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ON THE BEHAVIOR OF A CAPON-TYPE SPECTRAL DENSITY
ESTIMATOR!

By EvANGELOS E. IOANNIDIS

University of Heidelberg

In this paper we propose a Capon-type estimator for the spectrum of a
stationary time series. This estimator may be viewed as an alternative to
classical periodogram-based estimators. Its advantage is that it copes with
the “leakage effect” by using implicitly automatic adaptive windowing.

We show its asymptotic equivalence to a random variable which is a
quadratic form in the observations, thus obtaining the asymptotic normality
of the Capon estimator. We also study its asymptotic bias and variance.

1. Introduction. We consider the estimation of the spectral density f of a
zero mean stationary stochastic process {X;};cz, X; € R, when Xj,...,Xr have
been observed. In this context estimators which are linear/ quadratic in the ob-
servations have been widely used and studied. On the other hand, there exist
some nonlinear/nonquadratic estimators, which are often used in applied sci-
ences; these are considered to have better small sample properties than classical
periodogram-based estimators. One of them was introduced by Capon (1969)
for estimating the wavenumber spectrum of a homogeneous random field. It
became known to engineers and geophysicists as a “high resolution estimator”
or “maximum likelihood method” [see, e.g., Chave, Douglas and Filloux (1991)].
Pisarenko (1972) considered a generalization of Capon’s method in the context
of estimating the continuous spectrum of a univariate time series.

The Capon estimator is defined as follows:

~ -~ d —_— S -
(LD farW =faer = - (Bilgh b)), Aelomal,

where fd,T = fd,c,T [defined in (1.2) below] is an estimator of the d x d co-
variance matrix I'y of (Xy,...,Xy)!, d < T/2; by = {exp(i\)}+=0,..,d-1 € ce
and finally both “d” and “c” are smoothing parameters (see also Remark 2 be-
low). (For b € C¢ we denote by b* the transpose and by b the component-wise
conjugation.)

As covariance matrix estimator we use the following “segment” covariance
matrix estimator:

. 1 ¥ T-d
(1.2) Fd,T=Fd,c,T:=NZYiY§’ whereN:Nd,c,T:=[ p ]+1
i=1
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and
Y; = Yid’c = (Xi-vests--» Xii=Do+d)’
(c-displaced segments of length d of the data).

Observe that for ¢ = 1 we obtain almost fully overlapping segments and that
for ¢ = d we obtain disjoint segments. Note further that I'; . 7 is unbiased and
not “Toeplitz.” (Subsequently, we suppress in our notation the dependence of
several quantities on n,d and ¢, and that on d and ¢ on T, where this does not
lead to confusion.)

An important advantage of the Capon estimator when compared to peri-
odogram-based estimators is the following: when using periodogram-based es-
timators, the data should be tapered in order to reduce leakage, especially when
the spectrum contains strong peaks [see, e.g., Bloomfield (1976), Sections 5.1—
5.3]. Conversely, when using the Capon_estimator, this seems not to be the
case, if the covariance matrix estimator I'y 7 involved is unbiased. A heuristic
argument for this is given by McDonough (1979). His conjecture is that the
Capon estimator copes automatically with leakage by introducing implicitly
automatic adaptive windowing. Thus the problem of choosing an optimal data
taper is avoided.

Several interpretations of the Capon estimator were given by Marzetta
(1983), Byrne and Fitzgerald (1984) and Burg (1972). The asymptotic distri-
bution of the Capon estimator was studied by Capon and Goodman (1970),
Pisarenko (1972) and Subba Rao and Gabr (1989). They assumed that {X;}; ¢z
is Gaussian and that independent segments Y;, i = 1,...,N, of {X;};cz have
been observed (i.e., that fd,T is exactly Wishart distributed). The covariance
matrix estimator used in these papers is

~ 1 Y
Lar=% vyl
i=1

For the case where Xi,..., X7 have been observed they proposed that Y; be
taken as disjoint segments o£ the data.

For the Capon estimator f; r(\), as defined in (1.1) and (1.2), we prove in
Sections 2 and 3 its asymptotic normality and study its bias and variance as-
suming d, T — oco. We show that the coefficient of the first-order expansion term
of the variance is minimized for ¢ = 1 (almost fully overlapping segments). In
our proof we use a refinement of Pisarenko’s expansion argument, the theory of
orthogonal polynomials of Szego (1959) and for the cumulant calculations the
concept of “LT functions” of Dahlhaus (1983). We replace the assumption that
{X;}i ez is Gaussian, made in the previously mentioned papers, by assumption
(C) below. Furthermore, we drop their assumption that independent segments
of {X;};c z have been observed; thus in the context where Xj, ..., X7 have been
observed, we can allow d,T' — co simultaneously.

A technical result of independent interest is Lemma 2 in which ||1"d T —
Ty4|| —p 0 is proved under the assumption that cd**¢T-! — 0. If A is a real
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symmetric matrix, then || A|| := sup{||Ax||2, ||x|l2 = 1} denotes the operator norm
of A.) This convergence is also used in the context of nonparametric spectral
density estimation or prediction of time series via autoregressive approximation
le.g., Berk (1974), Shibata (1980) and Lewis and Reinsel (1985)]. In these papers
|Ta,e,7 — Lall —p O is proved under the stronger assumption d> 7-! — 0 and
c=1.

2. Asymptotic results. Let ¢, = E(X;X;,,) denote the covariance. We
assume that the spectral density f of the time series exists and is bounded above
and away from 0. This assures that the d x d covariance matrix Iy [see (1.1)
above] is positive definite for each d. We also make the general assumption that
the distribution of (X3, ..., Xr) on RT is absolutely continuous with respect to
the Lebesgue measure for each T'. This also assures that 'y 7, as defined in (1.2),
is positive definite with probability 1ifd < Ny ., 7. To confirm this, first observe

that fd,T is always positive semidefinite. If it were singular and d < Ny, T,
then the d x d matrix with columns Y7, ...,Y; would also be singular. In this
case, for example, the last component of Y, could be written as a function of the
other elements of the matrix. The assumption of absolute continuity assures
that this cannot happen with positive probability.

We introduce the following assumptions:

(A) f is continuous and 0 < m < f < M. Further it fulfills

3C: |f(x)— f(y)| < C’|log|3c—y||_1 Vx,y e [-m, 7]

' (B) The rth derivative of 1/f [denoted by (f~1)] is a-Lipschitz:

@(f71) € Lipy := {g | w(g,6) = 0(6%) as 6 — 0+},
where
wi(g,6) == sup{|g(x +h) +g(x — h) — 28(x)|, x € R, |h| < 6}.

(C) {X;};cz has higher-order spectral densities f*), which are absolutely
bounded above for all orders k&:

Hf(k)Hm < 00 VE>O0.

A spectral density of higher order is defined as a function f®: [-m, 7]*~! — C,
such that

cum(X;,,..., X;,) = /f(k)(al,...,ak_l)

E—1 E-1
X exp(i Z tioy — tql Z og) d(ay,..., 1),
j=1 Jj=1

where cum(X;,, ..., X;,) denotes the cumulant of (X;,,. .., Xz,).
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(Integrals are always taken over [—, 7]”, for some r depending on the integra-
tion measure. Herer =k — 1.)
We then have the following relations:

2.1) ¢y = / fO) exp(ixw)d), Ty = / FOObABLd), by asin (11),

and

1 & .
f) = o ) ;oo cy exp(—idu).
For )\ € R we introduce the function
~ d — _
2.2) Fa = o= (B3T3"82) 7,

which is a theoretical quantity corresponding to the Capon estimator.

The main theorem of this paper follows. It states that the Capon estimator is
an asymPtotically unbiased, consistent estimator of f. Moreover, it states that
VTd=(f; . v —[) is asymptotically normal [see statement (b) of the theorem].

For fixed v e R* and ), € [-m,7], k = 1,...,K, let (" = (¢Y,...,¢%) € RX
be a Gaussian random variable with expectation 0 and covariances given by
cov(CJ'?,C,';) = v[6y+ 2, + O —,]; here 6(}) is defined as equal to 1 if A = 2k,
k € Z; otherwise it is equal to 0. The asymptotic variance of the (standardized)
estimator is given by limy _, ., 6(d7/c7), where

Bx):=x"1 > [1-|up™']", xecR"
Jul <x

We therefore call 6 the “variance function” (see Section A.3).

THEOREM 1. Suppose that (A), (B) and (C) hold and that the sequences cp,dr
fulfill:

(i) cd'*¢/T — 0 for some € > 0.
(ii) ¢/d < C for some constant C < co.
(iii) d=? In(T)(In(d))? In(c) — O [where B := (r+a)/(1+r+a),r, aas in (B)] as

T — oo.
Then setting v := limr _, o, 0(dr/cr) (assuming that the limit exists) we have
(a)
\/Td—l{fd-’éz()\k) - 1} =p ¢
fa k=1,..K
(b) If, in addition, Td—1+27V In*(d) — 0, where v := (r+a) A1 [r, @ as in (B)],
then

\/m{i__—d;’mk) ~ 1} =p ('

k=1,..,K
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REMARK 1(Choice ofc). From the properties of § (Lemma A.4)itis clear that
the variance of the standardized estimator tends to the minimum possible value
2/3 when c¢/d — 0, while it equals 1 when ¢ = d (disjoint segments). Moreover,
for fixed d it is minimized by ¢ = 1. The bound of E ||f;, r — I is also minimized by

¢ = 1 (see Lemma 2 below). Note that for ¢ = d Theorem 1(i) becomes d?*+¢/T —
0. We therefore propose to use ¢ = 1.

REMARK 2 (Interpretation of d). The role of d in the Capon estimator or
equivalently in I} ;. is analogous to the inverse h~! of the bandwidth “A” in
the kernel-smoothed periodogram Ir  Kj, where IT(\) := (27T) 1|21 | Xie'r )2,
Ky(x) := h~1K(xh~') and K is a kernel. This may be seen by the compari-
son of bias and variance: var(lj , ;) ~ T~! [(A%)? ~ 2d/T, where A? is the
Fejer kernel (see Section 3.3) and var(I” x K}, /f) ~ (Th)~! [ K2. In the same
way if f fulfills (B) with r = 0, then from Lemma 1 below, it follows that (a)
the bias of the Capon estimator is of order O(d~%1In(d)) and (b) the bias of
the autoregressive estimator of order p is O(p~%1n(p)). On the other hand,
the bias of the kernel-smoothed periodogram is, as can easily be seen, O(h®) if
K is Lipschitz continuous. If one imposes stronger regularity conditions on £,
for example, that the kth derivative of f is absolutely bounded from above (it
follows !~ Vf ¢ Lip'), then from Lemma 1 below, it follows that (a) the bias of
the Capon estimator is of an order not smaller than O(d~1!) and (b) the bias of
the autoregressive estimator of order p is O(p—* In(p)). Meanwhile, the bias of
the kernel-smoothed periodogram becomes, as can easily be seen, O(h*) if the
first £ — 1 moments of K vanish.

REMARK 3 (Choice of d). Ifcis equal to 1 (following Remark 1), the problem
of choosing d arises. This may be done by using the Kullback—Leibler distance
[Hurvich and Tsai (1989)], leading to an AIC-type criterion, which consists of
taking d = argming < g, [In(fy 1, 7)(N\)dX + d/(T — d). This means that one
computes [ ln(?d‘l,T)()\) d\ ford = 1,...,dmnax and uses the value of d which
minimizes [ In(f; 1 7)(\)dX +d/(T — d) over d.

REMARK 4 (Efficiency considerations). In order to compare the performance
of the Capon estimator with other estimators, we consider the bounds of the
convergence rate to 0 of any error criterion, which has the form “squared
bias + variance.” Assuming f € Lip%, the error of the Capon estimator, the
autoregressive estimator and the kernel-smoothed periodogram have almost
the same rate [up to In(7T") terms]; for example, the error of the Capon esti-
mator is obtained by the minimization of d=2*In*(T) + dT-! (see Lemma 1),
resulting in O(T~2/2e+1 1n2%(T") (the power of the In term has to be doubled
when o = 1). This is almost the same (up to the In terms) as the rate for the
kernel-smoothed periodogram [Parzen (1957)], and the one of the autoregres-
sive estimator. On the other hand, if one imposes stronger regularity condi-
tions on f, for example, that the kth derivative of f is absolutely bounded from
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above (it follows =D f ¢ Lip'), the error of the Capon estimator has a slower
rate than those of the kernel-smoothed periodogram and the autoregressive
estimator. The error of the Capon estimator remains, in general, of order not
smaller than O(T—2/3). The error of the kernel-smoothed periodogram becomes
O(T-@R/2k+D)) if the first £ — 1 moments of K vanish; already for &k = 2 and K
symmetric this is O(T'~%/5). The error of the autoregressive estimator is of or-
der O(T—-@»/@k+1) In%(T)) (which follows easily from Lemma 1). The difference
between the Capon estimator, on the one hand, and the preceding two, on the
other, is due to the different order of the bias (see Remark 2 above and Lemma
1 below). Note also that O(T'—(2¥)/(2k+ 1)) jg the optimal rate under the conditions
used here [see, e.g., Rosenblatt (1985), Section 5.6].

REMARK 5 (The nonzero mean case). In the case where the process {X;};cz
has an unknown mean u, one may use the Capon estimator based on the cen-
tered data X; — X7, where X7 is the empirical mean. Then our conjecture is that
Theorem 1 will also hold for the resulting estimator. We indicate the asymptotics
in Section A.4.

The proof of Theorem 1 is obtained from several technical lemmas in Section
3. We now sketch the basic idea of the proof and present two results that are
of independent interest. The first concerns the bias of the Capon estimator. It

gives upper bounds for the convergence rate of 7[1 — ft0 0. By {¢x(M}ren we
denote the system of orthogonal polynomials associated with f (see Section A.2).

The quantity fd‘l may be written as the mean over the squared modulus of
orthogonal polynomials [see (A.2.2)]:

d-1

fit=d= 1Y 6P

i=0

Since lower-order polynomials are also involved in this mean, it is clear that
in general fd — f will be of an order not smaller than d—1.

LEMMA 1. Assuming that (A) and (B) hold and that r and o are as in (B),
the following hold:

(a) [1¢al? —£~Y|, = O(d~"** In(d)).
1 oy [O@ NI @), ifreail,
®) 2™ =l = {O(d‘l n*(d)), ifrea=1

(The bounds of the form Olaz In(by)] with ap,br € R are always to be read
as Olar] when by = 1.)
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To obtain the asymptotic distribution of the Capon estimator, we need an
expansion of it. It turns out that it is technically more convenient to expand the
standardized quantity

Zi, c, T/?d = (E:t(f;, T)_lb,*\) —l,
where

-1

Ty =Ty, p=UsTaer(Uy) ™ and b :=U;'6:\/||U;"0a|,

Here I'y = U, U}, is the Cholesky decomposition of Ty (i.e., Uy = Uy, r is a lower
triangular d x d matnx) Quantities involving a standardlzatlon with Ud will
be denoted by *. Thus I‘d’ r is a “standardization” of Ta 1.

By a Neumann expansion of (f:;’ 7! le.g., in Yosida (1980). Section 2.1,
Theorem 2], we show that ?d, e,/ ?d is asymptotically equivalent to

I o) =I5, 7OV = by T 7b3.

I . pisarandom variable which involves the (unknown) true covariance matrix
but is quadratic in the observations and can therefore be studied by standard
cumulant methods. For the expansion to be valid we need ||1"d r—1I| —=p O,
where I is the d x d identity matrix. Conditions under which this holds are of
more general interest (see the Introduction).

LEMMA 2. Assuming that (A) and (C) hold and that the sequences cr,dr
fulfill deIn(T)In(c)/T — 0 and c¢/d < C (for some C), we have

||f§,T -I| = OP(\/cd“aln(T)ln(c)ln(d)/T), € > 0 arbitrary.

3. Detailed results—proofs.

3.1. Bias considerations. In this section we prove Lemma 1 by utilizing
properties of orthogonal polynomials, which are stated in the Appendix.

ProOF OF LEMMA 1. (a) The result follows directly from Lemma A.3(a),
taking p, = n = d. Observe that by (A.2.4) we have |¢g 4% = |ta|?.

Part (b) follows directly from (a), since ||Z7l_1 — oo < lEd Hllgol?
Yoo O

3.2. Asymptotic expansion. In this section we prove the asymptotic equiv-
alence between f . v/fs and I . 1.

LEMMA 3. Assuming that /T/d|T;r — I|? —p 0, T — oo, then
VT /dlfa,r/fa— I} 7] —pO.
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Proor. First note that

- Tt . _ -1

fa,e,T (b/\(Ucti) Ufird,ITUdUd le) T Sy \_1g4y—1
; = 1.\ 1 = (bA(Tg, ) 7'0%) -
a (Ba(Us) MUz By)

Now let the following event be denoted by Ay = {[[f:;, r —1I|| < 1/2}. Then on
Ay we may expand (fjl’ L

= I-a-T5p) =Y a5 )
j=0
This implies that
BT )7 63) T = 1=by @ 7 — DB} + O(IT5 7 — I))*  on Ay.

Since by (T 7 — )b} = Iz — 1, /T7d||T5, 7 — I||2 —p 0 and P(AS) — 0, the proof
is complete. O

3.3. Consistency. Inthis section we prove Lemma 2 as a direct consequence
of Lemma 4, stated below. Let N = Ny . r as in (1.2).

LEMMA 4. If (A) and (C) hold, K € N is even, dN ! In(N)In(c) — 0 and c/d
< C (for some constant C), then we have

Etr[T3 7 — II¥ = O(N-K/2gK/2+1 [ In(V) In(0) In(d)] */*).

To prove this we introduce the following notation and state a further
proposition.
We consider a 2 x & table of variables which has the following form:

a1 B

ar B
and partitions P® = {Py,...,Pg} ofthe 2 x ktable, s; := |P;|. For a partition sub-
set P; :=(ky, ..., Ks,) (k stands for some a and ), we denote %; := (s, ..., ks, — 1)
and set kg, 1= —X7 lnj. Let Xj,, (1) denote summation gver the indecomposable

partitions of the 2 x % table, X, (z) denote summation over all partitions of the
2 x k table and X 4, (1) denote summation over all partitions of the 2 x k table
excluding those which contain a partition subset consisting of exactly one row
of the table.

In this sequel let by = {¢*};_0, .,r—1€ CT and X = (X3,..., X7).
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PROPOSITION 1. Assuming that (C) holds, then for arbitrary T x T matrices
Aj,j = 1,...,k (using the notation in the 2 x k table, e.g., S is the number of

partition subsets of P® s; := |P;|) we have

S

k k S
() cum( thA,-x) =y / [I7G []et,Abs T a7
j=1 [~ j=1 i=1

ap, (k) / [=m, mI# =8 14

cum(X‘A;X, ..., XA, X)

() ) k i
= Z /[ Hf(si)(gi)Hbngjbﬂj H dz,.
B Jj=1 i=1

ip, () / [=m P =8 1y

cum < ﬁ [XfAX - EX‘A,-X])

- ¥

ap\x, (k)

S

k S
/[ 1@ [ v, abg [ a7
- Jj=1 i=1

m =8y

()

Proor. The results follow from the product theorem for cumulants
[Brillinger (1975), Theorem 2.3.2] by a straightforward calculation and by using
the spectral representation of cum(Xj, ..., X,). O

Further let Ej = Ef’c’T = [0y (j- l)cId 04 (T-d—(j- 1)0)] € R?*T Then we
have Y; = de’“ = E;X. Denote the Fejer kernel by

N
AVQ) =N ONW)|* where OV(\) := 3 ei
t=1
and also
Ky(a,0) :=5,T7bp.

For a given partition P of the 2 x % table above, we denote

s k &l
V(?(k)) = N-—k / Hf(Si)(Ei) H @N(cai + Cﬁi) Kd(“ai: ﬁi+ 1) H dEi
[=m, w2 =8 7 i=1 i=1
and
V(fp(k)) = Nk / HLN(Cai +cf;) Ld(ai +0i+1) H dx;,
[_mﬂ,]zk—si=1 i=1
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where the LY functions are defined in Section A.1. In these expressions indices
are always taken mod(k), for example, 8,1 = S1.

PrOOF OF LEMMA 4. The proofiis given in two steps.
Step 1. We first prove

(3.1) EtrlT; p-1F= ) V(@®).
ap\*, (K)

From I = (27)~1 Jb ,\Bf\ d) (I is the d x d identity matrix), we obtain
R K K
el 7 — I¥ = 20K / [155,(F5.z - 1B, [] dX
i=1 i=1

Observe that b, [[%, — Ilby,, = X‘AX — b)by,,, where 4; := N-1x
YA EJt.(Ug)‘IbAME;i U, 'E;. We have Ejbs = exp[—i(j — 1) ¢flbg which yields

bt Ajbs = N710N(ca + )b, (UY) _lejHEtXUd_lbg exp[—ilca +cp)).

With these we get directly from Proposition 1(c) that the expectation of
tr[l"d r — II¥ equals (using the notation of the 2 x k table given previously,
with k& = K)

@mENK 3 / H e )H

ap\x, (K)
[eN(ca, + BB, (U) by, B0, Uz bﬂ,] H dx; Hdn,
i=1 =1

From this (3.1) follows after integration with respect to A;,z = 1,...,K, noting
that

em1! /bt b,\mb,\‘ Ui, ANy =510, = Ky(—ay, B 1)

Step 2. We prove that
3.2) V(2®) = O(N-K/2dK/21 [In(N) In(0) In(@)] “/*),

where P is a fixed partition of the 2 x K table not containing a one-row
partition subset. This is sufficient for the assertion of the lemma because of

(3.1) and since [V(P®)| = O(V(P®) (because of Lemma A.2).

For this fixed partition P&, we will call indecomposable row subtable a union
of rows of the original 2 x K table, if and only if it can be written as a union of
some partition subsets and cannot be split up any more in this sense. Similarly
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we will call indecomposable diagonal subtable a union of diagonals {o;,G;+1}
of the original 2 x K table, if and only if it can be written as a union of some
partition subsets and cannot be split up any more in this sense.

Assuming that we can split up P% into M row subtables, with my,...,my
rows, and into L diagonal subtables and further enumerate the elements of
each partition subset P, in such a way that its last element appears in the first
row of those containing elements of P, we will prove that

{r(gp(K))
= O(NM_Kdl"'K_McM_K"'L_lln(N)K_Mln(c)K_M_L+1ln(d)M).

This is sufficient for (3.2), since

(a) M <K/2, as we assumed m; # 1VI;

(b) dN~11n(N)In(c) — 0 by assumption of the lemma.

(¢) M —K+L —1 <0, since each m row subtable contains maximally m — 1
diagonal subtables.

To prove (3.3), we integrate with respect to each of the variables under the
integral in V(P®) using Lemmas A.1(i) and A.1(ii). Note that this is possible
since we have the structure needed to use them: each variable appears once with
positive sign and once with negative sign in the arguments of the LV factors
as well as in the arguments of the L? factors (if it appears at all). We use the
following scheme: first we integrate with respect to the variables (which are
not the last of their partition subsets) in the first row of the 2 x K table, then
in the second, and so on. We use Lemma A.1(i) whenever it is possible.

Observe that the factor L¥(co; + ¢3;) appears in the integrand in V as long
as it has not been integrated with respect to either o; or §;. In this case we call
the row j “unconnected.” We also call “connecting” an unconnected row when we
integrate with respect to o; or §;. In this process LN(0) = N will appear exactly
when all rows of a row subtable have been connected; thus we obtain the factor
NM for the final bound. In the same way we also obtain the factor d~. Finally,
Lemma A.1(ii) will only—but not necessarily—be used when connecting a row,
that is at most K — M times. Moreover we claim that

(3.3)

the number of times Lemma A.1(ii) will have to be used instead of

3.4
3.4 Lemma A.1(i) does not exceed K — M — L + 1.

Accordingly, in the final bound, the factor:

e dIn(N)In(c)/c will appear whenever Lemma A.1(ii) is used, thus K — M
— L + 1 times;
e In(N) will additionally appear whenever Lemma A.1(i) is used (on two L¥
" functions), thus K — M times in total;
e In(d) will appear whenever Lemma A.1(i) is used (on two L? functions), thus
K — L + 1— [number of times Lemma A.1(ii) is used].
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These yield

d K-M-L+1
> ln(N)K_Mln(c)K_M‘L+1

V(2®) < O()NM - K gL (E

x ln(d)(K—L+1)—(K—M—L+1)_

This proves (3.3). It remains to prove (3.4). In view of our remark preceding
(3.4), it is sufficient to prove (3.5).

For each diagonal subtable, up to the one containing o; and 5,
(3.5) one may use Lemma A.1(i) instead of Lemma A.1(ii)
for connecting its last row.

PROOF OF (3.5): Let 3, 1 be the element of the diagonal subtable considered
in (3.5) with maximal index. Due to our enumeration we may assume—without
loss of generality—that:

(i) B;+11is not the last element of any partition subset.
(i) The row j + 1 has not yet been connected.
(iii) The row j has been connected and furthermore integration with respect
to o, B; has taken place, if they are not the last elements of a partition subset.

There are two cases:

(i) o is the last element of a partition subset P. Then P must contain g;, ;.
The reason is that since ;.1 has maximal index in its diagonal subtable, our
enumeration allows only 5;, 3;,1 as probable elements of P. The assumption
that there is no one-row partition subset excludes the case §;.1¢ P.

(i) (i) is not fulfilled; that is, o; is not the last element of any partition
subset P.

In both cases S, 1 does not occur in the argument of an L¢ factor and thus the
‘j +1” row may be connected by using Lemma A.1(i). This proves (3.5). O

Finally, we prove Lemma 2.

PROOF OF LEMMA 2. Let ar ¢ 4 := ed*¢T~!In(T)In(c) In(d). For any M > 0
and K € Z,, Chebyshev’s inequality yields

P|\Joz} ollTicr I > M] < o7% M- Ete[F o — 11
< M—2KCKd1—Ke

for some constant Cg, according to Lemma 4. Choosing K > (¢)~! completes the
proof, since d* ~ ¢ will be bounded. O

3.4. Cumulantsof I; | ()). Inthis section we study the second- and higher-
order cumulants of the random variable I; 1.(A). Let § denote the Dirac function,
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extended to be 27-periodic, 8 the “variance function,” defined in Section 2, and
N = Ny, ., v. We prove the following results.

LEMMA 5. Under (A), (B) and (C), assuming T — oo and c/d < C (for some

C), we have
Ell; , 7(0)—-11=0

and
/Nc ., [Nc .,
COV[ 7 d,c,T(’\)’ 7 d,c,T(ﬂ):|
B O(Ry), if A# +u mod(2m),
- G(d/c) [6x+p +6x— ]l + ORy),  otherwise,
with
Ry, :=d? [|)\ —pl2 A+ ,u|‘2] In(V) In(d) In(c) + Ry
and
Ry = d~ In(V) In(@) In(c) + d(cN)~*  where f = ——— r,a as in (B).
l+r+a

LEMMA 6. Under (A), (B) and (C), assuming T — oo and c¢/d < C (for some
C), the following holds:

N N
cum l, / %I;,C’T()\l), o 7"1;”(,\,)]

= 0([de™ N7 I ()] In(d)).

In order to prove these two lemmas, we need the following result (using the
same notation as in the 2 x & table). ’

COROLLARY 1. Assuming (C), the following holds:

[Ne ., Ne .,
cum [ Fld,c,T(’\l)’ ey 7 d’c’T(Ar)jl

= d-—3r/2N—r/26r/2(2ﬂ,)r H?d()‘.l)

j=1
S r S
x S [ TIFG [] Ky, apKal=2;, )6 (cay + e8] [ | dF-
ip,(®)Y i=1 j=1 i=1

" PrROOF. The resultis a direct consequence of Proposition 1. This is seen by
observing that

I . 7OV = 2nd"fa(WX'A X with Ay = N1 YL BT 5T E;
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and that
bgA)‘bﬁ = Kd(/\j, aj)Kd(—)\j, ,@')N_leN(caj + C,BJ) exp(—caj - cﬂj) O

Using this corollary, one may prove the lemma concerning the first- and
second-order cumulants of I} , ().

PrROOF OF LEMMA 5. The first _statement concerning the expectation of
I; . r() follows by observing that ETy  p=1a4
Next we study the covariance structure of I; . (). The indecomposable par-
titions of the 2 x 2 table are (i) {1, B2}, {B1, 02}; (ii) {1, @z}, {B1, B }; and (i)
{1, ag, B1, B2}. Thus by Corollary 1 and setting
Paaf = [ F@FOANH — calsh, a0Eu(—ps, —c)

x Kq(p, B)Kg(— X, —B) da dg,

we obtain

[ Ne N
COV,: Ee 2,c,T()‘)’ flé,c,T(ﬂ):,

= d~%c@m)%F s (\fay(p) [Pd, e, T(Fs M ) + Py o o(f, X\, — 1)
+ / O, B, NAN (ca + SR\, DB y(~ X, BE (i, 7)
x Kg(—p, ~(@+ S +7)) dadp dy} .

Now the last integral in the above expression multiplied by d—3¢ may, by Lem-
mas A.2 and A.1, be shown to be O(d~! In(N) In(d) In(c)) under (C).
With the same method we obtain

d=3cPy,c,7(f, \, ) = O(In(N) In(d) In(e))d~2 (L) *( — N).

Since for 4 £ +X mod(2) and for d sufficiently large we have LA2(p — N) =
|4 — A2, it remains to prove that

d=3c@mP NPy, o, 7(f, A, N = 6(de™?) + O(Ry).

To prove this, let g4()\) be a sequence of AR(py) spectral densities, Pd =
dl/@+r+e) o as in (B) with |lgg — flleo = O(p;T*). Then arguing as above
and using Lemma A.3(b), we obtain

d=%|Pa,c, (£, X, A) = Pe,a,7(8a, A, V)| = O(d " In(V) In(d) In(c)),
r+o
l+r+a’

o
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Now denote K5 ,(f, ), 1) := (2m) 7' ;(M¢j(w), {$(M}ren as in Section 2
and define P} , . (f, A, p) as Pa,c, 7(f, A, 1) by substituting K3 (-, -) instead of
K,(-,-). Again, (with p := pg) we obtain

d_3c|P;,pd,c,T(gd7 )" A) - Pd,c, T(gds A, A)l = O(d_ﬁ ln(N) hl(d) ln(c)) .
Thus it remains to prove that
d‘3c(27r)2g§(/\)P§’pd’c, (8d, A\ A) = G(dc'l) + O(Ry).

ButinPj; , ¢, 7(8d, A\, A) enter only the polynomials orthogonal to g4 of degree
k > pg, which are exactly known [care of (A.2.4)]. By substituting them, one
gets the desired result. O

Finally, we prove the lemma concerning the higher-order cumulants of
I3 . 7OV,

PRrOOF OF LEMMA 6. The proof follows the lines of the proof of Lemma 4.5
of Dahlhaus (1985). Let P = {P;, ..., Ps} be a fixed partition of the 2 x r table
and let s; := |P;|. According to Corollary 1 and Lemma A.2 it is sufficient to show

i=1

r S
/ TT [£90y + L= + BN o + )] T] dF:
j=1

= 0(Nd®(d/eIn(V)In(e)) ™ " In(dy - s+1),

since S <r.

To prove this, we assume without loss of generality that the P;,j=1,...,S,
are enumerated in such a way that for each P; there exists a P, (for some £ <))
and a row of the table, such that P; and P;, contain at least one element of this
row. This is possible by the indecomposability of the partition. Now denote

U; := {k € Py,q > t, such that « has a row neighbor € Py,q' <t}
and
V; := {x € P; such that x has a row neighbor € P;}

(where « stands for some o or (3 of the 2 x r table) and let

Vil

ti= o

5 m; Z=|Ut_lﬂPt|, mq :=0.

We claim that: ‘
(8.6) for t < S the integral with respect to %;, i = 1,...,¢, of terms in the ex-
pression to be bounded, involving these variables is less than or equal to

t
oLy ( -y cn) [T d[d/eIn@)n@)] ™2™~ Y =" [In@)] ™~ V"™,

kGU, i:=1
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To see that the desired result follows from (3.6), observe that:

(a) my — 1)* =mq =0,m; > 1for ¢t > 2, since U;_1 N P; # @. These imply
2_(m; — 1 =%, (m; —1).

() 5_,n: + 25 ,m; = r, since the first sum equals the number of rows oc-
cupied by elements of the same partition subset and the second, that of rows
occupied by elements of different partition subsets.

Thus

s s
Znt+2(mt— D*=r-S+1.
t=1 t=1
These in turn yield a final bound of

NdS [d/cIn(N) In(c)] %1% = = 0 = D= [ 1 gy] Fheallms = 17
< Nd%[d/cIn(N)1In()]” ™ ' In(dy ~S+1.

To check the validity of (3.6), it is sufficient to prove it: (a) for £ = 1 and (b) for
t + 1, assuming it holds for ¢. Set P; := {k1, ..., ks }. We indicate the proof of (b)
assuming further that k; € U; _ 1, k5, ¢ U;_1 (note that the chosen enumeration
of the partition subsets guarantees U; _; N P; # @). The other case (which may
be treated by similar arguments) is that P; C U, _ 1. Assuming k1 = a,, ks, = by,
Lemma A.1(ii) yields

st —1
/Ld(/\d +ap)L? (—)\q ~op — Z nj)LN( - Z cn)

j=2 K€U _4
ste—1
x LN (caq —cap— Y cnj) doy < O(d/cIn(V)In(c))
Jj=2
s —1
de()\p — A — Z nj)LN<caq - Z CcKk+ Z cn).
j=2 k€U _1\P; K E€P\U; _ 1

Note that the « € U;_ 1 N P; do not appear any more in the argument of an LV
factor [we call this (*)]. Therefore one can integrate with respect to them by
using Lemma A.1(i). After having integrated with respect to a x € V, (*) holds
also for its row neighbor. So the number of times (*) occurs is (m; — 1)* + n;.
The proof is completed by successively integrating with respect to all x € P,
bearing in mind the above remark. It follows that the power of the factor In(d)
in the bound will be (m; — 1)* + n;, and the power of the factor d/c In(N) In(c)
willbes; —1—-(m; — 1)* —n,. O

3.5. Proof of Theorem 1. From Lemmas 2 and 3 it follows that /T /d(fd,c, T
xXfr y(\) and /T/d 4,7\ are asymptotically equivalent. On the other hand,
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354

Star T H
magnitudes 30 H H
25- ﬂ
204
154
104
54 H u
o i — ﬂ . nights
0 100 200 300 400 500 600

Fic. 1. The data.

using the cumulant method together with Lemmas 5 and 6, we ascertain that
VTl p(A) — 1] is asymptotically normal and has the desired covariance
structure. These prove part (a). From part (a) it follows that

\/ﬁ_—l{fd;’T(/\k) -1 —Bd(/\k)} =p (® where By :=fsf ' — 1.
k=1,..,K

To see this, observe that using Lemma 1 we obtain

faof Y= 1-Ba=fof farfs* - 1]
= [farfyt-1] (1 +0(d- oA 1n2(d))),

Finally, part (b) is a direct consequence of the above and Lemma 1. O

4. Whittaker’s variable-star example. In this section an example of
“real” data is used to demonstrate the performance of the Capon estimator
when compared to some other spectral estimators.

The data set we use represents the magnitudes of a variable star at mid-
night on 600 successive nights [Whittaker and Robinson (1924), page 349] (see
Figure 1). It is the data set used by Bloomfield (1976) to demonstrate the leak-
age effect and the performance of the tapered periodogram [Bloomfield (1976),
Sections 5.1-5.3]. Bloomfield suggests that “the data set consists approximately
of the sum of two sinusoidal components” with frequencies 27/29 and 27/24,
corresponding respectively to periods of 29 and 24 days. He also discusses ex-
tensively further properties of the data set, for example, the appearance of the
higher harmonics of the two main peaks in the spectrum (see Figures 2 to 4);
we therefore refer to him for this discussion.

All estimators are hereafter computed after subtracting the empirical mean
from the original data. They are computed at the points ), := 27/n,k =0,...,
n — 1. We chose n = 1392 in order that 27/29 and 27 /24 belong to the grid. The
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In(fA)
14.0 = Cspon d=149 c=1
7 ~~ws Autoregressive order=87
8.00 _]
2.00
-4.00

-10.0

T T T
0.000 0.200 0400w 0.600 © 0.800 ©

FiG. 2. The Capon and the autoregressive estimator.

estimators are plotted on a logarithmic scale (natural logarithm). [The compu-
tations were carried out on a Macintosh II and for all of them double precision
was used (mantissa length = 64).]

The estimators shown in Figures 2 to 4 are the following:

(a) The Capon estimator as defined in (1.1) and (1.2). According to Remark 1
we have chosen the parameter ¢ = 1. The parameter value d = 149 was chosen
based on the criterion described in Remark 3.

(b) The autoregressive least-squares estimator $p of order p defined as fol-
lows: let af, :=(1,ap,1,...,0p,p) and define the residuals e, (a) = X; +a, 1X; 1

+ - +appXi_p, t = p+1,...,T. Further define 57 := infa¥]_, ¢} ,(a), the

In(f7)
140 — Capon d=149 c=1

- ~~=== Smoothed periodogram taper=0% BdWidth=0.004
8.00

2.00

-4.00

-10.0

T T T
0.000 & 0.200 n 0400 T 0.600 0.800 ©

F1G. 8. The Capon and the untapered smoothed periodogram.
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In(fA)

140 = Capon d=149 c=1
Vo v Smoothed periodogram taper=100% BdWidth=0.004

0.000 © 0.200 7 0.400 & 0.600 T 0.800 &

FIG. 4. The Capon and the tapered smoothed periodogram.

infimum being attained at &,. Then ¢,()) := (G2/2)[abx| 2. The order p = 87
was chosen by the AIC.

(c) The periodogram f, 5 p% tapered and smoothed with bandwidth b, de-
fined as follows: let u, ;¢ = 1,...,T, be the p% Tukey data taper, defined,
for example, in Bloomfield (1976) Sectlon 5.2 (our p corresponds to 2m/n in
Bloomﬁeld’s notation) and further, IZ(\) := (2rUp) |5 up, XM |, where
Uy :=57_,u3 ;. Thenﬁ, pOg) =w™ 2|J|<Tb/2wjﬂ()\k _;), where w is the sum of
the w;’s entering in the previous mean and w; := W();/b), W being the Bartlett—
Priestley kernel: W(x) := 1 —(x/7)? on (—7,7) and 0 elsewhere. In Figures 3 and
4 we show the periodograms 0% and 100% tapered, smoothed with bandwidth
b = 0.004, which was chosen empirically.

In order to indicate the uncertainty of the four estimators, we calculate the
standard deviations of their (natural) logarithms (for the parameter values
chosen):

(a) For the Capon estimator it equals approximately (Theorem 1): [2/3 d /(T
—d+1)]Y2=047.
(b) For the autoregressive estimator it equals approximately: [p/(T' — p
+ 1)]1/2 = 0.41.
(c) For the nontapered, smoothed periodogram it equals approximately
(W25 ) < 16 /2W} 2]1/2 = 0.68, and for the tapered one 1t equals approximately the

same quantity multiplied by (TS jus )/2/5T_ u p ; which gives in total 0.94.
The differences of the four estimators in Figures 2 to 4 are much larger than

one would expect from the calculated standard deviations. This is due to the
differences in their bias.

DiscussioN. From Figure 2 it is clear that the untapered periodogram suf-
fers from leakage and fails to discover clearly the higher harmonics of the two
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main peaks. The other three estimators have in general the same shape. Ob-
serve that the Capon estimator and the autoregressive LS estimator do not
suffer at all from leakage, although no taper was used for them. Moreover, one
has the impression that they distinguish the two main peaks more clearly than
the periodograms. Besides there is a difference between the autoregressive LS
estimator on the one side and the Capon estimator and the periodograms on
the other, that is, in the estimated ordinates of the spectrum in the peaks. Our
suggestion is that the difference is due rather to the larger bias of the Capon
estimator and the periodograms than to random fluctuation of the autoreggres-
sive LS estimator (see Remark 4).

APPENDIX

A.l. The LY functions. We introduce the L¥()\) functions [Dahlhaus
(1983)] and state some of their properties which were used for the cumulant
calculations.

Let LY()\) be a 2r-periodic and symmetric around O function, defined on
[—7,n] as follows:

N, if]A<N-L
|A]~1, elsewhere.

LN\ = {

Then the following lemma holds.

LEMMA A.l. There exists a K<€R, such that for N,d,ceN*, «,fB,7,A,
u,x € R

Q) [I¥(y+a) LN (B - a)da < KIn(N )L (v + () [Dahlhaus (1983)].
(ii) Ifc/d < C for some C holds, then there exists K' € R, such that

/ Ly +x)L*(B — x)LN (e + cx)LN (cpu — cx) dx
< K'de ' In(N) In(e)L%(y + BLN(cA + cp)  [Dahlhaus (1985)].

A.2. Orthogonal polynomials. In this section we study some properties
of quantities related to the system {¢;(\)}zcn of polynomials orthogonal with
respect to a spectral density f, where f fulfills assumptions (A) and (B) [see also
Szegi (1959)]. We study especially bounds and approximations of kernels of the
type K4(\, p) = K4(f, A, 1) defined in Section 3. Let also I'q and Uqg be defined as
in Section 1.

Let {¢2(\)}1 e n denote the system of polynomials orthogonal with respect to
f, that is, ¢; is a polynomial of degree k in ¢ and (2m)~! [ f(Ng:;(N¢;(N) = 6;;.
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Then it may be seen that

(A2.1) ¢a(\) = V2rei U by, el :=(0,...,0,1) € R,
d-1

(A2.2) KO, m=@m™ > g,
i=0

From Szego (1959), Theorem 12.1.3, it is further well known that under as-
sumption (A) (in Section 2):
(A.2.3) |paV)2 — F~1(\) uniformly in X for d — co.

Moreover, if f = |h,|~2, where h, is a polynomial of degree p in e'*, then for
Jzp,

(A.2.4) &) = Fg(Vei™.

Finally, the Christoffel-Darboux [Szegé (1959), Theorem 11.4.2] formula holds

1240 = N (NGa(w) — daWal)
1—eitu—X '

(A.2.5) K\, p) = (@27m)~

At first one may bound the K;(f, A, u) kernels by an Ly function as follows.

LEMMA A.2. Let f fulfill (A). Then there exists a constant M', which depends
only on m,M [from (A)], such that

Ky(f, A ) < M'LYO — p).
’e : PP -1z 2 7t p-1p B -1 2, —2

Proor. Cauchy’sinequality yields: |b\I'; b,|* <b,T; b)b,I'; b, <d*m™=.

On the other hand, from (A.2.5) we have
55T 18,[% < 22m) Y aVPIda(I? (1 — cos(u — 1) .

Because of (A.2.3), the result follows from x sin‘l(x/2) <M xel[-mn]. O

In the following lemma the orthogonal polynomials corresponding to f are ap-
proximated by the orthogonal polynomials corresponding to an AR(p) spectral
density approximating f [see also Hannan and Wahlberg (1989)].

LEMMA A.3. Let f fulfill conditions (A) and (B). Then for a given sequence of

integers p, — cowith p, < nthere exists a sequence |t,|? of positive trigonometric
polynomials of degree p,, such that
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(@ || |tn|2 - f_lnoo = O(pn") and ||¢n — ¥n,nllc = O(pn" In(n)), where
{%n, k(XN }2 e v denotes the system of orthogonal polynomials associated with |t,|~2
and y:=r+a,r, aasin (B).

(b) Sup}\,p,ER |Kn(f, )\) /l') - Kn(ltnl_za /\) ll')l = O(pr:'y ln(n))L"(p. - )\)

PrROOF. From Butzer and Nessel (1971), Theorem 2.2.3, it follows that (for
n big enough) there exists a sequence |¢,|2 of positive trigonometric polynomials
of degree p, with || [¢,2 — f || = O(p,, ). We will show that this sequence also
fulfills (a) and (b).

Denote the n x n Toeplitz matrix associated with |t,|~2 by G, and let G, =
V. V}, be its Cholesky decomposition. First observe that |, — Gy | < 27| |t.| 2
— flloo and further that |T;;! — G; 1| = O(p,”). To see the latter, observe that
Iyl -Gl =U)t I - (U;'G,(U:)~"H)~1U; ! and further that a Neumann
expansion yields

-1

- (o)) - - (57|
= O(HFn - Gn”) = 0(1’;7)'

To prove (a), let us expand ¢, with respect to {1, (\)}zecn. We obtain

n—-1
Gn(N) = Qnthn, (V) + / (162172 = £ S o\ o (16 (10) s
v=0
n—1

o [0S o 000
v=0

with o, = [ |tn]| 2%, n(W¢n (1) dp. The last term vanishes because of the orthog-
onallity property of ¢, with respect to . The second term on the right side is
less than or equal to [note (A.2.3) and Lemma A.2]

[ 12172 = £l Sup [ (V) / LN dX = 0(p; " In(n)).
Thus for (a) it is sufficient to show |a,, — 1| = O(p,"). Now from (A.2.1):

o = / a2 T (060 () A = U Gu(VE) ey = €U Wien
= (Un_l)nn(vn)nna

where we denote the n, nth element of the matrix A by (A),.,.
Since (V; Dun = (V)5 and (V; 12, = (G Vnn > (mm)~Litis sufficient to show

Ui w = (Vi D) = O(P27)-



A CAPON-TYPE SPECTRAL ESTIMATOR 2111

But this follows from
U =@, (V)2 =G

nn nn

|01~ GY|=0(pa") and |T7Y| > 2mm1.

nn’

This completes the proof of (a).
Let us now prove (b). First we obtain from Cauchy’s inequality

650516, — BAG'b,| < n||T7t - G| =nO(p,").
On the other hand, from (A.2.5) we obtain
IBa(f, A 1) = Ko (18] 72, X, 1) | < O 65 — ¥, nloo|1 — coslu — M| ~/2

and the result follows from (a) and from x sin_l(x/2) <M ,xel[-mx]. O

A.3. The variance function 0. Let 0 be defined as in Section 2. The fol-
lowing lemma gives its relevant properties.

LEMMA A.4. 0 fulfills the following:

1) 6(x) — %, x — 00.
(i) Ox)=x"1,0<x < 1.
>iii) 6(x) > %, x> 0.
(iv) arginf{f(dc1),c e N*} =1,Vd € N*.

Proor. Forx € R*let oy :=x — [x] € [0, 1). Then 6 may be written as

_2 x? 2 3 9, Ox\ _3
(A.3.1) 0(x) = §+—3—— <§ x—ax+§->x .
If x € N, then o, = 0. We obtain
2 x2
(A.3.2) 0(x) = § + T.

If x < 1, then o, = x and 6(x) = x~!. This proves (ii).
(A.3.3) Fork <x < k+1for somek it is easily seen that 6 is decreasing.
Let us now prove (iv). We have for c € N* and x :=dc™1:
3d%[0(d) - 6(de1)] = 3(208 — 8o + ) —c®d +d <A’ —c?d +4,
with
A:=supyc <1 (203 -3 +a) < V§/12.

Now for fixed d and ¢ < d the function Ac® — c2d + d is falling in ¢ and is nega-
tive for ¢ = 2, thus it is negative for 2 < ¢ < d. This proves (iv). Also together
with (A.3.2) it proves (iii) and further taking (A.3.3) into account, (i) follows as
well. O
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A.4. The nonzero mean case. In this section we indicate the proof of
Theorem 1 in the nonzero mean case (see Remark 5). It is sufficient to show that

T ~
(A4.1) \/j”Fd,T -Igrl—p0,

where I‘d r and I‘d r are defined as in (1.2) but are based on X; — y and X; -Xr,
respectively. To see how Theorem 1 follows from (A.4.1), observe that from
(A.4.1) we obtain for the estimator based on the empirically centered data the
same expansion as in Lemma 3; (A.4.1) further ascertains that the difference
of the first-order expansion terms Ij , 5 for the two estimators (based on X; — p

and X; — X, respectively) tends stochastically to 0 when blown up by +/7/d.
To prove (A.4.1), assume for simplicity that ¢ = 1. Then the difference of the
(¢, s) element of the two matrices may be bounded by

A42) [Far-T97,, < @r—w?(1+dTY) +dT* Xr - plLar,

where
n-1 T
Lyr:= sup d Z(X w+ Y, X-w.

n=1,. i=T—d+n+1

We now state further assertions, which will be proven below. Under the as-
sumptions of Theorem 1, we have

(A.4.3) I)_{T —pl= Op(ln(T)l/zT_l/z),
(A4.4) for any € > 0: Ld,T = Op(d—(1/2— s))'

Assertion (A.4.1) follows from (A.4.2), (A.4.3) and (A.4.4): setting E4 to be the
d x d matrix filled with “1,” we obtain

In(T d In(T)Y/2L
Vol =Tl < /2 ||Ed||[op( =) +or(“ e ‘”)]
d dl+e
= Op(lll(T)” T +ln(T)1/2—-—T—> —p 0.

It remains to prove (A.4.3) and (A.4.4). They will both follow from (A.4.5) below:
for any k& € Z* we have

T 2k
(A.4.5) E [Z(Xi - ,u.):l = O(T* In(T)%).

We first prove (A.4.5). Assuming without loss of generglity that x4 = 0, we obtain
from Proposition 1(a) and Lemma A.2 (using the notation of the 2 x k& table and
with Ep as above):

lZX] E[X"E;X])* =0 Y / HLT(a,)LT(ﬁL)HdM

ap, (k)

¥
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Applying Lemma A.1(i) successively, one gets that this quantity is O(T x
In(T)% ~S). This is sufficient for (A.4.5), since S < K (because partitions con-
taining one-element subsets have contribution equal to 0).

The proof of (A.4.3) follows by applying Chebyshev’s inequality and using
(A.4.5), with k chosen appropriately.

1/2—¢\ 2k
P[dY?~Lq,r > M] < 2dd~%* (d—-——M ) [d In(@d)]* = 0(1) In(@)*d*~ 2,

which tends to 0, if we chose 2 > 1/(2¢). The proof of (A.4.4) follows similarly. O
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