from Lemma 4. .

In the following lemma P{A} denotes the probability of an event A.

LEMMA 4. The sequence {z,} of random elements is tight.
Proor. Paraphrasing Theorem 15.5 of B, tightness follows if
(i) for each positive » there exists an @ such that
P(lz,(0)| > a} < 7, n

where m is defined between (2) and (3),
(ii) for each positive ¢ and 7, there exist a d, with 0 < ¢ < 1, and an integer

\Y

m,
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n, such that
Piw(z,,0) = ¢} < 7, nzn,
where w(x, d) is the modulus of continuity defined by
W(x, 0) = SUP,_y <5 |X(5) — x(1)| , 0<o<l.

The proof of (i) is immediate since z,(0) = y,(0) + 7'¢,(0) + w,’g,(0) where
Y.(0) = 0 with probability one, g,(0) = g,(0) = 0, and w, has a finite variance
matrix by (A1) (ii).

Putting 7" = [75, -+ -, 7, ], 9:()" — 9o(1)' A = [gu(0), - - -, G (D] W' = [Way - -+,
Wap,] and gy(1) = [gu(1), - - - s, (1)] We have
(17) 12u(8) — Zu(D)] = [ya(8) — Yu(O] + 221 13| 19(5) — 9::(7)]

+ Z?il Iwn«;l Igzi(s) - g21(’)| *
Following B, page 104, let ! = F(x,0,),i=1, ---,n, ¢t/ =0, ¢,,, = 1,and

n+1
let G,(r) be, as a function of ¢ ranging from 0 to 1, the distribution function
corresponding to a uniform distribution of mass (n + 1)~! over each of the in-

tervals (f_,, ), i =1, ---,n + 1. Let Y,(1) = n¥{G,(t) — 1},0 < t < 1. Then
1
(18) sup, [Yo(D) = () = — -

The tightness of the sequence {Y,} is demonstrated in the proof of Theorem 13.1
of B. By Theorem 8.2 of B this implies that for each positive ¢’ and 7’ there
exist a ¢’, 0 < ¢’ < 1, and an integer n,’ such that

Pw(Y,, 0= ¢} < 7, n=ng.

Using (18) this implies that given ¢, 7 there exist d,, n, such that

P{lyu(s) = yu(0)] 2 ¢/3} < 3/2
for n = n,and all |s — 1| < 4.

Now g,,(1) is continuous by (A2) and therefore uniformly continuous, so given
¢ >0, 9, > 0 exists such that |7, [g.,(s) — g.(t)] < ¢/(3p)) fori=1,..-,p,n<n,
and all s — ¢| < d,, 0 < s, t < 1. Similarly g,,(7) is uniformly continuous and
V(w,;) converges to the (ii)th element of L which is finite by (A1) (ii). Thus if
n > 0 is given then n, and J, > 0 exist such that

P{w.i| 192(5) — 9(1)| = ¢/(3pa)} < 7/(2p,) for i=1,...,p,n=n

and all |s — 7| < d,. Let ny = max (n;, n;) and 6 = min (9,, d,, ,); the above
statements then remain valid when n,, n, are each replaced by n, and d,, d,, 9,
are each replaced by 4.

Let E, denote the event |z,(s) — z,(f)| = eand E,, ..., E,,, the events

|yn(s) - yn(t)l = 5/3 ’
[71] 1911(8) — gu(D)] = /(3py)s -+ [Wapal 192, (5) — Gap, (D] = /(3ps) -
Let E; denote the event complementary to E;, i =0, ..., p 4 1. From (17)
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N E; implies E° so P(Ey) = P(N Ef) = 1 — P(UPAL E)). Hence P(E) <
P(UM E) < 214 P(E) < 9/2 4+ payp/(2p,) = n for n = n, and all |s — 1| < 4.
This proves (ii).

LEMMA 5. z, —_ z.

Proor. This follows immediately from Lemmas 3 and 4 using Theorem 15.1
of B.

ProoF of THEOREM 1. Since d(J,, z,) < ¢(P,, z,) = sup, |&, (1) = d(s;,, 0) —,0
by Lemma 2, it follows that d(y,, z,) —, 0. Using Lemma 5, the result y, —_ z
then follows from Theorem 4.1 of B.

4. Efficient estimation. We now define the concept of an efficient estimator and
apply to it the results of the previous section. We shall make the following fur-
ther assumptions.

(A3) (i) F(x,0) has a density f(x, #) such that for each n and almost all x,
the vector 9 log f(x, 0,)/00, of partial derivatives of log f(x, #) with respect to
the elements of 6,, evaluated at § = 6, exists and satisfies

E[a_loiafaf_:&@]}a - 0"] —0.

(ii) For each n the p, X p, matrix

AB,) = E[a log f(x, 0
a0, 00,

0:04

is finite and positive definite and converges to the finite positive-definite matrix
= .“(0,) as n — co. The matrix

A, = E[a log f(x, 6) 0 log f(x, 6)’ 0 — 00}
a0, il
is finite.

(i) OF(x,0) _ (» 9f12:0),

09, 90,
for all x when 6 = 4,.

When (A3) holds we define an efficient estimator of 6,, relative to the sequence
of alternatives {H,} as an estimator 4,, such that

4 1 1
(19) nﬁ((?% — Oy) = ﬁL/ i Q—O“g%“ﬂ + ljzﬂ’ + €1,

where ¢,, —, 0. Usually, (19) possesses the alternative form

(20 W0 = 0 = 5 T TS D)

where 0 log f(x, 0,)/90, is the same as 0 log f(x, #,)/00, except that the derivatives
are evaluated at ¢ = 6, instead of # = 6, and where ¢, —, 0. However, we shall
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not try to formulate conditions under which the transition from (19) to (20) is
valid since we shall take (19) as the basic form. Of course, (19) and (20) are
identical when H, is true so only (20) need be considered if null-hypothesis dis-
tributions only are under consideration.

Maximum-likelihood estimators often satisfy (19); indeed, when the familiar
conditions of Cramér (1946) page 500 are suitably modified to deal with the
behaviour of the estimator of ¢,, under the sequence {H,} it can be proved that
(19) holds. However, the Cramér-type conditions seem unduly restrictive. More-
over, the Cramér theorem and its analogue for the present problem refer not
to the estimator for which the likelihood L attains its maximum but to solutions
of the likelihood equation 9 log L/d6, = 0 and there are complications when the
solution of this equation is not unique. Other technical problems arise when
alternative approaches to the study of the efficiency of maximum-likelihood es-
timation are employed. For these reasons I shall not attempt to formulate suf-
ficient conditions under which the maximum-likelihood estimator of 6,, satisfies
(19) but suggest instead that for any particular problem a maximum-likelihood
or other putative efficient estimator is first constructed and then the validity of
(19) is checked directly.

In the notation of Assumptions (Al) and Theorem 1 we have /(x,0,) =
Ztologfl(x, 0,)/00, and 4 = ~~'_7,. Also, (A3) (ii) implies L = . and
(A3) (iii) implies A(f) = #'g,(t). Substituting in Theorem 1 we deduce
immediately

THEOREM 2. Suppose that F(x, 0) satisfies Assumptions (A2) and (A3) and that

0,, satisfies (19). Then under the sequence {H,} defined by (3), ¥, defined by (2)
converges weakly to the normal process z in D with mean and covariance functions

(21) E{z(n)} = y"{g\(t) — 0 Tg(0)}
(22) Clz(t), 2(t,)} = min (1, ;) — Ht; — go(1)' 7 7'94(1s) -

Corollaries 1 and 2 of Theorem 1 may be applied to this case by making the
appropriate substitutions.

5. Dependence of the distribution of y, on F. It is obvious from the form of the
covariance function (5) that, unlike y,, y, is not distribution-free on H, since its
asymptotic distribution depends on F. Worse, it is not even asymptotically pa-
rameter-free since this distribution depe/nds in general on the value of ,,. Fortu-
nately, in many important cases the distribution of y, does not depend on 0,,.
These include cases where F(x, #) is transformable into a form in which 6, is a
location or scale parameter or is a vector of both and where an appropriate
estimator 4, is used. In such cases one can in principle compute asymptotic
significance points for statistics based on y, which are valid for all 6,,.

6. Previous work. The asymptotic distributions of test statistics based on the
whole function y, when parameters are estimated have previously been inves-
tigated by Darling (1955) and Kac, Kiefer and Wolfowitz (1955). In neither
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of these papers, however, is the weak convergence of y, itself considered. In
contrast, the finite-dimensional distributions of y, have been extensively studied,
invariably in connection with the behaviour of the chi-squared and other tests
of fit based on grouped data.

Apart from the early work of Fisher, discussed by Watson (1958), the first
treatment of a problem of this type was by Chernoff and Lehmann (1954). These
authors considered the case of maximume-likelihood estimation and preassigned
group boundaries. Their use of §, was to compute the “expected” numbers in
the cells. Thus, putting ¢ = F(x, 4,) and i,(t) = F(x, 0,) they studied essentially
the asymptotic finite-dimensional distributions of the process y,*(f) = n*{F,(t) —
(0}, 0 =< 1. Now y,5(1) = y,(1) + nd(t — i,(1) = 1,(0) + n{F(x, 6,) —
F(x, 0,0} = y,(t) + n¥0, — 0,) g(1) + ¢,%(t) where ¢,* —,0. From (13) and
Lemma 1 we have p,(f) = »,(¢8) + ni(tn(t) — 1) = y.(t) + n¥{F(x(t,0,),0,) —
F(x(t,0,), 0,)} + e, (t) = y.(1) + ni(0, — 0,)9(t) + ¢,**(1) where ¢,** >, 0. It
follows that under the conditions of Theorem 1, y, and y,° have the same dis-
tribution. This represents an extension of the Chernoff~-Lehmann result in three
respects, (i) the whole process is considered and not just the finite-dimensional
distributions, (ii) the result holds under the sequence H, and not just on H,, (iii)
inefficient as well as efficient estimators are considered.

A detailed treatment of the chi-squared test when the determination of class
boundaries depends on the data was given by Roy (1956). Roy considered the
effects of parameter estimation for a general class of estimators which, on H,,
satisfy Assumptions (A1) above. His results give essentially the finite-dimensional
distributions of §, on H,. Regrettably, this work was never published, although
Watson ((1958), reply to the discussion) and (1959) has provided a useful summary
of it.

Independently of Roy and Watson (1957)obtained the asymptotic distribution on
H, of the cell frequencies for the special case of tests of normality when the cell
boundaries are based on maximum-likelihood estimates and extended this treat-
ment subsequently (1958) to other distributions. Watson’s results give the finite-
dimensional distributions corresponding to Theorem 2 when y = 0. In this and
a third paper (1959) Watson discussed the implication of these results for the
practical use of the chi-squared test.

Some related results were obtained,, again independently, by Barton (1957)
in a study of the effect of parameter estimation on a grouped form of Neyman’s
smooth test. He obtained a result (his Theorem II) analogous to that of Chernoff
and Lehmann and a further result for the special case of estimating location and
scale parameters (his Theorem I1I) analogous to that of Roy and Watson. Barton’s
work goes further to the extent that in his Theorem II he obtains the distribu-
tion of his statistics under a sequence of alternatives. The relation of Barton’s
results to the other work mentioned is discussed by Watson (1957, 1958).

For the case where no parameter estimation is involved Chibisov (1965) has
proved that when the null hypothesis is Pr (x < 1) = r and the sequence of al-
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ternatives is Pr (x < f) = H,*(r), where lim,_, nt{H, *(t) — ¢} = d(f), then under
mild conditions on §(7) and under the sequence of alternatives H,*, y, —_y + 0
where y is tied-down Brownian motion.

The results of Chernoff and Lehman, Roy and Watson have recently been
extended to the multivariate case by Moore (1971).

Acknowledgment. 1 am grateful to Ronald Pyke and Patrick Billingsley for
comments on earlier drafts leading to improvements in presentation.
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