The Annals of Statistics
1994, Vol. 22, No. 2, 732-746

MONOTONE ESTIMATING EQUATIONS FOR CENSORED DATA

By MENDEL FYGENSON AND YA’AcOV RITOV

Rutgers University and Hebrew University of Jerusalem

The monotone class rank-test-based estimating equations for regression
models with right censored data is considered. We introduce an estimator
which is a solution of a monotone estimating equation that is an exten-
sion of the Gehan test. The estimator is easy to derive, v/n-consistent and
asymptotically normal under minimal conditions. All monotone estimating
equations are characterized, and a simulation study, which shows that our
suggested procedure performs well, is included.

1. Introduction. We consider the problem of estimating the regression
coefficients in the accelerated failure time model. Let 7" and C be real random
variables, and let Z be an R? random vector of covariates distributed such that
e=T- ﬂg‘ Z is independent of (Z,C). Let A = I(T > C) and Y = min(T,C),
where I(-) is the indicator function. We observe a random sample X3,Xs,...,X,,
from X = (Z,Y, A) and wish to estimate 3. The distributions of € and (Z, C) are
considered to be unknown and arbitrary.

This model is used in survival analysis where usually T is the log of the
lifetime and C is the log of the censoring time. The majority of the proposed es-
timators for the accelerated failure time model were obtained by modifying the
least squares method to accommodate right censoring. Most of these methods
depend on specific assumptions concerning the distribution of X and can be used
if a particular submodel of the general case is assumed [cf. Miller (1976), Koul,
Susarla and Van Ryzin (1981), Wei and Gail (1983), Powell (1984), Leurgans
(1987) and Fygenson and Zhou (1994)].

For estimating the regression coefficient in the case of uncensored data, many
advocate the use of methods like the M-estimators or rank procedures to over-
come some of the robustness limitations of the least squares method.

Ritov (1990) generalized the method of Buckley and James (1979) and intro-
duced a family of M-estimators for the censored regression model. The estima-
tors were defined as a generalized solution of the following estimating equa-
tions:
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where s(-) is some score function Z = n='y7_,Z; and FA(.) is the Kaplan-Meier

estimator based on the residuals Y; — 87Z;,...,Y, — 8TZ,. Another approach
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was suggested by Tsiatis (1990). He constructed a class of estimators using
linear rank tests for censored data. His estimators were defined as a generalized
solution of the following estimating equations:

n
1.2) Sa(8) =Y widi(Z; ~Z;) =0,
i=1
where w; is some nonnegative weight function of the observations and where
. S22 (of 2 0f)
i= Sy I(vf 2 v?)

is the mean of the covariate of the “risk group” at vf =Y, -37Z,.

Both Tsiatis (1990) and Ritov (1990) proved that their estimating equations
have, under regularity conditions, a solution which is \/n-consistent and asymp-
totically normal. However, neither was able to prove that their estimating equa-
tions have a reasonable global behavior. In particular, they were not able to
show that the equations have a unique solution, nor were they able to devise
an algorithm which was known to converge. In addition, both papers lack any
information on the actual behavior of the suggested estimators and neither
addresses the issues of robustness.

These omissions are directly related to the fact that equations (1.1) and
(1.2) are not monotone in 3. The lack of monotonicity also necessitates strong
assumptions and lengthy complex proofs of the estimators’ properties. Most im-
portant, the nonmonotonicity limits (at best) the use of the proposed estimation
methods in practice. (See Section 3.)

The main results of this paper are as follows. A monotone estimating equa-
tion is proposed. This equation is based on Gehan’s (1965) modification of the
Wilcoxon test for right censored data. Due to the monotonicity of the estimat-
ing equation, the set of its generalized solutions is convex, and it is relatively
easy to locate an estimator and to establish its properties. This estimator is
/n-consistent and asymptotically normal under minimal conditions which are
much weaker than the ones imposed by Tsiatis (1990). This estimator appears
to bel the first reasonable estimator that is generally applicable to our model
and ¢an also be used as a starting point for estimators that are more difficult to
compute. Moreover, it is straightforward to construct a confidence interval for
B using this estimator. It turns out that the proposed estimating equation is a
member of Tsiatis’ family, although it was not investigated by him in particular.
Finally, the subfamily of (1.2) for which the resulting estimating equations are
monotone in 3 is characterized.

The article is constructed as follows. In Section 2, we introduce the mono-
tone equation, derive the properties of its estimators and construct confidence
intervals for Gy. In Section 3, we investigate the existence of other monotone
estimating equations that belong to Tsiatis’ family. A simulation study for the
estimator proposed in Section 2 is presented in Section 4.
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2. A monotone estimating equation. For the uncensored case, that is,
C,=ccfori=1,2,...,it is, proposed by Sen (1968) and others to consider the
estimating equation

2.1) W,(8) = n—mii(&- - ZpI (vf’ > vf’),

i=1j=1

where v =Y, -67Z,.

Since EW,(5p) = 0, one may try to estimate the slope by 3, which makes
W..(3) as close to zero as possible. This is an extension of the test for 3y based on
the Kendall correlations between the residuals and the covariates. Since W, (3)
is not continuous in 3, the equation W,(3) = 0 may fail to have a solution. We
call 3 a generalized solution of W,(3) = 0 if slight perturbations of any of its
components change the sign of W,.

It is important to note that W,(3) is a monotone nondecreasing field. [Note
that a function W(3): R — R¢ is called a monotone nondecreasing field if, for
any 8,¢ € R?, ¢TW(B + x£) is a monotone nondecreasing function of the real
variable x]. It follows that all the generalized solutions of W, (3) = 0 belongs to
a convex set whose diameter is O(n1).

The question is how to generalize this method to the censored case. There
are at least two possible ways. The simplest way is to include only those pairs
for which we know that T; — 87Z; < T; — f¥Z;, that is, to consider

2.2) W.(8) = -3/222(2 - Z)AI(Y; - B7Z; > Y - 7Z;).

i=1j=1

This estimating equation is monatone under right censoring, and therefore the
set of its generalized solutions is convex and it is relatively easy to locate a well-
behaved solution. Another way is to compare all possible pairs and to weight
each comparison according to the number of censored residuals in the pair.
As an example we consider Efron’s (1967) modification to the Wilcoxon test in
which the resulting estimating equation is

27[3
Wi (B) = Z(z —-Z) | A +(1—T)Ai(1—Aj)
F?

2.3) hi=1 J

Fy

Fﬁ
(1———)(1 AL = &) + A1 = A) | I(0P > 0P),

where Ff is the Kaplan—Meier estimator of the survival function at vf , based
on all the residuals. This equation is not monotone and therefore will not be
analyzed further here. However, it can be shown that this equation is also a
member of Tsiatis’ class.

To investigate the properties of (2.2), we need the following notation. Denote
the probability density function and the distribution function of £ by f and F,
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respectively. A bar above a distribution function denotes a survival function;
thus F(-) = 1-F(-). Let G(-) be the marginal distribution function of the centered
censoring variable C — 8 Z, and let G (- | Z) be its conditional distribution given
the covariate. Let H(.) denote the distribution of the residuals without regard
to whether they are censored, that is, H(¢) = G@#)F(2). We denote by H, the sub-
stochastic distribution of the uncensored residuals, that is, dH, () = G (¢)f (¢) dt.
Let

R= [var(z|C - 2 2 u)Hw) (’;((“) Lo (("))>G( ) du
and
J= / var(Z|C - 682 > u) )Gy w)du,
where
var(Z|C - 612 > u) = E[{Z'D(“)}{Z‘_gf:))}:r’(c’ﬂgz >u)|
and

Dw) =E(Z|C - > u).
We obtain the following main results.

THEOREM 2.1. Suppose that E(||Z||?) < oo, that the distribution of € has finite
Fisher information and that the distribution of Z given A = 1 is not concentrated
on a proper hyperplane of R®.

(i) Let

- Try. : Ty, d
Bn_{ g}g}f ﬁZ,>1r_<ninSlnﬂ Zi,VBER }
1<i<n

Then P(B,) — 1 and W,(8) = 0 has a generalized solution on B,,.

(ii) For any fixed 3, W,(B) — \/nA(B) is asymptotically normal with mean 0,
where A(-) is nonstochastic such that A(By) = 0 and A(B): R* — R® is monotone.
The derivative A of A(-) at By = 0 is invertible. In particular, W,(8) is asymp-
totically normal with mean zero and finite variance. Moreover, for any M < oo
and v > 0 there are C1,Cy < oo such that

llell < M

(Bo +1t/v/n) -A(ﬂo)t| >Cy| <v

and

P[ sup |Wo(Bo+8) — vnA(fBo +8)| > Ca| <v.

llzll < M
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(iii) Let 3 be any generalized solution of W,(3) = 0. Then /n (B — o) is asymp-
totically normal with mean 0 and variance-covariance matrix R~ 1JR-1

PROOF. Since the support of AZ spans R?, we obtain that P(B,) — 1. Now
the function W,(-) is the gradient of the function

n n
Qu(8)=n=32Y">" 12 - Z)I{B"(Z; - Z)) > Yi - Y}}.
i=1j=1
Since W, (-) is monotone, @,(-) is convex. On B,

1o ) = 00
However, @,(f) is finite and @, () is convex, and, hence, @,(-) has a minimum
at some point ﬁ Of course, ,8 is a generalized solution of W,(3) = 0. The first
claim follows.

For any fixed 3, W,(3) is a simple U-statistic and, hence, its asymptotic
normality and its expectation are immediate. Assume, without any loss of gen-
erality, that B = 0. Write now W,(3) as a U-statistic with a symmetric kernel:

n i-1

@4)  WuB)=n"23" 3 - 2){Ad(o] > vf) - AL (] > )}

i=2j=1

A direct calculation yields that the expectation of W,(3) is v/nA(f) + o(n=1/2),
where

AP = iE [(z1 —Zo)Zy — Zy)T / Gt - 5721 |2.1)G(t - 8722 | Zo)
x {F(t—6"Za)f (¢~ 672:) ~F(t ~ 5"Z)f (6 - ﬁTzz)}dt].
If 8 — 0, then, since f has finite Fisher information and E(Z?) < oo,
A = 3E [(z1 WAV AY
x / Gt - 6721 | 22)G(t - 672z | Z2)

@)
{F(t) O }f(t) dt} 8 +0(8)

[(Zl Z5)Zy — Zo)T

N)Iv—t

< [G(e12:)B(¢) 22) {F(t)’;((t)) —f(t)}f(t)dt]ﬂw(ﬂ).
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The linearity of A near 3y follows. Moreover, the matrix derivative of A given by

AB = %E [(z1 —Zy)(Z, - Zy)T / G(t|Z,)G(t] Z,) {F(t)’—;% - f(t)}f(t) dt]

- %E {(z1 — Zo)Zy — Zo)T / Fef®)dK (¢ | zl,zz)] ,

where K(t|Z,,Z;) = —G(t|Z,)G(¢ | Z,) is an increasing function. From the as-
sumption that the distribution of Z given A = 1 is not concentrated on a proper
hyperplane in R?, it follows that A is positive definite.

The asymptotic normality of W,(3) follows from the standard U-statistics
theory [see Serfling (1980)]. In particular, for 5 = 0, we obtain that W,(0) =
%n’l/ 22;; 1& + 0(1), where £1,63,...,&, are independent and identically dis-
tributed and

& = E[(Zl — Z){AI(¥p > Y1) — Aod(Yy > Y3)} | Z4, Y7, Al]

Y
= A [{ZI -D(YDH(Y1)} - / {Z, - D)} dHu(t)l

Y
~a-ay [ {z-DO}dH.O.

The uniform convergence follows from the monotonicity of W,(-) and A(-) [see
Brown (1985) and Ritov (1987)]. Having proved the first two parts, the last
part is an immediate conclusion from Tsiatis (1990) and Ritov (1990): First,
since A is invertible and &; has a finite variance, it follows that the generalized
solution for W,(3) = 0is v/n-consistent. Moreover, W,(3) is equivalent to Tsiatis’
estimating function with a weight function H(.). It follows from Ritov [(1990),
Remark 6.5] that the estimator is, therefore, equivalent to the solution of (1.1)
with score function

e H()f(r)dr
F@®) '
The asymptotoic variance formula follows from Ritov [(1990), Theorem 5.1]. O

s(t) = H(t) —

The information bound for estimating (3, is a lower bound, derived by semi-
parametric methods, on the spread of the best possible estimator of 5. It is
derived in Ritov and Wellner (1988) and Bickel, Klaassen, Ritov and Wellner
(1991), and it is equal to J.

COROLLARY 2.1. Suppose that the information bound for estimating (3 is
finite and invertible. Then the generalized solution of W,(3) = 0is y/n-consistent.

PRrOOF. The corollary follows since the conditions of the theorem are exactly
the conditions for a finite and invertible information bound [see Ritov (1990),
Remark 6.3]. O
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Finally in this section, we establish a confidence interval for 5y. For simplicity
we take [y to be a real parameter. The asymptotic variance of the generalized
solution of an estimating equation W,(3) = 0 is given by var{W,(8)} /A%(5p).
Since W, (3,) is a simple U-statistic [see (2.4)], its asymptotic variance is

V = var [E(Zy - Zo){A(Yy — BoZs > Y1 — foZa)

— A2I(Y1 — BoZ1 > Ya — BoZ2) | Z1, Y1, AI}]

which can be estimated by

~ 1 n ~ ~
V= - Z [Z(Zi - Z){AI(Y; — BZ; > Y; — BZ;)

i=1 Lj=2

(2.5) 2
~ NI(Y; — B2 > Y - ﬁzj)}} :

where B is the estimator of §y. The derivative can be estimated by

> {Wa(B+cn) — Wa(B — dn)}
- 2, ’

o)

(2.6)

where ¢, +d, — 0 but liminf /n(c, + d,) > 0. As a result we obtain that

vV /|A| is a natural estimator of the standard deviation of the solution. One
can therefore use

N vie . \ 2%
2.7 (ﬂ ~Za/27=s ﬁ+za/27)
|A] |A]

as a (1 — «) confidence interval for G;.

3. The class of monotone estimating equations. Consider Tsiatis’ es-
timating equation,

3.1 Sn(8) = Z A(Z; - Zjw; = 0.
i=1

In general, S, () is not a monotone function of 3, primarily due to the presence
of right censoring. The nonmonotonicity may cause the estimating equation to
be practically useless in some applications. To see this we consider the behavior
of the function S, (3).

Tsiatis (1990) has shown that S,(3) is asymptotically linear in a neighbor-
hood of the true value 3, (see Figure 1). In practice, one begins with some initial
value (3; and iterates the equation S,(3) = 0 in the hope of reaching the true
Bo. Unless the starting value chosen belongs to the “right” neighborhood, one
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Sa®) M

““7['3/’ 4

[o}

FI1G. 1. The asymptotic behavior of Sx(8) in a neighborhood of the true value fy.

may not reach the true 5y or any solution at all. This may occur if S,(5) be-
haves as in Figure 2. The situation is much worse when the vector parameter
B is of high dimension since one cannot plot the function S,(3). To avoid these
difficulties, one can use a monotone estimating equation which will insure that
the iteration reaches (with probability converging to 1) a small neighborhood
of the true (3, regardless of the intial value ;.

Although it has drawbacks, the idea of using (3.1) as an estimating equation
for censored data is very important. It provides us with a method of estimation
which is very flexible and introduces many estimators for which the corre-
sponding test statistics have been widely used and investigated. In particular,
letting w; = Rf , where Riﬂ is the risk group at viﬂ , one can derive (2.2) by simple
rearrangement of the terms.

It follows from our discussion that it would be of central importance to iden-
tify all the monotone estimating equations that belong to Tsiatis’ family. These
equations will differ only with respect to their weight functions. Thus, equiva-
lently, we characterize the class of nonnegative weights for which the resulting
estimating equations are monotone.

Throughout what follows, we denote Uﬁ) < < vgl) as the ordered residuals

and Zf - ,Zf , Af ,...AP and Wf ,...,W? as their covariates, indicators and
weights, respectively. With the above notation, the function S,(3) can be written

S,® P

~_/
’%t7’g/ > B

FIG. 2. The asymptotic behavior of S,(8) including “bad” neighborhoods.
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as

(3.2) Su(B)=>_ APw? |20 Z

Jj=1 1

Z J+1 I(v7y > v)

Since these equations are linear rank statistics, we restrict ourselves to the
class W of those weights Wthh are predlctable and functions of the residuals
through their ranks, that is, Wk = Wa(AP, .. Ak V-

THEOREM 3.1. The function S,(8): R® — R? is a monotone nondecreasing
random field if and only if

WP =(n—k+ )by (uf),
where uk =%« kAﬁ and the sequence {b,(i)}}_, satisfies

z+1

bn(@) < by(i — 1) —

Proor. It is clear that a change in S,(8) occurs only when two or more
residuals interchange positions. Let § € R? be a unit vector, and suppose that
the kth- and (& + 1)st-order residuals interchange position between 5— = g +
(0-)6 and B+ = 3 + (0+)6. When this takes place, we have

APE=APF . ZPE=2Z0T, and AT* =40, Z7¥=2Z] forallj#kk+1.

The resulting change in the value of the function S, is

24 n—k-1 1
D80 = @5y ~Taa) (MW — Wi
B+ wB_n—k )
BrerWi 7 k+1>
B+ _ pryor Nk L prye-n—k—1
(3.3) + (28 -2, )(A Wt Al

1
+A’”1Wﬁ n—k+ 1)
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We need 67D,(8, 6) > 0 for the monotonicity. This should hold in particular

when AJ* + AP*. = 1, whatever the values of Z; — Zj, for j > k + 1. Hence
the third term on the RHS of (3.3) must be 0. We conclude that Wf should be
independent of any permutation of Ay, ...,A;_1, that is,

(3.4) WP =w, (j,uf),

where uf =Yic inﬁ . Next consider the first two terms on the RHS of (3.3), and
suppose first that Af I , = 1 while Af * = 0. We obtain that, in this case,

=B n—k-1 n—~k
D,(3,9) = (Zf:1 —Zy42) (W}[:II LA )

— A T 1

3.5) . k n-k+
B

+(Z€+—Zk+2)me.

We conclude from (3.5) that, to ensure that §7D,(3,6) > 0 whenever §7(Z,—
Zy 1) > 0, we need

1 n—k-1 n—k
W — _ wo+ - W'B >
(3.6 kn—-k+1 ( b+l pn—k kn—k+1>‘0'

Since in this case uf : 1= uf , we obtain from (3.4) and (3.6) that

n—k
wn(k + 1, u) = mwn(k, u)
= ’-2~_—kw,,(u +1,u),
n—-u
that is,
3.7 wyk,u)=b,(u)n -k + 1),

for positive b. The case A}* | = 0 and A}* = 1 is symmetrical.

Finally, we should consider the case Af = Af* = 1. We obtain from (3.3)
that

§TD.(B3,6) = 6T (22 - Z}* ) (b,, W —k+1)=b, (Ul +1)(n —k - 1)).

The RHS will be positive whenever 67(Z;, — Z ., 1) > 0 if and only if

. n-k+1
bl D < i bn) =37
n-—u
g Py .
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Normally one would generate the weight by choosing a function b and then

defining
~_ 1. (i
bt = 5”(%)

(for the Gehan’s statistic b = 1).
The condition for monotonicity is then

0<byi— 1)L g6y = lb(‘ - 1)_:__‘:_1_ _ 11,(_)
n n

n—-i—1 n —-i-1

> BHO)-)

il _ )2
(3.9) 02305~ 737 2In[(1 - &%(2)],

that is, (1 — #)2b(¢) should be monotone nonincreasing. It can easily be shown
that (3.9) implies (3.8).

Note that, without loss of generality, under the assumption that Gy = 0, the
weights converge to

b(H.(»))F(5)G(y), where H,(y)=P(A=1,Y <y).

4. A simulation study. In this section we consider the actual behavior of
our proposed estimator and compare its efficiency to two other rank estima-
tors: log-rank where the weight function is unity; and Peto—Prentice, where the
weight function is the Kaplan—Meier estimator of the survival function of the
residuals [Peto (1972) and Prentice (1987)]. Before presenting the simulation
results, let us consider theoretically the advantages and disadvantages of these
three estimators.

It is well known that the most efficient rank estimator must be a solution of an
estimating equation in which the weight function is proportional to the deriva-
tive of the log-hazard rate of the distribution of the residual survival times.
Since the weight function should not depend on the censoring distribution, it
was pointed out to us by one of the referees that our proposed estimator can-
not be efficient and the Peto—Prentice estimator may be more efficient. On the
other hand, our estimating equation (2.2) provides a unique estimator, while
the log-rank and the Peto-Prentice estimating equations may provide more
than one estimator for the same data set (see our discussion at the beginning
of Section 3).

To examine these issues in practice, we conducted a Monte Carlo experiment.
The results reported in Tables 1 and 2 are based on 1000 replications of each
experiment. In all the experiments, the covariate Z had a U(0, 1) distribution.
In the experiments reported in Table 1 the error term had a N(0, 1) while the
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TABLE 1
Normal error: all entries are for 3 = 1.5 and sample size 100. The columns are the censored percent-
ages, the bias, the standard deviation of the Gehan estimator, the probability of 8 not included in
the confidence interval, the average length of the confidence interval and the standard deviation of
the Peto—Prentice and log-rank estimators. All estimates are based on 1000 repetitions

cp E(Bg - B) o(Bg) P E)1) o(Bpp) o(BLr)
0.0 —-0.0158 0.37 0.111 0.5930 0.36 0.40

18.3 0.0025 0.39 0.1115 0.6317 0.40 0.44

30.2 —-0.0224 0.40 0.108 0.6577 0.40 0.44

conditional distribution given Z of the censoring variable was N(c—1.2Z, 4). The
parameter ¢ was used to control the censoring level. Table 2 was constructed
with the accelerated time model in mind. The error term had a log—~Weibull dis-
tribution with parameters 1 and 0.25. The censoring variables were arbitrarily
chosen to be equal to ¢ — 0.86yZ + 3log(e) where ¢ is a standard exponential
random variable and the constant ¢ was chosen to give a desired probability of
censoring.

For each sample the slope was estimated as a generalized solution of (2.2).
This was done as follows. The search for the solution began by locating an in-
teger (; such that W,(6;) < 0 < W,(6; + 1), from which we calculated A =
W,.(81 + 1) — W,,(5;1). We then used (2.5)-(2.7) with a = 10% to construct a con-
fidence interval for the slope. The actual probability coverage and the average
length of the confidence set are reported in the tables.

The results in Tables 1 and 2 are representative of all the simulations we
conducted. The following is a summary of our findings. When the distribution
of the error term is normal, all three estimators achieve their large-sample
properties in samples of moderate size. In particular, our estimator has a small
relative bias and its efficiency is compatible with the other two rank estima-
tors. However, when the error term has a log—Weibull distribution, all three
estimators are much less efficient. This is noticeable in the increase of their
standard deviations to a point where the null hypothesis Hy: 8 = 0 cannot be
rejected even when 3 = 1.5. The relative bias of our estimator is still small but
its standard deviation is somewhat (not significantly) larger than that of the
two other rank estimators.

Finally, we consider the question of how often the Peto—Prentice and the
log-rank estimating equations do not provide a unique solution. We plotted the
estimating equation of all three rank procedures for the data that generated
Tables 1 and 2. While only equation (2.2) was monotone, the other estimating
equations did provide only one solution. We tried other simulations and found
an example (see Figure 3) in which the log-rank method provided more than
one estimator; however, the Peto—Prentice method continued to provide only
one solution.

We conclude that when the slope is a scalar our estimator is not significantly
less efficient than the other two rank methods and that the other two methods do
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TABLE 2
Log-Weibull error: The columns are the true slope, the sample size, the censored percentages (CP),
the bias, the standard deviation of the Gehan estimator, the probability of B not included in the
confidence interval, and the standard deviation of the Peto-Prentice and log-rank estimators. All
estimates are based on 1000 repetitions

B n CcP EBg-8) o(Bg) a &) o(Bpp) o(Brr)
1.50 100 0.1 0.0985 1.60 0.114 2.6558 1.49 1.45
18.1 —0.0552 1.73 0.112 2.9174 1.59 1.55
49.3 0.1918 2.31 0.101 3.7089 2.11 2.07
200 0.1 0.0507 1.20 0.126 1.8724 1.11 1.05
18.3 —0.0228 1.27 0.107 2.0591 1.17 1.13
49.1 0.1236 1.59 0.105 2.5845 1.45 1.41
15.0 100 2.2 0.0441 1.66 0.117 2.6822 1.52 1.43
35.8 0.0179 2.53 0.112 4.1920 2.33 2.27
53.4 0.4439 3.70 0.128 5.9180 3.33 3.24
200 2.2 0.0559 1.17 0.103 1.8972 1.08 1.03
36.0 0.0117 1.86 0.106 2.9660 1.69 1.63
53.3 0.1764 2.58 0.128 4.1530 2.33 2.27
Sa® A

Peato-Pre

FiG. 3. Plots of the estimating equations: sample size 100; uncensored observations 58; independent
variable U(0, 1); slope 1.5; error term log of a Weibull(1,4.0); censoring 0.0 + 0.8(1 — 2) + e, where e,
is the log of Weibull(1,3.0).
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not, in general, provide more than one solution. However, in practice, especially
when one estimates the parameters in a multiple regression, our estimators
should be derived first since they are easier and faster to obtain and can be
used as a starting point for other rank estimators. We stress that in higher
dimensions the guaranteed uniqueness of our method is of ample importance
as it is not known how often other rank methods provide a unique solution.

Acknowledgment. The first author thanks Butch Tsiatis for insightful
discussions.
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