The Annals of Statistics
1994, Vol. 22, No. 4, 1840-1870

FINITE-DIMENSIONAL DISTRIBUTIONS AND TAIL BEHAVIOR
IN STATIONARY INTERVAL-VALUED PROBABILITY MODELS!

BY AMIR SADROLHEFAZI AND TERRENCE L. FINE

Morgan Stanley & Co. and Cornell University

We consider the relationship between the finite-dimensional distribu-
tions of a stationary time series model and its asymptotic behavior in the
framework of interval-valued probability (IVP), a simple generalization of
additive probability measures. By Caratheodory’s theorem, the specifica-
tion of a countably additive probability measure on the algebra of cylinders
€ uniquely defines its behavior on o(€) (containing the tail events). If the
measure is stationary, then the ergodic theorem indicates that its exten-
sion assigns zero probability to the tail event consisting of all sequences for
which the time averages diverge (the divergence event). This link between
the marginals and the tail behavior is no longer valid in IVP, and we can
reconcile arbitrary finite-dimensional distributions and tail behavior for sta-
tionary IVP-based models.

The linking mechanism between the marginals of a time series model
and its asymptotic behavior turns out to be continuity, not stationarity or
even additivity. We prove that any stationary finitely additive probability
(charge) defined on cylinders has a stationary charge extension that can
assign the divergence event any prescribed probability. Moreover, on the
space of binary sequences, we consider IVP models that incorporate:

(i) Stationarity.

(ii) Continuity along €.

(iii) Almost sure support for divergence.

(iv) Estimability of the divergence event from cylinders.
(v) Nearly additive finite-dimensional distributions.

We enhance the previous constructions of IVP’s satisfying (i)—(iv) so that
they satisfy (v) by agreeing with a stationary measure either exactly on
one-dimensional cylinders or arbitrarily closely on a given class of bounded-
dimensional cylinders.

Our time series constructions follow from the observation that the al-
gebra of cylinders and the tail o-algebra are mutually nonsingular. We
use the same idea to prove the existence of joints for general marginal
IVP’s. These constructions have implications for frequentist interpretations
of probability.

1. Introduction. This paper is the culmination of a series of papers by
Grize (1987), Kumar (1985), Papamarcou (1986, 1991), and Walley (1982), writ-
ten in association with Fine, that have the goal of employing lower probability
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to extend the scope of frequentist-based, probability-like modeling of nondeter-
ministic phenomena. Current probabilistic methodology imposes constraints on
our ability to describe reality and such constraints should come from the empir-
ical disciplines concerned with the phenomena and not from the mathematical
methodology. To be specific, we have been concerned with the implication of
the stationarity convergence theorem that time series having bounded random
variables and that are deemed to be stationary on the basis of observations and
theoretical considerations (e.g., physical theory leading us to believe that the
system generating the time series is time invariant) must perforce be assumed
to have convergent time averages. There is, for example, empirical evidence in
the study of the so-called flicker or 1/f noises that these processes are stationary
but possess unstable long-term time averages. Hence, they cannot be accom-
modated within conventional probability theory without some contradiction of
the empirical and theoretical evidence. The lower probability-based theory de-
veloped in these papers allows us to reconcile stationarity with divergent time
averages or, better yet, to remain noncommittal about this tail event.

In order to introduce our time series models based upon interval-valued
probability and having the ability to model phenomena excluded from consid-
eration by standard probability, we need to develop first the fundamentals of
specification of an interval-valued probability on a (infinite) product space. In
particular, we wish to render compatible certain properties of lower-order joint
experiments (“marginals”), having operationally observable outcomes, with as-
sertions about not directly observable properties of asymptotically determined
tail events. In Section 2 we introduce the “kernel” representation of a lower
probability and a notion of “nonsingularity” that enables us in Section 3 to
provide a complete answer to the question of when marginal lower probability
experiments admit of a joint lower probability on the product space. Of course,
in conventional probability theory the existence of a joint experiment is trivially
answered with the product/independence construction. We then proceed, in Sec-
tions 4 and 5, to construct stationary time series having bounded coordinate
random variables. The advantage of the construction provided here over that
presented in previous work is that we can now reconcile support for asymptotic
divergence with an ability to arbitrarily closely approximate any given conven-
tional probability measure on a collection of cylinder sets of bounded dimension
(e.g., Proposition 5.8). In effect, lower probability time series models allow us
to closely approximate conventional probability on given collections of cylin-
der sets while still preserving our modeling flexibility insofar as certain tail
events are concerned. Issues that should be left to the scientific disciplines con-
cerned with the particular nondeterministic phenomena are no longer settled
by probabilistic methodology. Furthermore, these results have implications for
frequentist interpretations of probability in that they open the possibility that a
frequentist account of probability might be made for interval-valued probability
that would avoid unsubstantiated commitments to long-run convergence.

The theory of interval-valued probability (IVP) is a simple generalization
of the theory of additive probabilities in which the likelihood of an event is
associated with a subinterval of [0, 1]. The lower and upper endpoints of the



1842 A. SADROLHEFAZI AND T. L. FINE

interval are called the lower and upper probability and denoted by P and P,
respectively. In contrast to additive probabilities, the domain of definition of
P, P is not critical and they can in general be defined on an arbitrary class of
events. However, for the purpose of comparison with additive probabilities, we
will define them on an algebra. The formal definition of IVP is as follows.

1.1. DEFINITION. Given an algebra A of subsets of Q, IVP (P, P) is a pair
of conjugate real-valued set functions on A related by P(A) + P(A°) = 1 and
satisfying:

(IVP1) Normalization: P(Q2) = 1.

(IVP2) Nonnegativity: P > 0.

(IVP3) Superadditivity of P: (VA, B € A, ALB) P(A +B) > P(A) + P(B).

(IVP4) Subadditivity of P: (YA, B € A, ALB) P(A +B) < P(A) + P(B).

It follows easily from the definition that P(®) = P(®) = 0, and P, P are
monotone. Also, 0 < P < P < 1, hence justifying the term upper and lower
probability. A finitely additive probability (a charge) « is a degenerate case of
IVP with P = P = &, while a countably additive (a measure) yu is a charge with
the additional continuity condition

VA, eA) A, lD = w0

A nonobvious consequence of the axioms is the following:
(VA,Be A) P(A)+P(B)<P(AB)+P(AUB) < P(A)+P(B).

Using this property and the fact that P(A) + P(A’) = 1, we can rewrite axiom
IVP4 in terms of P, and arrive at the following equivalent axiom:

(IVP4') Conjugacy: (VA,B € A) 1+P(AB) > P(A) + P(B).

We take axioms IVP1-IVP3 and IVP4' as the definition of IVP, and work
solely with lower probabilities (LP’s), implicitly understanding their conjugate
upper probabilities. The triple (2, .4, P) is referred to as a lower probability (LP)
space.

1.2. PROPOSITION. The family of all LP's on an algebra A is closed un-
der forming:
(i) Arbitrary setwise infima: inf, P,.
(ii) Finite or countable convex combinations: ¥;\;P; where A\; > 0, £, \; = 1.
(iii) Finite setwise multiplications: IT}_,P;,
(iv) Minimal combinations: (P, + Py — 1)*.
(v) Scales: Given on LP P, and o € [0, 1], form the “scaled” version P by

(VAe A, A%Q)  P“A)=aP(A).

Proor. Routine verification. O
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Property 1.2(i) is commonly used to generate LP’s from charges and mea-
sures. As noted before, a charge is an LP, therefore, the setwise infimum of a
family of charges is a (nonadditive) LP. This method of generating LP’s from
charges gives rise to a class of LP’s, the lower envelopes, that have been the
main object of study in Walley (1981, 1991). However, not every LP can be gen-
erated in this manner, and there is an important class of LP’s—the undominated
LP’s—that have no relationship to additive probabilities.

1.3. DEFINITION. Given an algebra A of subsets of 2, let P(A) denote the
family of all charges defined on A. Given an LP P on A, its family of dominating
charges, M(P), is defined as

MP) = {7 € P(A): 7(A) > P(A) for all A € A}

Since every charge on an algebra has a charge extension to 2 [Rao and Rao
(1983), Corollary 3.3.5], we can drop the reference to the algebra A and only
consider P = P(29).

If M(P) = @, P is said to be undominated, dominated otherwise. A dominated
LP P is called a lower envelope if

(VAeA) PA)=inf{r(A): € MP)}.
Its corresponding upper probability P is the upper envelope of M(P).

We note that there exist dominated LP’s that are not lower envelopes; for
an example see Walley (1981), page 35. An LP P is said to be vacuous on a
nontrivial set A—a set other than the trivial sets @, Q—if P(A) = 0, P(A) = 1.
The vacuous LP P is defined to be the LP that is vacuous on all nontrivial sets:

(VAe At =A\{®,Q}) PA=0, PA=1

An equivalent definition is an LP P for which M(P) = P. The vacuous LP is a
good model for “total ignorance,” since it is noncommittal on all events except
the trivial ones.

Different classes of LP’s (measures, capacities, belief functions, etc.) can be
obtained by imposing various regularity conditions on P and by endowing A with
topological structures; see Choquet (1953), Dempster (1967), Shafer (1976) and
Anger (1977).

2. Kernels. As noted before, the domain of an LP need not be an algebra.
The following extension procedure is standard in the literature of LP’s.

2.1. MINIMAL EXTENSION THEOREM. On a class A of subsets of ) containing
@,Q and closed under finite intersections and finite disjoint unions, let P, be a
monotone real-valued set function satisfying the axioms of an LP. Then P, can
be extended to an LP P on 2° given by

(VACQ) P(A)=sup{PyB):BCA, BeA}.
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Moreover, P is the minimal such extension; that is, if @ is another LP on 29 such
that Q = Py on A, then @ > Pon 29,

Therefore an LP defined on an algebra can be extended to an LP on the power
set. Conversely, we observe that the restriction of an LP (defined on the power
set) to any algebra is still an LP. From now on, unless specifically noted, we will
assume that our LP’s are defined on the power set. In this case, we will also omit
29 and call the pair (Q, P) an LP space.

The above extension procedure suggests other ways of generating LP’s from
a small class of sets. For this, we need a set function defined on a class of events
that can approximate an LP from below. This gives rise to the notion of a kernel,
a “concise” description of an LP.

2.2. DEFINITION. A kernel (X, p)is a class X of subsets of 2, where @, 2 € X,
together with a monotone real-valued set function p on X, that satisfy:

(i) Normalization: p(Q) = 1.
(ii) Nonnegativity: p > 0.
(iii) Closure under superadditivity: (VA,B € X,A L B)

sup{p(C): CCA+B,C¢ X} > p(A) + p(B).
(iv) Closure under conjugacy: (VA,B € X)
1+sup{p(C): C CAB, C € X} > p(A) + p(B).

We note that closure under superadditivity (conjugacy) is a weaker notion
than superadditivity (conjugacy), since it involves both the set function p fo-
gether with its domain X—for example, X need not be closed under intersections
or disjoint unions. Note also that it follows from the definition that o(@)=0.

The following proposition indicates how the kernels can be used to con-
struct LP’s.

2.3. PROPOSITION. Given a kernel (X, p), define P as follows:
(1) (VACQ) P(A)=sup{pB): BCA, BeX}.

Then P is the minimal LP extension of p to 29 Conversely, if for a given LP P,
(1) holds for some pair (X, p) where P, € X, and p is monotone, then (X, p) is
a kernel.

The LP so constructed is said to be generated by the kernel (X, p), or we say
that (X, p) generates P.

Proor. Clearly, P(Q) = 1, and P > 0. Given two disjoint sets A,Band £ > 0,
we can find two disjoint K-sets K, K;, where K; C A, K, C B, and

P(A) < p(Ky) +e,  P(B) < pKy) +e.
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By definition, there is a X-set C where C c K; + K, C A+ B, and
p(C) > p(K1) + p(K3) — €.

Hence P(A + B) > P(A) + P(B) — 3e. Since ¢ was arbitrary, this show that P
is superadditive.

The proof of conjugacy is similar: Given two sets A,B and ¢ > 0, there are
K-sets K;,K, such that K; C A, K, C B, and

P(A) < p(Ky) +¢, P(B) < p(Ks) +¢.
Again by definition, there exists a X-set C where C C K;K»,
1+ p(C) > p(K7) + p(K3) — €.

Hence 1+ P(AB) > P(A) + P(B) — 3¢, thereby establishing conjugacy. Since p is
monotone, P = p on X. The minimality of P comes from the fact that every LP
is monotone.

For the converse, assume that (1) holds for some monotone set function p
defined on a class X. Nonnegativity and normalization follow from the corre-
sponding properties of P. Given disjoint X-sets A, B, we have:

p(A) + p(B) = P(A) + P(B)
<P(A+B)
= sup{p(C): CCA+B,C € X},

since by monotonicity of p, we have P = p on X. A similar argument shows that
(X, p) is closed under conjugacy. O

While every kernel generates a unique LP, an LP may be generated by differ-
ent kernels. For example, for a given kernel (X, p), if we strip away from X all
nonempty sets for which p is 0, the truncated kernel generates the same LP as
the original. Similarly, if we augment X by arbitrary sets, we still end up with
the same LP. The importance of kernels lies in the flexibility that they afford
us in constructing an LP. Our goal is to use this flexibility in a judicious way to
provide tractable kernels.

Trivially, given an LP space (2, P), we can set X = 2% and p = P. Then (X, p)
generates P. In this case, the kernel is called the maximal kernel. A charge
(defined on a finite space) that assigns positive mass to all singletons can only
be generated by the maximal kernel. On the other hand, the trivial kernel (X, p)
defined as

X={®,Q}, p@ =0, p@)=1,
generates the vacuous LP. Other nontrivial examples of kernels follow.

2.4. NOTATION. Given classes A, B of subsets of 2, 4 ® B denotes the class
of sets that are obtained by intersecting an A-set and a B-set: A© B = {AB: A
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€ A, B € B}. When A = B, we write A? = 4 © 4, and we define A™ = O}_, A
for n > 1, A? = {Q}. By A we mean the class of all complements of A-sets:
A© = {A©: A € A}.

2.5. EXAMPLE. Given a nontrivial subset A of Q and a number p € [0, 1],
let X = {®,A,Q}, and define p by p(@) = 0, p(A) = p and p(Q) = 1. The kernel
(X, p) generates an LP P where P(A) = p.

2.6. EXAMPLE [Grize and Fine (1987), Lemma 5]. Let A be a class of subsets
of Q where for some integer n > 1, the intersection of any 2n sets is nonempty,
that is, ® ¢ A%, Let X = {, 2} UA™, and define p by p(®) = 0,

VAeX) pA)= sup{l - %: BCA,BcA™ 0<m< n}
Then (X, p) is a kernel. The LP P generated by this kernel satisfies
(Vm > 0)(VA€A™)  PA)>1- 1,
or consequently for every A-set A, P(A) >1—-1/(n+1).

3. Common extensions and joint LP’s. We consider the following prob-
lem in this section: given two LP’s P,, P, on a space 2 and two classes A;, Ay
of subsets of 2, under what conditions can we construct an LP P that extends
(to the power set) both P; from A; and P, from As? The key property for this
turns out to be the following.

3.1. DEFINITION. Two classes A, B of subsets of Q are said to be mutually
nonsingular, A!B, if

(VAcA,BeB) AB=¢ = A=dorB=0,
or equivalently ¢ A* © B*.

3.2. PROPOSITION. Let X1, X5 be two class of subsets of §) that contain @, Q.
On X1 x Xg define o by 0(K1,Ky) = K1Ks, and let X denote the range of o: X
=KX, 0 Ko If (X1 U de))@)wc‘;), we have:

(i) If #0(A1,A2) C 0(By,By), then Ay C By. Hence
®#0(A1,A2) =0(B1,By) = A;=Bi.

(11) IfO'(Al,A2) 1 O'(Bl,Bz), then Al J_Bl orA2 J_Bz.
Moreover, if iK(lz) and (X U IC(;))@) are also nonsingular, then:

(iii) o~ exists on X — {®}.
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Proor. We will only prove (i), since (ii) follows from definition, and (i) im-
plies (iii).

(i) Wehave @ #A1A5 C B1Bs. Intersect both sides by A;\B; to get A1 BjAs = @.
Note that A;B5 € (X; UKXY)? and A; #@. By the nonsingularity assumption,
AlB‘i =@QorA; CB;. O

The following proposition indicates that nonsingularity is the essential
requirement for the construction of common extensions or common pseudo-
extensions—LP’s that dominate both of the original LP’s—for two given LP’s.

3.3. MINIMAL COMMON EXTENSION. Let (X1, p1), (K2, p2) be given kernels on
Q, and let P,, P, be their respective generated LP’s. On X; x Xs, define a,n by

o(K1,K3) = K1K»,
n(K1,Kz) = (p1(K1) + po(K3) — 1)+.

Let X be the range of o, that is, X = X; ® X2, and on X, define p by
(2) p(A) = sup{n(A1,A2): 0(A1,Az) C A, (A1,A2) € K X Ka}.

@ If .'K(lz)!ﬂcgz), then (X, p) is a kernel and p > p; on X;. The generated LP P
is the minimal common pseudo-extension of P;’s.

(i) If (K, U JC(IC))(2)!SJC(22), then (X, p) is a kernel, p = py on X and p > pp on
Ko. The generated LP P is the minimal pseudo-extension of P, that equals P,

on 3(:1.
(iii) If (%3 U KO)YNKD and KPUK, UKS)P, then (2) simplifies to

3 p(0(A1,49)) = (p1(A1) + pa(A2) — 1)".

In this case, p = p; on X; for i = 1,2, and the generated LP P is the minimal
common extension of Py, P, from X1, Xa.

PROOF. (i) Since K; UKy C K, P,0Q € K. Clearly, 0 < p < 1, p(2) = 1, and
since A; = 0(A1,Q), Ay = 0(Q,4Ap) for all (A; x Ag) € Ky x Ko, p > p; On
X;. The proof of closure under conjugacy being straightforward, we will just
prove closure under superadditivity. For this, we only have to consider dis-
joint K-sets A, B where p(A)p(B) > 0. In this case, for any € > 0, we can find
(Al,Az), (Bl,Bz) € K1 x Ko such that

o(Aq,Az) CA, o(B1,Bg) C B,

and
0 < n(A1,A) < p(A) < n(Aq,A9) +¢,

0< 77(31,32) < P(B) < U(Bl,32)+8.

Since A L B, 6(A;,As) L 0(B;,Bs), which by the nonsingularity assumption im-
plies A; 1L Ay or By L B,. Assume A; L A,. Since (X;, p;)’s are kernels, we can
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find Cl e Xy, Cz € Xo such that

C1 CA;+B;, p1(C1) = pi(AD) + p1(By) — ¢,
Cz C A2Bz, 1+ pz(Cz) > pz(Az) + pz(B2) —E.

Let C = 0(C4,C5). Then C C (A; + B1)A3By C AB, and

p(C) > n(Cy,Co)
> n(A;,Az) +n(B1,Bg) — 1 —2¢
> p(A) + p(B) — 4e.

Hence
sup{p(C): CcA+B,Ce JC} > p(A) + p(B) — 4e.

Since ¢ was arbitrary, this proves the closure under superadditivity.

By the conjugacy and nonnegativity axioms, any LP that dominates P, onX;
must dominate p on X. Since p > p; on X; the generated LP P, is the minimal
LP that dominates both P; and P,.

(ii) The only new assertion here is that p = p; on X;—the rest of the assertions
follow from part (i). We have already shown that p > p1, hence it suffices to show
p < ppon X;. Given A; € Xy, let 0(By,Bz) C Ay for some (B1,B5) € X; x Ky. If
n(B1,Bs) = 0, we are all set. Otherwise, 7(B1,B2) > 0 implies

p1(B1) + pa(B2) —1 >0
= Bla B2 # ¢
= o(B1,By) # O,

by the nonsingularity condition. We have

@#U(Bl,Bz) C 0(Aq1,0) =A;

@) = Bl CAl,

by Proposition 3.2(i). Since p; is monotone, (4) implies n(B1,Bg) < p1(Ay).
Therefore

p(A1) = {n(B1,By): o(B1.B2) C A1} < pi(Ay).

(iii) We just have to show that (3) is valid; the rest of the assertions follow
from part (ii). By the nonsingularity assumptions and Proposition 3.2(iii), o
is invertible on X — {®}; hence (3) is well defined for all nonempty X-sets.
Furthermore, if 5(A1,As) = @, then A; = @ or Ay = @. Therefore, for all different
representations of the empty set, p as defined in (3) is 0. ©

We find the first application of Proposition 3.3 in proving the existence of joint
LP’s on product spaces. Given two LP spaces (Q1, Py), (Q2, Py), we are interested
in forming a joint LP P on Q = Q; x )y that preserves the marginals

(VA1 C 01,42 C Q) P(A; x Q) = Py(Ay), P(Q2 x Ag) = Py(Az).
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While the existence of joint LP’s is immediate in additive probability (product
measures), the absence of adaptivity in LP structures significantly complicates
this issue. Previous attempts [e.g., Papamarcou (1983) and Papamarcou and
Fine (1986)] have only partially solved this for certain classes of marginal LP’s,
and the existence of a joint for general marginal LP’s has been an open question.

The question of finding a joint LP is equivalent to finding a common extension
for (1 x Qo, Al,Ql), 0 x QZ,AZ,QZ), where

A= {Al X Q9 Ay C Ql}, Ag = {Ql XA22 A2 C Qz},
Q,(A; x Q) =Py(A1),  Q,(Q X Ag) = Py(Ay).

In Proposition 3.2, we observe that if X, X, are algebras, then the condition for
the existence of ! is simply the nonsingularity of X; and K. Since A;, A, are
nonsingular algebras, Proposition 3.3(iii) completely resolves the joint question
by constructing the joint LP for arbitrary marginals. This construction has the
additional desirable property of being the minimal such joint LP.

The next proposition is essentially Proposition 3.3(iii) applied to the joint
problem for general product spaces. Given LP spaces (Q,,P,), where s can
belong to an arbitrary index set I, let Q = I[1,Q,. By a rectangle, we mean the
Cartesian product of subsets of Q,’s; that is, [T, A, where A, C Q. A finite
rectangle is a rectangle 1, A, where A, = Q, for all but finitely many o’s. We
let R; denote the class of all finite rectangles, and note the following properties
of rectangles:

(1) If @ #11oAq C [IoBa, then A, C B, for all o € I. Hence

(5) $#[[Aa=]]B« = As=B, forallacl.

(ii) If 0I.As) L (TIoBy), then A, 1 B, for some o € I.
(iii) (II,Aa) N (14, Ba) = MIoAxBs, hence the class of (finite) rectangles is
closed under (finite) intersections.

3.4. MINIMAL JOINT LP. Given LP spaces (24,P,), let Q = [1,Q0, and set
X = Ry, the class of all finite rectangles. On X define p by

+
© p(HAa) = (1+ 3 (PalAa) - 1)) .
Then (X, p) is a kernel, and p preserves the marginals:
(VB Ag C 9p) 13( HAa) = P,(4p),

where A, = Q, for all a# (. Moreover, it generates the minimal LP on ) that
preserves the marginals.
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PROOF. Since we are only considering finite rectangles, there are only
finitely many nonzero terms in the sum in (6), and the sum is well defined.
Also, (5) indicates that p is unambiguously defined, since for all different repre-
sentations of the empty set, p is 0. Clearly, 0 < p < 1, p(Q2) = 1 and p preserves
the marginals. For conjugacy, we only have to consider rectangles A = I, Aq,
B =[1,A, where p(A) + p(B) > 1, hence p(A) > 0, p(B) > 0. We have

PA) + p(B) = [1 + 3 (Bulda) - 1)] . [1 +3 (PalBa) - 1)]
=1+1 fz [(Ba(Ad) + Py (B) : 1) -1]

(M <1+1+) (P, (AaNB,)-1)
<1+ (1 +> (Po(AaBa) — 1))
= 1+ p(AB).

The inequality (7) follows from the fact that all P ,’s must satisfy conjugacy. For
superadditivity, we only have to consider disjoint finite rectangles A = [T, A,,
B = II,Ba where p(A)p(B) > 0. By observation (ii) above, Ag L By for some £.
Consider the finite rectangle C = I1,C, where Cs = Ag+Bjs and C,, = A, B, for
a#3. We have C C A +B, and

HA)+pB) = 1+1+ 3" [(BalAa) — 1) + (Bo(Bo) - 1)]

a

=1+ [(BalAn) +Po(Ba) - 1) - 1]
aif

+[(Bs(A4g) +Py(Bg) - 1)]
<1+ (Po(AaBa) — 1) + (Ps(As +Bg) — 1)
a#p
< (1 +> (Po(Co) - 1)) = p(O).

Any LP that preserves the marginals, by conjugacy and nonnegativity has to
dominate p. Therefore, the LP generated by the kernel is the minimal such LP.
a

Note that by the conjugacy and nonnegativity axioms, any LP P must satisfy
n n
13( nAi) >1+) (P(A)-1)
i=1 i=1

for any finite collection of sets. This is why we only considered finite rectangles.
Proposition 3.4 still holds if the index set I is countable, and we consider the
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class of all (countable) rectangles, but the generated LP will not necessarily be
minimal. (In this case, it would be the minimal continuous LP that preserves
the marginals; see Definition 5.1.)

As stated before, given a kernel (X, p), we can strip away from X all nonempty
sets for which p is 0. The next proposition is an application of this flexibility for
the case of identical marginal spaces.

3.5. PROPOSITION. Given an LP space (Qq,Py), let Q = [1, 10 = Q{, where
I is an arbitrary index set. Let P, satisfy the following range constraint:

0 < h =sup{Py(A¢): Ag#Qp} < 1.

Set H = [1/(1 —h)] — 1, and let X be the set of all finite rectangles T1, c jAa such
that at most H of the A, ’s are different from Qy. On X define p by

()= (o)

Then (X, p) is a kernel, and it generates the minimal LP P that has P, as
marginals:

(VB e DVAs C Q) P( II Aa> =P,(Ap),

a€l

where A, = Qg for a# .

Proor. Combining the range constraint and (1), we observe that the p-
assignment of any rectangle with more that H nontrivial sides is 0. O

In the next section, we will concentrate on the case where all (Q,,P)’s are
the same. In this case, the joint LP can be used as a stationary model for a given
time series. If the time series is generated by repetitions of the same probabilis-
tic experiment, then the construction in Proposition 3.4 gives us the minimal
joint model, and does not incorporate any ‘dependence structure between the
experiments. In this sense, it can be argued to be a good representation of the
unlinkedness of the experiments.

We have shown that nonsingularity is sufficient for the construction of
common extensions. The next proposition indicates that it is in a sense
also necessary.

3.6. PROPOSITION. Let Ay, Ay be algebras of subsets of ). A, and Ay are
nonsingular iff any pair of LP’s Py, P, defined respectively on Ay, Ay admit a
common extension. The minimal such extension for P,,P, when A;!As is given
by VA CQ)

P(A) = sup{(}_’l(Al) +Py(A3) —1)": AjAy CA,A; € Ay Ag € .Az}.
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ProoF. If A4y, then since A;’s are algebras, the nonsingularity condition
in 38.3(iii) is satisfied. Therefore, any pair of LP’s P, P, defined respectively on
A1, Ay, admit a common extension.

Conversely, let A1A; = @, where A; € A;. Assume, by way of contradiction
that A;,A;#@. For i = 1,2, let P; be an LP on A; such that P;(A;) = 3/4 (see
Example 2.5). By assumption, P;’s admit a common extension P. We then arrive
at the contradiction

0=P(®) =P(A1A2) > P(A;) +P(Ay) — 1
= Pi(A)) +Py(Ag) —1=1/2. O

4. Time series modeling with IVP. In this section we explore IVP models
that can incorporate the “contradictory” properties of stationarity and support
for bounded yet divergent time averages. The contradiction is due to the ergodic
theorems which indicate that a stationary stochastic process must have almost
surely convergent time averages. Granted that divergence and convergence are
infinitary issues and cannot be (operationally) verified/refuted in finite time, we
are still surprised by such an a priori statement about the physical world, one
based upon methodology rather than upon empirical experience. In this vein, we
explore IVP in search of models that can characterize stationary processes with
apparently divergent time averages. The need for such models has been argued
for in the words of Kumar (1982), Grize (1984), Papamarcou (1987) and Fine
(1988). In these works, the class of flicker (1/f) noise phenomena is identified as
a potential example of real-world empirical processes that would require such
new modeling methodology. For a more extensive discussion of flicker noise and
related issues, see Grize (1984), Andrews (1985) and Papamarcou (1987).

Mathematical setup. We start with a nonempty subset X of R as our
“marginal” space and let @ = X = X%, the set of all double-sided sequences
of X. We denote a generic element of X, a sample path, by x = (x,), cz. By an
index set, we mean a nonempty subset I C Z. For every index set I, the projection
operator By: X — X! is defined by

(Vx = (xn)nGZ) BI((xn)nEZ) = @nner

Following Papamarcou, we call an index set I a sufficient set for a set A C X, or
“sufficient for A,” if

®) A={xeX: @ner € Br(A)}.

We use the shorthand notation A « I to denote that I is sufficient for A.

- A cylinder C is a set that has a finite sufficient set. We denote the algebra of
all cylinders by €. In general, the sufficient set of a set A is not unique, but for
nontrivial cylinders there exists a minimal sufficient set.
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4.1. DEFINITION. Thedimension of asetA, dim(A), is the minimum number
of coordinates required to specify A, and is defined by

(VACX)  dim(A)=min{|I|: A - I}.

Note that dim(A) < o iff A € €. For all sets A ¢ C, we let dim(A) = co. A related
concept is the diameter of a set A, diam(A), defined as

diam(A) = {mm maxi —mini + LA-I|I| < oo}, ifAec,
00, otherwise.

Note that dim(-) < diam(-). For N > 1, we let Cy (Dy) denote the class of cylin-
ders whose dimension (diameter) does not exceed N:

(VN>1) €y={Cece dimC) <N},
Dy = {C € € diam(C) < N}.

Clearly, Dy C Cy.
For a nonempty class of sets A, we define dim(A) = sup{dim(A): A € A}. If
dim(A) < oo, we say that A has bounded dimension, or “A is bounded.”

It is easy to show that if I,J are sufficient for a nontrivial cylinder C, where
]| = |lJ|| = dim(C), then I = J. Therefore, a nontrivial cylinder has a unique
minimal sufficient set. For a nontrivial cylinder C, we denote this minimal
sufficient set by I(C) and define its base by B(C) = By)(C).

Some of the properties of dim(-) are summarized below. It is interesting that
dim(-) satisfies the “dual” properties of an LP.

4.2. PROPOSITION. dim(-) satisfies the following:

(i) dim(®) = dim(X) = 1.

(ii) dim(.) > 1.

(iii) dim(AB) < dim(A) + dim(B).

(iv) dim(A + B) < dim(A) + dim(B) — 1; dim(A U B) < dim(A) + dim(B).
(v) dim(A) = dim(A®°).

Topological issues/invariance and stationarity. If X is compact under a
suitable topology, then by Tychonoff’s theorem, X = XZ is compact under the
product topology. Since we only consider finite marginal spaces, X is compact
under any topology. Therefore, without any loss of generality, we endow X with
the discrete topology. In this case, the class of cylinders € is a base for the prod-
uct topology. We denote the class of all countable unions and intersections of
cylinders respectively by C, and C;. Since the complement of a cylinder is itself
a cylinder, cylinders are both closed and open (clopen). Moreover, since X is
finite, C is countable. Hence C,(Cs) is exactly the class of all open (closed) sets.

The algebra of cylinders C is identified with the class of all observable sets,
namely, events whose occurrence or nonoccurrence can be determined in finite
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time. We refer to the specification of an LP on C as its set of finite-dimensional
distributions. Another algebra of interest is the tail o-algebra, T, containing the
divergence event D*:

D*={xeX lin}zinfr,,(x)# lim sup r,(x)}

= U ﬂ U {xeX:|rn(x)—rm(x)|>%},

k>1n>1m2>n

where r,(x) = (1/n)Y_}_, x;. The complement of D*, the convergence event, is
denoted by C*.

We borrow the concept of stationarity from measure theory and define the
left-shift operator T: X — X by (Vi € Z)Tx); = x;.1. Since we are consider-
ing the double-sided sequence, T is invertible, and both T' and its inverse T'~!
preserve all the set-theoretic operations.

A set A is called invariant if TA = T—'A = A. Invariance is preserved by
all the set-theoretic operations, and the class of all invariant sets forms the
invariant o-algebra. Similarly, a class of sets A is called invariant if it is closed
under T'. A set function p on an invariant domain A is called stationary if

(VAeA)  po(TA) = p(T7'A) = p(A).

We observe the following:

(i) C*,D*,C,T are invariant.
(ii) An invariant kernel, that is, kernel (X, p) with invariant X and station-
ary p, generates a stationary LP. _
(iii) An LP P is stationary iff its conjugate upper probability P is stationary.
(iv) In Proposition 3.4, if all the LP spaces (Q,, P, )’s are the same, and I = Z,
then the constructed kernel is invariant. Therefore, the generated minimal
point LP is stationary.

Finite-dimensional distributions and support for tail events. In measure
theory, the finite-dimensional distributions of a stochastic process uniquely de-
termine its behavior on ¢(C) O 7. By the stationarity convergence theorem, any
measure with stationary finite-dimensional distributions supports C* almost
surely. As expected—in the absence of additivity and continuity constraints—
this is no longer true for IVP structures. From now on, we will concentrate on
the issue, of finite-dimensional distributions and support for tail events in the
context of stationary IVP models. Since we only consider finite marginal spaces,
without loss of generality, we set X = {0, 1}. _

If for an event A, we associate the interval [P(A), P(A)] with the “imprecision”
about the likelihood of A, then we observe that an additive [VP—a charge—and
the vacuous IVP are extreme cases. The former allows only one point in [0, 1],
while the latter assigns the whole interval. We also observed this antipodal
behavior in their generating kernels: the vacuous LP can be generated from
the trivial kernel (X = {®, Q}), while a charge in general requires the maximal
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kernel (X = 2¢%). We are mostly interested in the interplay of these two extremes:
Can a stationary IVP model have additive finite-dimensional distributions and
yet be vacuous on J? Or in the other direction, can it be additive on Tand vacuous
on @? In what follows, we experiment with variations of these questions. Our
answers will establish the logical independence that has long been obscured by
conventional probability theory, and thereby provide a new perspective on the
frequentist interpretation of probability.
Most of our results are based on the following key observation.

4.3. ProposITION. C and T are mutually nonsingular, C!7.

Proor. Follows from the observation that if A € @ « I, B € T « J, where
I and J are disjoint, we have

AnNB=¢ & A=@QorB=9. |

Therefore, by an application of 8.3(iii), any pair of LP’s P; and P, defined
respectively on € and T admit a common extension. Moreover, we note that in
3.3, if P;’s are stationary, then the resultant common extension is also station-
ary. Therefore, any pair of stationary LP’s P;,P, defined on €, 7, respectively,
admit a stationary common extension, with the minimal such extension given
by

VACX) PA)= sup{(l_’l(C) +P,D)-1)":Cee,DeT,CDC A}.

This indicates that within the framework of stationary IVP models, the issues
of finite-dimensional distributions and support for tail events are unrelated.

In terms of support for divergence, the situation is not changed if one re-
quires that the LP’s be additive. Indeed, there are well-known examples of
stationary charges that support divergence; see Kumar and Fine (1985) and
Ramakrishnan and Sudderth (1988). The next theorem generalizes these ex-
amples by showing that any stationary charge on C has a stationary charge
extension with a prescribed behavior on invariant tail events.

4.4. THEOREM. Let {D;,...,D,} be a finite partition of X into nontrivial
invariant tail events, and let D be the algebra generated by this partition. For
any pair of stationary charges w1, defined on C, D, there exists a stationary
charge T on the algebra generated by CUD that is a common extension of 71, Tg.

ProoF. The proof consists of verifying the following:

(i) The invariant class A = {$?_,C;D;: C; € C} is the algebra generated by
CuUD.
(ii) The representation of A-sets as ¥7_,A;D; is unique; that is,

Y AD;=) BD; = A=B; fori=1,..n
i=1 i=1
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(iii) The set function = defined by n(X}.,A;D;) = ¥7_1m1(A;) - me(D;) is the
desired stationary common extension of 7, 7.

We will only prove (ii), as the rest of them follow from routine verification.
By intersecting both sides by D;, we get

AD;=B,D; = (A)\B)Dj=®, (BNA)D;j=¢® forj=1,...,n.
Since € ! D, this shows that A;\B; = B/\Aj = @, hence A; = B; for all j. O

Hence, we can form the algebra D = {®,X,C*,D*}, and define the charge
my by setting wo(D*) = X for a given A € [0,1]. By Theorem 4.4, 7 and any
stationary charge on C admit a stationary (common) charge extension.

5. Continuity, estimability and the Basic Problem. What is lacking
from the previous constructions is a notion of estimability from observable
events. Indeed, two stationary LP’s may agree on all cylinder sets, but differ
significantly on events not in C, for example, tail events. Therefore, based on
a finite data set from a stochastic source, one cannot distinguish between two
such competing LP’s, and hence one cannot learn from data. This is in sharp
contrast to measures, where because of countable additivity the extension of a
measure from an algebra to the generated o-algebra is unique (Caratheodory’s
theorem). This unicity of extension in measure theory suggests that by impos-
ing some form of a continuity constraint on our models, we might be able to
uniquely extend an LP from C to a class of events outside of C.

5.1. DEFINITION. An LP P is monotonely continuous along an algebra A if

nco {{e(s) o(3):e(0)

i>1 i>1

P is monotonely continuous along A iff P is. The class of continuous LP’s along

C is denoted by S.
Given an LP P, its class of estimable sets, E(P) is defined as

&P ={ACX: (VQ € 5)Q=PonC= Q) =PA)},

namely, £(P) is the collection of all sets A such that for any given continuous
LP Q that agrees with P on €, we have @(A) = P(A). Clearly, if P is continuous,
then €5 and @, are both subsets of £(P).

For modeling time series that exhibit the properties of stationarity and un-
stable time averages, we seek an LP P that satisfies the following:

(BP1) P is stationary.
(BP2) P is monotonely continuous along C: P € 8. _
(BP3) P almost surely supports the divergence event: P(D*) = P(D*) = 1.
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(BP4) The divergence event is estimable: D* € E(P).

We refer to the LP P as a solution to the basic problem. The original formu-
lation of the basic problem in these terms is due to Grize (1984). We briefly
review the previous work on this problem.

Kumar and Fine (1985) were the first to consider stationary and continuous
LP’s that support divergence. Their major result is that such an LP is necessar-
ily undominated. Grize and Fine (1987) provide a specific construction of sta-
tionary and continuous LP’s that support divergence with positive probability
(but not almost surely) and satisfy a weaker notion of estimability than the above.

Papamarcou and Fine (1991) extend Grize’s construction to provide a solution
to the basic problem. They also show that a solution to the basic problem exists
iff there exist invariant families 1, Fo, . . . of closed (€5) subsets of D* such that

wizDOEL L EEeT) () ) FA

i>1j<2

We have been interested in the marginals of these constructions: what is
the behavior of a solution to the basic problem on a given class of cylinders, for
example, Cy, or Dn? Is there a solution to the basic problem that mimics the be-
havior of a given (competing) time series model—maybe a measure—on a class
of cylinders, but (as opposed to measures) would go on to support divergence?

The next proposition provides sufficient conditions for the existence of such
a solution, and is in fact a minor modification of Papamarcou and Fine’s
construction.

5.2. PROPOSITION. Let P, be generated by an invariant kernel (Xy, p1) where
dim(X;) < co. There exists a solution to the basic problem P such that P = P; on
X, (and P > Py on 2X)

PRrROOF. See the Appendix. O

Consider the kernel (X, p1) defined by X; = Cy, p1(A) =0 (VA € K1), which
generates an LP P, that is vacuous on Cy. Proposition 5.2 implies that for
any positive integer N, we can construct a solution to the basic problem that
is vacuous on Cy. This suggests that the issues of support for divergence and
the specification of probability on cylinders are still unrelated in the family
of stationary and continuous LP’s, provided that we restrict our attention to
bounded-dimensional cylinders.

In fact, the combination of the next proposition and the previous one allows us
to show the stronger result that: for a given stationary LP P,N >1 and e > 0,
there exists a solution to the basic problem that has the same (within ¢) N-
dimensional distribution as P.

5.3. PROPOSITION. Let P, be a stationary LP. Given any integer N > 1 and
0 < € < 1, there exists an invariant kernel (X, p) where X is bounded, Dy C K,
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and
9) VC e Dy) |p(C) — Py(O)] < e.
(X, p) generates an LP Q that is stationary and satisfies

(10) (VCeDy) |QEC)-Py0)<e, [QC)—PyO) <e.

ProOF. See the Appendix. O

Consider the following consequence of Proposition 5.3: given a stationary
measure u, an integer N > 1 and 0 < ¢ < 1, there exists a stationary and con-
tinuous IVP (P, P) such that P(D*) = P(D*) = 1, D* is estimable and

(VCeDy) ) —e<PC)<PC) < uC)+e.

Assume that we are given a time series of N data points, and we are asked
to propose a probabilistic model P for this time series. Based on these N data
points, we can give (in the strict sense) statistical validation to at most the N-
dimensional distributions of P, that is, its behavior on Dy. The specification of
P on other events is more a function of methodology and modeling assumptions
than the evidence conveyed by the data. For instance, the absence of a law-like
trend in the data suggests the adoption a stationary model. However, station-
arity is a property of the model and not the data: it makes claims about the
M-dimensional distributions of P (for all M) which clearly cannot be verified on
the basis of a finite data record. Continuity is also a property of the model, as
it delimits the choice of models to tractable ones and provides a mechanism to
infer from data (go from € to events outside of C).

If we let P be a measure p, then by stationarity convergence theorems, we
are bound to accept that the time averages of the time series are (almost surely)
convergent. But what if we observe a persistent instability in the time averages
of the data? It is exactly this scenario for which we argue that our construction
P rather than u is a better model for the data.

The construction in Proposition 5.2 and Example 2.6 provide support for D*
through events that exhibit “apparent divergence”: Given levels 0 < o < 3 < 1
and a rate sequence M = (M), >1 where 1 = My < M, < ---, the P-assignment
of the C.-sets F;(M, o, 8) = N> ; E;(M, o, 3) where

vVj>1) EM,apB = {x eX:(Ip,q € IMj,M;, 1)) rp,(X) <a < B < rq(x)}

satisfies the constraint

1 i
P(F,M,0,8) > 1— e il
= PMD*)=1.

Note that the cylinder E;(M, o, 8) consists of sequences whose time-averages
between times M; and M, cross [a, 8], and its P-assignment exceeds i /(i + 1),
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since F;(M, o, ) C E{(M, o, ) for all j > 1. Therefore, support for divergence is
not achieved by indefinitely delaying it, and there is an explicit rate and level
of divergence that can be used to test the claim of unstable time averages. This
can be used as a basis for hypothesis testing between our constructions and a
proposed measure . For example, on the measurable space ({0, 1}%,0(@)), let
 be an ergodic measure such that its coordinate process {&}, 6(x) = x;, has
mean m, and variance o2. Given a rate sequence M = (M;) and a divergence
threshold 0 < 7 < min(m,, 1 — m¢), consider the following cylinders D;:

D;=<{x: max |AX)—m >71
' { kE[Mini-ﬂ.), #6(x) EI— }7

where A £(x) = (1 /k)E'}= 1§i(X) = rp(x). For any of our constructions P, we have

Fi(M, o, ,3) C Ei(M, a,ﬂ) C Di
1

= E(Dz) Z B(EL(M7 «, IB)) 2 I_)(Ft(My Ol,ﬂ)) 2 1- m7

where a = m¢ — 7, 8 = m¢ + 7. On the other hand, by the ergodic theorem,
plx: Ané(x) — me] =1

= (Ve>0) limp,[ sup [Apé(x) —mg| > a] =0
n m>n
= uD;) — 0.

Therefore, lim; P(D;) = 1, while lim; u(D;) = 0. If for the given time series D; is
observed, that is, the time averages between M; and M; ., ; cross [me —7,m¢ +
7], we are encouraged to choose P over u. Our confidence in this decision is
reinforced by the observation of persistent 7-deviation (more D;’s) as more data
is collected (consistency).

In some instances, we can give bounds on the rate of decrease of w(D;)’s. For
instance, if {¢;} is i.i.d., we have

k

1 &6(xX)—km

D;c{x: max 2j=18i flsr
keM;,M;,,) M;

> MiT})

k
D &%) — kmy
Jj=1

C4{X: max
kell,M;.y)

where by Kolmogorov’s inequality, we have

k

Z{j—kmg

j=1

Mi+
> M| < Var(377214'¢)) _Mi,o?
=T = MizTZ Mi27.2 ’

max
. [k €1,M;,,]
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Therefore, (D;) < M;,10%/(M?27%). With the rate sequence M defined in the
proof of Proposition 5.2 [see (11) and (14) in A.1], {M;,,/M?} is a vanishing
sequence and can be used as a bound on the rate of decrease of u(D;).

In the proof of Proposition 5.3, we observe that if N > 1,then M = [2(N —-1)/¢]
and dim(X) > M. Hence, we cannot let ¢ tend to 0, and still maintain a bounded
kernel. However, if N = 1, then M = 1 for all ¢, and we can set ¢ = 0. In this
case, we can construct an LP that has the same marginals as P, that is, agrees
exactly with P, on D;. We have the following result.

5.4. PROPOSITION. Let P, be a stationary LP that satisfies
sup{P,(C): Ce D1} < 1.

There exists an invariant kernel (X, p) where X is bounded, D, C X and the
generated LP @ satisfies

(V€e D) QC)=PyC), QC)=PyO).

For instance, there exists a solution to the basic problem that has the same
marginals as a (nondegenerate) Bernoulli measure.

5.5. EXAMPLE. Let P, = Py = u where u is a stationary measure such that
for some 0 < p'< 1, we have

~VieZ)  plxx=1=p, plx:x;=0l=qg=1-p

(e.g., let u be the Bernoulli measure with parameter p). Without loss of gener-
ality,let p > q. Let H = [1/q] — 1. Define the cylinders 0; and 1;,, _ ;,1 <! <H,
as

~VieZ) 0;={xx; =0},
lil,iz,...,il = {XZ (xi17 xiz! cee 1xi[) = (17 11 M 1)}1

where iy, ..., are distinct integers. The following bounded and invariant ker-
nel (X, p) generates the minimal stationary LP that has the same marginals
as u:

X = {@,X} + {Oil 1€ Z} + {lil,m,i,: 1<iI< H}’
p0)=q, p1;  ;,)=1-1,

We have also been able to construct a bounded kernel that generates a sta-
tionary LP agreeing exactly with the symmetric Bernoulli measure (p = 1/2) on
Ds, see Sadrolhefazi (1990). This has led us to conjecture that Proposition 5.4
is true for general N, subject to some nondegeneracy conditions on the target
P,. It is easy to show that these conditions cannot be dropped altogether: con-
sider the case of a (degenerate) Bernoulli measure y where the u-assignment
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of “getting a zero” is 1. Any LP P that agrees with 1 on D; must by conjugacy
assign unit lower probability to the cylinders Z, = {x: (x1,...,x,) =(0,...,0)},
and hence cannot have a bounded generating kernel. We have, however, been
unable to obtain a complete proof for our conjecture.

Since all the constructions in Propositions 5.3 and 5.4 and Example 5.5 have
a bounded kernel, they are vacuous on J. However, they are not necessarily
continuous. While it seems that boundedness should be sufficient for continuity,
we have had to resort to the stronger condition of rectangularity.

5.6. DEFINITION. A nonempty finite subset I C Z is said to be an interval if
it consists of consecutive integers:

I={ii+1,...,i+|I|-1}.

A nontrivial cylinder C is said to be rectangular if for some integer M > 1 and
disjoint intervals {I;}, we have

M M
10)=Y"L  B(C)=]]ByO).

i=1 i=1

Similarly, a class of cylinders is said to be rectangular if all of its nontrivial
members are rectangular.

5.7. PROPOSITION. Let (X, p) be a kernel where X is rectangular and dim(X)
=L < oo. Then the generated LP P is continuous.

Proor. See the Appendix.

We observe that each of the cyclostationary LP’s Q, in the proof of
Proposition 5.3 is rectangular, and hence continuous. Therefore the LP @ =
a/M )2 1Q is continuous. Moreover, since @ is generated by a bounded ker-
nel, it is vacuous on T. We have the following result.

5.8. PROPOSITION. Given a stationary LP P, an integer N > 1 and 0 <
€ < 1, there exists a stationary and continuous LP @Q that is vacuous on T and

satisfies

(VCeDy) QO -PyO)|<e,  [QC)—PoO)<e.

One should be reluctant to adopt a model restricting the potential asymptotic
behavior of a time series when we have little more evidence than is provided
by a finite number of observations. The LP @ in Proposition 5.8 captures this
intuitive notion in that it has nearly the same N-dimensional distributions—
‘suggested by the data—as the competing LP Py, it is stationary and continuous,
but is noncommittal (vacuous) on tail events. Unlike conventional probabilis-
tic and frequentist approaches, we are able to avoid unfounded commitments.
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Moreover, if based on the data we come to believe that the process has unstable
time-averages, then by Proposition 5.2 we can form an LP model that has the
same N-dimensional distributions as P, but goes on to support divergence. It
is our hope that this type of flexibility inherent in IVP structures would lead
to their acceptance as a viable modeling tool for empirical processes requiring
such new modeling methodology.

APPENDIX

A.1. PROOF OF PROPOSITION 5.2 Let N = dim((X U X{)®). A sufficient
condition for the construction of P is the existence of an invariant kernel (Xs, p2)
that satisfies:

@ KP1ey.
(I) X3 C C; N 20", that is, X} consists solely of closed subsets of D*.
(II1) sup{pa(A): A € Ko} =1.

If such a kernel exists, since (K; U 56(1”))(2) C Cy, by Proposition 3.3(ii) there
exists an LP @ such that @ = P, on X; and @ > p; on X,. It is easy to see that
Q is stationary and

sup{Q(A): A € Ky} = 1.
Let P, be the restriction of @ to €. By applying the next proposition to P, we
obtain P, the minimal continuous extension of P, to 2X.
A.1.1. PROPOSITION [Grize and Fine (1987), Lemma 3]. Given an LP space

(Q,A,P,), define P, on As by

(VAs € As)  P.(As) =inf{Py(A): A € A,As CA},
and let P be the minimal extension of P, to the power set

(VACQ)  P(A)=sup{P.(As): As € As,As C A}.
Then P is the minimal continuous extension of P,,.

P is the desired LP in Proposition 5.2, since:

(i) P is stationary, since-Q and hence P are stationary.
(ii) P is by construction continuous.
(iii) P(D*) = 1, since P > @ on Cs and

P(D*) > sup{P(A): A € €sN ZD*} > sup{Q(A): A €Ky} =1.

(iv) D* € &(P), since by construction P is the minimal continuous extension
of P,,. Therefore, any other LP that agrees with P on C (P,) has to dominate P
on 2X,

(v) P=P,=@Q on C, hence P = P, on X;(C ©).
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Papamarcou and Fine (1991) construct a kernel (Xg, p2) as follows: given
two levels 0 < o < § < 1, they define a rate sequence M = (M), >1 where
1=M;<My<---by
1+j(j+1)
aA(l-7)

Next they define cylinders E;(M,a, 8) (Vj > 1)

an @iz A,~+1=[ +1], Myuy = 1M,

EjM, 0, ) = {x € X: (3p,q € [M},M41)) (%) < a < B < ry(®) |
and closed subsets of D*, F;(M, o, 3), by
F:M,a,p) = (| EM, o, f),

Jj2i
to get invariant families F;:
(12) ~Vi>1) 3 ={T*F:.M,q,pB): k€ Z}.
These families give Ks:

Ko = {2, X} + () FY.
i>1
The above rate sequence M is selected so that
(13) Vi>D(YF,...,FPed) () () F/#2

i>1j<2

This condition is sufficient to construct the kernel (X, p2) so that (II) and (IIT)
above are satisfied. We claim that by modifying the rate sequence in (11) to

1+j(j+1)+N/M; 1"’

(14) ~vj > 1) )\j+1 = [ and—B)

we get invariant families F; that satisfy (I), which is a stronger condition
than (12).

The first part of the next proposition follows directly from Papamarcou and
Fine (1991), Proposition 7, while the second part is their Propositions 8 and 9
recast in our notation.

A.1.2. PROPOSITION [Papamarcou and Fine (1991), Propositions 7-9].
(i) The classes F1,Fs,. .. defined in (12) satisfy the nonempty intersection
property
Vi>D(VFL,..,FEeF)(vCeey) cCn() [)Fi+d

i>1j<2i
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iff for every collection {K;: i > 1} of nonnegative indices such that (V)| Kj| = 2j,

(vCeey)vn>1 Cn() () T *E+¢.
j<n k€K U UK;

(ii) Let K3, ...,K, be a class of nonnegative index sets ||K;|| = 2j. Then there

exist nontrivial (thin) cylinders C, ..., C, with disjoint sufficient sets such that
<j<m  GS () TE.
kEK U UK;

For a given n > 1 and Kj,...,K,, the cylinders Cy,...,C, are defined as
follows:

Ci= {xeX: x=T""zon [K;+m,(k+ M)Ak _1), 1 StSj(j+1)},

where

L0 i <M,
T, ifiZAlj)\j.,.l,

and ky > --- > kjj+1) are elements of K; U- - -UK; in decreasing order (ko = +00).
(The intervals above should be read as integers in the specified range.) It is then
shown inductively that for all x € C; (1 < ¢ <j(j+ 1))

" t+1
(15) (HPt,Qt € M;,M;, 1)) Tp, (T tx) < DY <a<p
<1l- % < rg, (THx).

We claim that by modifying A;+; and M in (11) to (14), for a given C € (Chem
we can find nontrivial cylinders D; with disjoint sufficient sets so that (Vi
> 1DIWD;) L I(C) and

@+D; C ﬂ t‘kEj forj=1,...,n
kEK U - UK;

Therefore,

Qﬁ#CnﬂDchﬂ N T,

j<nkeKiU--UK,

as desired. Using the sequence z above, we define the cylinder D; as
Dj={xeX:x =T *zonICF N [kr+m, (ke + M) Ak 1), 1 <t<T}.

Note that D; is different from the cylinder C; in at most N positions. Therefore,

16) (yeD)¥n>DEXECHn=D | -ra@ <IAY.
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Combining (15) and (16), we get Vy € D;))(V1 <t <T),

t+1 N t+1 N
rpt(Tk‘y) < ——/\—+l;; <a<,6<1—T—a-t‘ Sl‘qt(Tk'y).

Hence
(VyeD)(V1<t<I) Trkyck;

= Dj c n T_kEj.
k€K

a

A.2. PROOF OF PropPoSITION 5.3. Equation (10) follows from (9), since @
= p on Dy and Dy is closed under complementation. In order to construct the
kernel, select an integer M > N such that (M —N +1)/M > 1—¢/2, for example,

=[] o

andlet A = {C € €: C « {0,1,...,M —1}}, that s, the class of sets that depend
on only the first M coordinates. Note that A is an algebra, and (X, A,P,) is an
LP space. Form a new LP P, as follows: if sup{ P(A): A € A*} < 1,1let P, = P,

otherwise let P be P scaled by 1 —¢/2, that is, P = B(l =¢/2 In either case, we
have

WACX)  |P(A)—Po(A) < e/2
and
h=sup{Py(A)Ac A"} <1

Ifh > 0,set H=[1/(1-h)] — 1, otherwise set H = 1. Define X, by

I
Ko = { ﬂ TMRA,;: 1<l <H,A €Ak,...,k distinct integers},

i=1

and on Xy, define py by

l l +
(VAeXo) po ( N TMkiAi> = [1 + > (PolA) - 1)] :

i=1 i=1

It is easy to show that (%o, po) is a kernel. The idea is to identify X = X Z and
YZ where Y = X{01-»M -1} "and apply the construction in Proposition 3.5.
We observe the following: :

Q) (VEeZ)T™A c Ko, po =Py on THMA.
. (i) (Ko, po) is cyclostationary with period M:
TMKo = T MK, = Ko,
(VA € Ko) Po (TMA) = po (T_MA) = po(A).
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(iii) The generated LP Qo is cyclostationary:
VA ¢ X) Q (TMA) = Q (T‘MA) = QO(A),

Q,=Pyon T A forallk € Z, and <P0
(1v) Ko is bounded: dim(X,) < H -1

For 1 <j <M — 1, define the kernels (X}, p;) by X; = T~/X,,
(VAeX)  pi(A)=po(T’A),

and let Qj’s be the respective generated LP’s. We observe that Qj is cyclostation-
ary with period M, Qj <P;and@ =P,on T -iA for all £ € Z. Also, we have

VACX)  Q,,,(4)=QTA)
> Q4)=g,(T4),

where the subscript (j + 1) denotes addition modulo M.
The desired LP Q is defined as

For every A C X, we have

1 M-1 1 M-1
QTA) = 37 Z; QTA) = 2; QA =4,
j= Jj=

and similarly @(T~'A) = Q(A). Therefore, @ is stationary.

Let JC{UM 1A :Aj € X}, and on X define p by setting p = Q. It can be
shown that (JC p) generates Q. Note that Dy C X and X is bounded: dim(%)
< (H-M)- M. The only thing remaining is to show that the p approximates P 0
on Dy. Since for any cylinder C € Dy, C < {i +1,...,i + N} for somei € Z, C
must belong to at least M — N + 1 shifts of A, and therefore to at least M — N +1
of the X;’s,

vVCeDy) |{j:CeX}>M-N+1.

Since Qj =P, on T¥M ~JA we have

(VAeDy) Q)=
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Also, since Qj < P,, we have @ < P,. Therefore,
(VAeDy) |QMA) - Py(A)| <e/2.
By construction, |P — Py| < &/2. Therefore,
(VAeDy)  |QWA)—PA) <e/2.
Since Dy C X and p = @ on X, this establishes (9). O

A.3. PROOF OF PROPOSITION 5.7.

Continuity from below. Given cylinders C; ¢ C; C -+, let C,, T C,. By mono-
tonicity, we have 0 < lim, P(C,) < P(C,). Hence, if P(C,) = 0, we are all set.
Otherwise, if P(C,) > 0, for any € > 0, we can find a X-set K where @ #K c C,,
and

0 < p(K) < P(C,) < p(K) +e.

Since K € X C C, K is closed and hence compact. Therefore, K ¢ C)s for some
M > 1. We have

P(Cy) > p(K) > P(C,) — €
= lim P(Cy) > P(Co) —e.

Continuity from above. Given cylinders C, | Cs, let A = lim,, P(C,,). By mono-
tonicity, P(Cs) < A. Hence, if A = 0, we are all set. For the case A\ > 0, we may
assume without loss of generality that C,’s are nontrivial. Given 0 < € < A,
set

Kx e ={K e X: |p(K) - \| < €}.
Assume, by way of contradiction, that
P(Cs) < X —=.
We can find N; > 1 such that
(Vn >N)EK, € Xy,.) K,CChy, P(C,) = p(K,) > X — ¢,

where K,,’s are nontrivial, since C,’s are nontrivial and A—¢ > 0. By assumption,
all nontrivial K,’s are rectangular, that is,

mp . mp
Vn>N)  IE)=) I.,;, B&K,)=][]B, K,
i=1 i=1
where I, ;’s are mutually disjoint intervals. Define

Vn>Ny) In={l,,i:1<i<m,}.
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Since dim(X) = L,
¥n>Ny)  [%ll <L

For all n > N1, define

an={1ecn:InI(Cy,) #0}.

Clearly, all J}’s are nonempty. Since there can be at most finitely many distinct
J¥’s, we can find a sequence of integers {n1,m} and an interval I' such that

N1<n1,1<n1,2<~~-

and
Ym>1) I'ed,  Ch,,  Bn(K,,) =B

ni,m
Define the rectangular cylinder K! by

K'=B'x X1,
We have

Vm=>1) K, , CcK.

We can recursively obtain K*, I, {n; ,,} with the following properties:

1) {ny,m} C {ni-1,m}, thatis, {n; .} is a subsequence of {n;_1,m}.
Gi) I1,...,.I' e In,,, forallm > 1.
Gii) ' L forall1 <j<I-1.
Gv) IKH=I'+---+I', and

¥m>1) K,,CK = PEY>I--=

We obtain our desired contradiction by observing that after L + 1 steps, we have
found a subsequence {ny .1 n}, and I!,...,I'*1 where

(szl) Il"")IL+1€jnL+l,m’
and all I’s are distinct (nonempty and mutually disjoint). Therefore,

Vm>1) 19ns .1 ll > L+1L
Hence ‘

MO<e< ) A—e < P(Cs) < A
= .E(Cé )=A= hmm I_D(Cn)

The recursion proceeds as follows;
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At step I +1, since P(Cs) < A —e < P(K"), K! may be a subset of Cy, ,, for only
finitely many m’s. Therefore,

(3Nl+1 € {nl,m}) Kl ¢ CNI«»I'
Since

(Vvm>1) K, ,CK, K,k CCny, CCn,,,

we conclude that for all n; ,, > Nj,1,Ky, ,, is a proper subset of K!. Define

V2 Newt) Bk = {1 €0, I01(Co,) #BT4T,. T}

We claim that all Hf,f,ln’s are nonempty. Otherwise, if 35;:, = @ for some ny, ,,

since Ky, ,, C Cy,,,, we have

B(I‘+~~+I’)UI(CN“1)(Kn[,,,,) CB(Il"'"'+I')UI(CN,+1)(CN1+1)'
Hence ) l
B, ... (Kn:,m) x X TCn NI ot D) CB(CN1+1) x XU+ +INICy, )

By forming the Cartesian product of both sides of the above with
XU+ +IDUICy ) we obtain

!
K CCNzu!'
I+1,

Since there can be at most finitely many distinct 7, ’s (with m varying), we
can find a subsequence {n;,1,} of {n; ,} and an interval I' *! such that

Nisi<ng1<ngee <o

and
Vm>1) I*'edgtl c9,,., Bpa(Bw,,.) =B"*h

Nisv1,m

We define the rectangular cylinder K**1 by
I+1 )
Ki+l= HBi x Xl
i=1
which satisfies
Vm>1) K, CK*!
= E(Kl"l) >A—¢,

thereby concluding the recursion step. O
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