The Annals of Statistics
1994, Vol. 22, No. 2, 565-579

APPROXIMATION OF THE BASIC MARTINGALE

By ALEX J. KONING
Erasmus University Rotterdam

Probability inequalities governing the approximation of the basic mar-
tingale, the rescaled difference between a counting process and its compen-
sator, are derived. Applications to the random censoring model and to the
field of goodness-of-fit tests are given. The inequalities are compared to in-
equalities derived earlier for the random censoring model using an empirical
process approach.

1. Introduction. Let (2, A, P)be a probability space. Foreachn =1,2,...,
let N, = {Np(®)}:ci0,0) be a counting process adapted to some filtration
{Ant}tel0, 0) Of o-algebras contained in A. Define A, as the compensator of
n~1N, with respect to {An}:c0, 00) -

In Section 2 we construct a time-transformed Wiener process, which strongly
approximates

(1) M, =n'?{n"'N, - A,}.

Moreover, we give an exponential inequality for the distance (in the supremum
metric) between M, and the approximating process. This inequality is of a type
similar to those given in Komlés, Major and Tusnddy (1975) for the partial sum
and the empirical process.

In the random censoring model (see Section 3) it is more or less customary to
refer to M,, as the basic martingale. Although the random censoring model has
provided the main motivation for this study, there are also useful applications
in other fields. An example is given in Section 4.

Section 6 contains the proofs. The tools involved are presented in Section 5.

2. Main results. Throughout it is assumed that A, is continuous. Define
the inverse of A, by

2) A;1(®) = inf{s: An(s) > t}.

Due to the continuity of A,, it follows by Aalen and Hoem (1978) [see also
Theorem 18.10 in Liptser and Shiryayev (1978), page 280, or Theorem I1.16
in Brémaud (1981), page 41] that N,, o A; ! is a Poisson process with intensity
n, starting at zero and randomly stopped at A, (cc0). Observe that the indepen-
dent standard exponential random variables of Barlow and Proschan [(1969),
Lemma 1] basically are the interarrival times of this stopped Poisson process,
multiplied by n.
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566 A. J. KONING

At time A,(c0), start up an independent Poisson process with intensity n
and attach it to N, o A7, as in Gill (1986). In this way we have constructed
a Poisson process on [0, o], say ,, which satisfies 7,(- A A,(c0)) = N, 0 AL
Thus, for the centered Poisson process n¢ = 7, — nl, we have

3) nY2e(t) = M, 0 AZ1(E) for t < An(co).

The process n~1/27¢ allows approximation by means of a standard Wiener pro-
cess. This leads to the following theorem.

THEOREM 1. Letx > 0, 8 < % and n=?A(21logn +x) < d, , < n'/2-A8_If
the probability space (0, A, P) is sufficiently rich, then there exists a standard
Wiener process W, such that for every c4,cs > 0 there exist constants cy, ¢y and
c3, depending only on ¢4 and cs, such that

(4) P( sup |M,oA;!o& () — W, o0t@t)| > clnﬂdn,x) < cgexp{ —csx},
t € [0, c0)

for every random element &, € DI0, co) satisfying
(5) P(0 < &,(2) < An(oo) forevery t > 0) =1,

(6) P(supte 0, 00) | (&) — £@)| > dn,x) < ¢4 exp{ — c5x},

where £ € DI[0,00) is deterministic and bounded by 1. Moreover, if &,(t) =
t A Ty, where T, is a random variable, then (4) also holds for n=2fx < d, , <
n=26(21logn +x).

It is essential that £ remains bounded. The requirement that ¢ is in fact
bounded by 1 is quite natural, as the applications in Section 3 and 4 will show.

In Theorem 1 the restriction d, , < n'/2~# occurs. Without this restriction
(which does not exclude the more interesting values of x) the right-hand side
of (4) should be replaced by c; exp{—czxt(nl/2-#d, ,)}, where the function v is
described in Section 5. In fact, the restriction is used to bound ¥(n'/2-%d, ,)
from below.

For given ¢4 and cs, explicit values of ¢;, cs and c3 can be obtained by rework-
ing the proof of Theorem 1 in Bretagnolle and Massart (1989). In this proof a
centered Poisson process and an approximating Wiener process are constructed
on the same probability space.

Because values of 3 between % and % are in practice seldom encountered, the
mathematical constraint 8 < } is outdone by the statistical constraint 8 < 1.
In the important cases £,(2) = A,(¢) and &,(¢) = t A An(c0), we often have 8 = ],
as the following lemma shows.

LEMMA 1. Suppose that there exist nonnegative nondecreasing stochastic
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processes Ap1, . .., Ann such that
n
(7) An = n"l ZA'"
i=1
and
(8) P(A,i(c0) > x) <e .

If the random variables A,1(00), . .. ,Apn(c0) are independent, then

2
—-1/2 X
) P(lAn(OO) - aAn(OO)! > 4n / x) < exp{ — m},
for every x > 0. Moreover, if the processes A1, . ..,An, are independent, then

(10) P( sup |An(t) — EAL®)| > 4n"V2(logn +x)3/2) < 28e7".
t€[0, c0)

Lemma 1 provides universal constants ¢4 and c; for (6), and hence universal
constants cj, ¢ and c3 for (4).
An example of a full application of Lemma 1 is given in the next section.

3. The random censoring model. Let the failure times X3,..., X, be
nonnegative independent random variables defined on (2, A, P), each having a
continuous distribution function F;. These failure times are not observed di-
rectly, and the only information concerning them is contained in the random
variables ’

(11) Z;=X;N\Y;, 6i=1{XiSYi}’ i=1,...,n,

where Y7, ...,Y, are random variables also defined on (2, A, P) and which are
independent of X, ..., X,,. Depending on the value of the censoring indicator
8;, Z; is either called an observed (6; = 1) or a censored (§; = 0) failure time.

In many applications of this so-called random censoring model, the simul-
taneous distribution of Y7,...,Y, is an unknown nuisance parameter. Hence,
assumptions concerning this distribution should be kept to a minimum.

In theoretical work on the model, one often encounters the stochastic process

(12) n'/2{H! - A,}

[see Shorack and Wellner (1986), page 296], where

n n .
13)  Hi=n1'Y6lge<, and A,=n1Y / 1z, 53 AALS),
i=1 i=170
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and A; denotes the cumulative hazard function belonging to X;, which is equal
to —log(1 — F;) due to the continuity of F;. Since nH} is a counting process with
compensator nA, with respect to the filtration

(14) Ape = U(I{Zigs},éil{ZiSs}: i=1,...,n,s€ [O,t])

[see Shorack and Wellner (1986), page 310], it is easily seen that the process
(12) is in fact the basic martingale M, . Observe that A, is continuous.

As the sample size n increases, the basic martingale converges to a time-
transformed Wiener process. Under the additional assumption that X3, ..., X,
have a common continuous distribution function F and that Y5, ...,Y, are inde-
pendent and have a common continuous distribution function G, the refinement
of Theorem 1 in Koning (1992) implies that for every n > 1 there exists a stan-

dard Wiener process W, such that

(15) P(tes[})lp M) — W, o HY(t)| > n™"(c1logn +x)’“)

< ¢pexp{—csx},

foreveryx > 0. Here H! = fo( 1-G(s)) dF(s); ¢y, ¢z and ¢3 are universal constants;
and v and « take the values 1 5 and 2, respectively. This result was obtained by
using an empirical process approach.

The probability inequality (15) can be used to study the behavior of statistics
of the form T'(M,), which for instance occur in the field of goodness-of-fit tests.
For functionals T fulfilling the Lipschitz condition

(16) |T© - TQ)| <er s[up )lg(t) — (@) for every ¢, ¢ € D[0, 00),
te (0,00

it directly follows from (15) by setting x equal to log n that
17 n'(logn)™*|T(M,) — T(W, o HY)| = Op(1).

For Lipschitz functionals, (15) also implies a deviation result as the following
lemma shows.

LEMMA 2. Let {T,}°. , be a sequence of random variables. Suppose there ex-

ist positive constants a, v, Kk, €1, ¢z and ¢c3 and a sequence {T }oo 1 of identically
distributed random variables such that

Jim 7 logP(T, > ¢t) = —a/2,
and, for every 0 < x < n27/@x-D,
P(|T,, — Ty| > n™ 7@ logn +2)%) < &, exp{—cax}.
Then
lim (tn)"?log P(T, > t,) = —a/2,



THE BASIC MARTINGALE 569
for any sequence {t,}32 | such that t, — oo and t, =o(n"/?*~V) asn — oo.

Thus, if for any given nonnegative bounded nondecreasing function K the
Lipschitz functional T satisfies

(18) lim +7?1og P(T(Wy 0 K) > t) = —ak /2,

for some ag > 0, then (15) implies the deviation result

(19) lim (¢,)21og P(T(M,) > ta) = —an /2,

for any sequence {¢,}2° , such that ¢, — co and ¢, = o(n1/6).

In particular, (18) holds for sublinear functionals, as follows from Borell
(1975) [see also Adler (1990)]. A functional T": D[0, co0) — R is said to be sublin-
ear if T(¢ + () < T(€) + T(¢) and T(c€) = cT'(€) for every ¢ > 0 and &, ¢ € D[0, 00).

The functionals defined by

(20) Tr(§) =&(c0) and Tg(é) = s[101p )§(t),
t € |0, co

for every ¢ € D[0, c0), are both sublinear and Lipschitz.

The empirical process approach in Koning (1992) necessitated the afore-
mentioned distributional assumptions on the failure times X3, ..., X, and the
censoring times Y5, ...,Y,. Lemma 3 enables us to apply the theory of Section 2
to the random censoring model described in the first paragraph of this section.
This leads to the results given in Corollary 1, which remain true even if the
empirical process approach assumptions do not hold.

LEMMA 3. SupposethatYs,...,Y, areindependent. Then there exist nonneg-
ative nondecreasing and independent stochastic processes A,1, ..., Aun, namely,

A,; = N(Z; N -), such that (7) and (8) hold.

Because €A, (¢) = EHL() — n~Y2EM,(t) = EHL(¢), taking the expectation of
A, yields the (possibly defective) distribution function H l, defined by

(1) H@®=n"13PZ<t, 6=1.
i=1

Note that H' and H? coincide if both X3, ..., X, and Y1, ...,Y, are identically
distributed random variables.

COROLLARY 1. There exists a standard Wiener process W, such that

B( sup |My, o A71(t AAn(00)) — Wa(t AH (00))| > n-1/4x> < cpexp{—csx},
t€ [0, 00

P( sup |Mn(t) - W, oI_fl(t)| >n"421logn +x)3/2) < cg exp{—csx},
t € [0, 00)
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where ¢y and c3 are universal constants.

Define I' by I'(¢)) = OVt A H !(00). By setting x equal to logn, it follows by
Corollary 1 that
(22) n'/*(logn) " |T (M, 0 A;Y) — T(W, o I")| = Op(1),
(23) n'/4(log n)3/2|T(M,) — T(W, o H')| = Op(1),

for any Lipschitz functional T'. Moreover, if T' satisfies (18), then

(24) Tim ()™ logP(T(M,, 0 A7Y) > t,,) = —apn/2,
(25) Tim ()2 10g P(T(My) > t) = —azn /2,

for all sequences {t,}°%, and {#,}2%, such that £,,#, — oo, t, = o(n'/*) and
¢, =o(nl/8).

To give some examples of interesting test statistics for which these results
hold, let L be a bounded nonrandom function of bounded variation, and define
the functionals T% and T% by

(26) TL(¢) = Tr (gL - / &Gs) dL(s>>,
0
@7) T(e) = T (sL - /0 | §<s>dL<s>),

for every ¢ € DI[0, o). Note that if we set L identical to 1, then T% = Tr and
T% = Ts. Both T and T% are Lipschitz, which gives us (22) and (23). Moreover,
as a consequence of sublinearity both 75 and T satisfy (18) with

(28) ax = / (L(s))? dK (s),
0

and hence we have (24) and (25) with

H' (00) ) 0o 5 —1
29) ap = / (Ls)’ds,  azi= / (L(s)> dH (s).
0 0

Test statistics T5(M,) and T (M) belong to alarger class investigated by means
of the empirical process approach in Koning (1992). Both Tg(M,) [see Breslow
(1975)] and T's(M,,) [see Aki (1986)] are in a certain sense optimal for test-
ing against proportional hazard alternatives. Recall that they coincide with
Tr(M, 0 A;1) and T's(M,, o A; 1), and note that for these two specific statistics
(24) improves (19), the result obtained in Koning (1992). Statistics Tg‘F (M)
and Tgl‘F (M, [see Harrington and Fleming (1982)] are optimal with respect
to logistic shift alternatives.
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The rate of convergence results (22) and (23) are somewhat disappointing
as compared with (17), derived in Koning (1992) by means of the empirical
process approach. This is due to the random time change, employed in the
present approach to transform the basic martingale into a rescaled centered
Poisson process, which introduces randomness in the “horizontal” direction. In
the empirical process approach we only encounter randomness in the “vertical”
direction. The local characteristics of the centered Poisson process, as reflected
by its modulus of continuity, make randomness in the horizontal direction es-
sentially harder to deal with. However, the applicability of the empirical process
approach is limited by the fact that in order to invoke the empirical process ap-
proximation in Komlés, Major and Tusnady (1975), we need Z,,...,Z, to have
a common continuous distribution function.

Another drawback of the empirical process approach is that the Wiener
process approximating the basic martingale is constructed out of a Brownian
bridge. Hence, the error at point ¢ arising from the empirical process approxima-
tion is blown up as F(¢) tends to 1. This becomes especially noticeable when the
approximation is used to bound tail probabilities of the basic martingale; it also
explains why the deviation results (25) and (19) do not differ as dramatically
as do (23) and (17): the increased “tail accurateness” of the present approach is
partially making up for the negative effects of the random time change. This is
even stronger for the process M,, o A-1, as can be seen from (24).

4. Parametric compensators. We now apply the theory developed in
Section 2 to processes which occur in the field of goodness-of-fit tests, in par-
ticular when the null hypothesis is composite [see Khmaladze (1981), (1982)].
The following lemma is the key result.

LEMMA 4. Let 8, be a random variable; let 11, . . ., 7, be a sequence of random
variables satisfying 0 < 1, < -+- < 7, < 0o almost surely; and let the o-algebras
contained in the filtration {Ant}:cio, ) be of the form

(30) ‘Ant = 0(5"" {l{TISS}}SE [0,¢)>° " " {l{Tn Ss}}se [O,t])'

Suppose ¥1(t) = P(r; <t | 8,) and U;(¢) = P(r; < t | 71, -- ,Tl,é\n) are regular
continuous conditional distribution functions.

Then the compensator A, of the process n~1¥7 114, <y with respect to
{Ant}t e 10, 00) is continuous and satisfies (7), where A,;, ..., Ay, are nonnegative
nondecreasing stochastic processes defined by A,,; = — log(1—Y¥;(-AT;)). Moreover,
A,1(00), ..., Ann(00) are independent standard exponential random variables.

COROLLARY 2. Under the conditions of Lemma 4 there exists a standard
Wiener process W, such that

P( sup |M,o A7 (t AAn(00)) — Wy (t A EAL(c0))| > n-1/4x>
t € [0, 00)

< ¢y exp{—csx},
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where cg and c3 are universal constants.

Lemma 4 is directly applicable in the situation where {A,}:¢ [0, 00) 18 the
minimal filtration corresponding to the counting process N,, [see Section 18.2
in Liptser and Shiryayev (1978), pages 244-252]. In this case the random vari-
able 6, is degenerate, but there are also useful applications which involve a less
trivial random variable 6,,.

For instance, it may be the case that the compensator with respect to the
minimal filtration involves an unknown parameter (say, ) which for opera-
tional purposes has to be estimated. Khmaladze (1981, 1982) advocates using a
different compensator, computed with respect to the filtration where A, equals
the o-algebra generated not only by the random variables {Lir <sptscto,dr-- s
{17, <s}}se 10,4, but also by the estimator of 4.

As an example, let 74, .. ., 7, be the first n order statistics of a random sample
of size n + 1 from an exponential distribution with unknown mean 6, and let
N, be the counting process corresponding to these order statistics. We set 6,
equal to the sample mean, the maximum likelihood estimator of 4. Conditional
ont;_1i,...,7 and 6,, the random variable 7; has a Beta(1,n —i+ 1) distribution
on the interval (7; _ 1, 7/*), where

_ (n+1)8, — J’:ll'r}-
- n—i+2

(3 l) Tiu

With respect to the filtration defined by (30) we have (7) with

. /\ Tl _ .
32) A, = noitloe

u _
Aty T s

where 7 is equal to zero. We have deliberately deleted the largest order statistic
from the sample, since its distribution given 7y, ..., 7, and 6, is degenerate.
By setting x equal to logn, it follows from Corollary 2 that,

(33) n1/4(logn)‘1|T(M,, oAl — T(W,)| = Op(1),
for any Lipschitz functional 7. Moreover, if T satisfies (18), then
(34) im (¢,)~*1og P(T(My 0 A7Y) > 1) = —az/2,

for all sequences {¢,}2° ; such that ¢, — oo, and ¢, = o(n1/4).

Because the stochastic processes A,i,..., A,, as constructed in the proof
of Lemma 4 are certainly not independent [A,;(¢) = 0 implies A,jt) = 0 for
i <j < n], we cannot make use of the second part of Lemma 1 to obtain results
for T(M,,).

However, for some choices of the functional T, the statistics 7(M,) and
T(M, 0A;!) coincide. In particular, this is true for the sublinear Lipschitz func-
tionals T and T's defined by (20). Thus, (34) and (33) remain valid if T(M,, 0A; 1)
is replaced by either Tr(M,,) or T's(M,).
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In the situation considered here, it is possible to compute the exact compen-
sator of the counting process N, with respect to the filtration (30). However,
in most other situations the exact compensator is not tractable. In Khmaladze
(1981, 1982) a method is given to find an approximation K, to the exact com-
pensator A,. In light of Corollary 2, the identity

(35) n_an -K, = (n_an -A))+A, -K,)

shows that it is important to know the behavior of A,, — K, in order to obtain
results for the process n 1N, — K,,. We shall not pursue this point further here.

5. Tools. Inthis section three exponential inequalities are given which are
instrumental in proving the results of the previous sections. The first inequality
[see Shorack and Wellner (1986), page 855] concerns the sum of independent
random variables. Note that the random variables need neither to be bounded
nor to have identical distributions.

INEQUALITY 1 (Bernstein). Let Vy,...,V, be independent random variables
having mean zero. Assume there exist positive constantsa, . . . ,a, and c such that

EViI" <airld%/2, i=1,...,n,
for all r > 2. Then, for all x > 0,
- x2/2
Vi < - .
(Swmem) <ol i)

i=1

The next two inequalities are versions of Inequalities 14.5.3 and 14.5.5 of
Shorack and Wellner [(1986), page 571] and concern the centered Poisson pro-
cess 75, introduced in Section 2. They involve a function 1 defined by

2n(1 +1)
P(t) = —p

where

h(x) = x(logx — 1) + 1.

INEQUALITY 2. Foreveryy >0and b > 0,
i y: (Y
P| su )| > bn) < 2expl—— (——) )
(ogtlg)bh"( | Y P 2¢ vbn

INEQUALITY 3. For everyy >0and 0<b < 1,

P sup |7r°(t2)—7r°(t1)|>yvbn <l@exp _£¢(L) .
0<t <ty<1 ' " - b 16 "\ von
03t,-t1<b
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According to Proposition 11.1.1 of Shorack and Wellner [(1986), page 441]
the function 1 possesses the following properties:

(36) ¥(t) is decreasing for ¢ > —1 with (1) = 0.7726;
1
> — > -1.
(387 P(t) > 1+¢/3 fort > -1

6. Proofs. In this section the proofs of Theorem 1 and Lemmas 1-4 are
given.

PROOF OF THEOREM 1. By property (36) we have ¥(n'/2-8d, ,) > %(1).
Hence, applying Inequality 2 with b = d,, , and y = nf(d, .)'/2 ylelds

(38) P( sup |mS@)| > nﬁ*l/zdn,x> < 2exp{—x@}
0<t<dnx
A similar application of Inequality 3 yields, for dn . < 1,
P sup | e (t9) — w5 (21)| > nf*/2q, ,
0<t<t;<1
OStz—hSdn,x
< 160 exp{ (21logn +x)¢(l)}
(39) dn,x
< 160027 expq —| logn + —
~ logn +x P g 21
<160 exp{ o1 }
Moreover, for 3 < dn,» < n/27#, we have
p sup |18 (te) — mS(t1)| > nP*12d,

0<t1<t2<1
0S¢2-¢1Sdn,x

<P(2 sup |nS@)| > nf*1%d, )
0<t<1

< P(4 sup lﬂfl(t)| > nﬂ+1/2dn,x>
0<¢t<dn,x

P(1)
<2 exp{—xﬁ—-}
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[use Inequality 2 with b = d,, , and y = n®(d, ,)'/2/4]. Since

P( sup |Mn oA;1 0 &, () — n_l/zﬂ'f, ) §(t)| > 2nﬁdn,x>

t€ [0, 00)
<P sup |75 (t2) — m&(21)] > nf+/2q,
0<t <ty<1
(40) 0<%~ Sdns
+P( sup |m5(@)| > nﬂ+1/2dn,x>
0<t<dns

+P( sup_ 6,0~ 01> dns )
t € [0,00)

(the second term of the right-hand side of the latter inequality deals with possi-

ble excursions of ¢, into the interval [1, 1+d,, .]), it suffices to prove the existence

of a Wiener process W, such that

(41) P( sup |n~V21S@) - W,(@)| > c'lnﬂdn,x) < ¢y exp{—csx}.
telo,1]
Define independent standard Poisson random variables U,,...,U, by U; =
mn(t;) — mn(¢;—1), where t; = i/n. Since
i
(42) m) =Y (U;-1),
j=1

the approximation theorem of Komlés, Major and Tusnady (1975) for partial
sums yields the existence of a Wiener process W, such that

) P(iﬂlﬁ%n |n=32x8(t) — Wa(t)| > n=Y/2(c{ logn +x) )

< cj exp{—cjx}.
Now (41) follows from (43) since for each i = 1,...,n we have, for every x > 0,

P( sup |mS() — m&(ti— 1) >x>

ti1<t<t¢;
2/2
44 < _*/2
(44) < 2exp{ 1+x/3}
x

< 2 )

and
P( sup |Wa(t) — Walti—)| > n‘1/2x>
t;i_1<t<t;

(45) < 4P(N(0,1) > x)

< 2ol 5}



576 A. J. KONING

The second line of (44) is again a consequence of Inequality 2. Now use b = n~1

and (37).

Actually, we have just shown that (41) holds with ¢{nfd,, . replaced by
n=1/2 (¢} logn + x), which is of the same order as n=?(21logn + x), the lower
bound to nfd, .. Since (41) is combined with (40), there is no gain in using the
sharper version. Hence, the critical part of this proof deals with the effects of
random time change on the centered Poisson process.

To obtain the special result for &,(¢) = ¢ A 7, we note that £(¢) should be of
the form ¢ A 7, where 7 is a constant. Now we may write

P( sup |M,o0A;! o0& (t) — n 20 0 £(t)| > nﬁdn,x)
t [0, 0)

(46)
< P( sup |1rf,(t)| > nﬁ+1/2dn,x) +P(|m — 7| > dn,x).

0<t<dns
This completes the proof of Theorem 1. O

PROOF OF LEMMA 1. Since E(A,i(c0))” =7 [° "~ P(Ai(00) > x)dx < rl, the
C,-inequality bounds the rth central moment of A,;(co) by 8r!2"~2/2. Inequality
1 now yields

2
47 P(| An(o0) - EAn(o0)| > n~H2%) < e"p{' 's'+'“_;n/—21/2x }

by which (9) follows.

It remains to show (10). Fix ¢ € [0, co) for the moment. Due to the mono-
tonicity of A,; we have P(4,;(t) > x) < exp{—x}, and hence the rth central
moment of A,;(¢) is also bounded by 8r!2"~2/2. It follows from the independence
of A,1,...,A.; and Inequality 1 that

48) P(| 4, — €A(®)] > n*(logn)'/?) < 58
for every n > 1.
This inequality for fixed ¢ allows us to perform similar symmetrizations as

in the first two steps of the proof given in Pollard [(1984), pages 14-15] of the
Glivenko—Cantelli theorem, leading to

P< sup |An(t) — EAL®)| > 4n~2(logn + %)/ 2)

¢ €0, 00)
(49) n
< 27P ( sup Z 0; Ani®)| > @2n)2(logn + x)3/ 2) .
telo,00) | o1
Here o4,...,0, are independent Rademacher random variables [see Shorack

and Wellner (1986), page 879], independent of A,1,..., A,,. Observe that, for
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everyw € Q,

(50) sup
t € [0, 00)

Z 0; Ani(t) Z g m(T)

where 7; = inf{t: A,;j(t) = A,j(00)}.

Now introduce €, ., the subset of Q2 containing all w for which A,;(c0) <
logn +x for all i = 1,...,n. Conditioning on Q, , and the sample paths of
A,i,...,Aun, We obtain

—max

P,,,x( sup |An(t) — EAL(t)| > 4n~V2(logn +x)3/2)

t €[0, o0)
Z JzAm(T)

i=1
n

nz(T)
Z % logn +x ogn +

i=1

< 27P, max

27 Y:P,,,x (
j=1

< 27nexp{—(logn +x)},

> (2n)Y%(logn + x)3/2>

(51)

IA

> (2n)2(logn + x)Y/ 2)

where P, . denotes P(- |, x, Api,. .., Ann). Thelastline follows from Hoeffding’s
inequality [Hoeffding (1963), see also Shorack and Wellner (1986), page 855,
or Pollard (1984), page 191] by using the fact that A,;(7;)/(logn + x) remains
bounded by 1 on 2, .. Thus,

P( sup |An(t) — EAL(®)| > 4nV2(logn +x)3/2)

t €0, c0)

< 27exp{-x}+P(9f ,).

(52)

It is easily seen that P(QC ,.) does not exceed e™*. O
PrOOF OF LEMMA 2. Denote v/(2x — 1) by p. Define the sequence {x,}5.

by x, = n®t,. Observe that x, = o(n?’) as n tends to co. Moreover, we have
logn = o(x,) and (¢,)? = o(nt,) = o(x,), and thus

- 2
P(]Tn - T,,] > Eln‘”’(x,,)") < Gyexp{—Cs(x, —logn)} =o (exp{—~@}) .
The lemma follows by bounding P(T}, > t,) between
P(T >ty + 60" @,)") = P(|To = To| > &0 ™"Gn)")

and

P(T, > t, — c1in~"(x,)") +P(|T,, ~T,| > Eln“’(xn)'“),

since n=Y(x,)" = nPE = V(t,) 1 t, =o(mP2—V=7.¢ )= 0(¢,). O
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PrROOF OF LEMMA 3. We have
(53) P(A,;(c0) > x) = P(A{(Z;) > x) < P(N(X]) > x),

and A;(X;) is a standard exponential random variable. O

ProoOF oF LEMMA 4. It follows as in the proof of Theorem 18.2 in Liptser
and Shiryayev [(1978), page 245] that (7) holds with A,; as indicated. Now
note that

P(Ani(00)>x]7'i_1,...,7”1, é\n) =P<—10g(1—‘1’i(7"i)) >SX| o1y, T1, é\n)

=P(\I/i(7'i)> l—e-x|7'i_1,..., Tl,é\n)

=e s
which does not depend on 7, _4,...,7; or an. O
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