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SELECTED ORDER STATISTICS!

BY H. N. NAGARAJA AND H. A. DAVID
Ohio State University and Iowa State University

For a random sample of size n from an absolutely continuous bivariate
population (X,Y), let X;., denote the ith order statistic of the X sam-
ple values. The Y-value associated with X;.,, is denoted by Yj;.,; and is
called the concomitant of the ith order statistic. For 1 <k < n, let V} , =
max(Y(,_¢+1:n]» - - > Y[n:n)). In this paper, we discuss the finite-sample and
the asymptotic distributions of V}, ,,. We investigate the limit distribution of
Vi,n a8 n — oo, when % is held fixed and when & = [np],0 < p < 1. In both
cases we obtain simple sufficient conditions and determine the associated
norming constants. We apply our results to some interesting situations, in-
cluding the bivariate normal population and the simple linear regression
model.

1. Introduction. Let (X;,Y;), i = 1,...,n, be a random sample from an
absolutely continuous bivariate population (X,Y) with c.d.f. F(x,y). Let X;.,
and Y;., denote the rth order statistics of the X and Y sample values, respec-
tively. Suppose the pairs are ordered by the X, and let the Y-value associated
with X;., be denoted by Yi..,). We call Y,.,; the concomitant of the rth or-
der statistic. A substantial body of literature exists on concomitants of order
statistics, which are also called induced order statistics by some authors. A
convenient window into the literature is provided by the review articles of
Bhattacharya (1984) and David (1993).

The most important use of concomitants arises in selection procedures when
k(< n) individuals are chosen on the basis of their X-values. Then the corre-
sponding Y-values represent performance on an associated characteristic. For
example, if the top £ out of n bulls, as judged by their genetic makeup, are
selected for breeding, then Yj,_t41.4), - -, Y[n:n) might represent the average
milk yields of their female offspring; alternatively, X might be the score on a
screening test and Y the score on a later test. Suppose only the top % perform-
ers in the screening test are selected for further training and a second test.
Then V;,, = max(Yjn—t+1:n), ---» Yin:n)) represents the score of the best per-
former in the second test. The ratio E(V} ,)/E(Yy.,), which clearly increases
to 1 with k, is a measure of effectiveness of the screening procedure. One may
wish to choose % to make this ratio sufficiently close to 1. See also Yeo and
David (1984) for a different approach to selection.

It is evident that V} , is a useful statistic. Recently, Feinberg (1991) and
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Feinberg and Huber (1993) have investigated some properties of V; , in a
study of cutoff rules under imperfect information. Feinberg (1991) used sim-
ulation to examine the behavior of E(V}, ,) for selected values of n assuming
the sample is drawn from a bivariate normal distribution. Motivated by his
work, we investigate the finite-sample as well as the asymptotic properties of
Vi, n for an arbitrary absolutely continuous bivariate c.d.f. F.

In Section 2, using symmetry arguments, we obtain a very useful expression
for the c.d.f. of V}; ,. Next, we investigate the limit distribution of V; , as
n — oo, when % is held fixed (extreme case) and when & = [np],0 < p < 1
(quantile case). The former situation is considered in Section 3 and the latter
is handled in Section 4. In both cases we obtain simple sufficient conditions
and determine norming constants which ensure the convergence of V;, , to a
nondegenerate random variable V. We look into a simple linear regression
model in Section 5 and discuss possible distributions for V in the extreme
and the quantile cases. Our results are illustrated with the help of three
examples involving uniform, normal and exponential distributions. In view
of its practical importance, the situation where (X,Y) is a bivariate normal
population is discussed thoroughly. For this population, we compare, in the
last section, the values of E(V; ,) simulated by Feinberg (1992) with those
obtained using the distribution of V.

1.1. Some notation and conventions. Let F; and Fs be the c.d.f’s, and, for
0 < p <1, let &(p) and &(p) be the p-th quantiles of the marginal distri-
butions of X and Y, respectively. In the quantile case, x’ stands for £;(g),
where ¢ = 1 — p. The conditional c.d.f’s Fo(y|x) = P(Y < y|X = x) and
F3(y|x) = P(Y < y|X > x) play a major role in our discussion. The c.d.f.
of V} , is denoted by Fy, . In general, the c.d.f. and p.d.f. of a random variable
R are denoted by Fr and fz, unless special notation is used for simplicity.
Further, R}, ., represents the maximum of a random sample of size & from the
distribution of R. The symbols =; , —4 and —p represent equality in distribu-
tion, convergence in distribution and convergence in probability, respectively.
A normal distribution with mean p and variance o2 is denoted by N(y,02). A
N(0,1) random variable and its p.d.f. and c.d.f., are represented by Z, ¢ and
®, respectively. An exponential random variable with mean 6 is identified as
Exp(6), and T represents an Exp(1) random variable.

2. Finite-sample c.d.f. of V, . Consider

P(Vk,n Sy)
=P(Y[n—k+1:n] Sy,---»Y[n:n] Sy)

= / P(Y[n—k+1:n] <y,... ,Y[n:n] SyIXn—k:n =%0,...,Xn:n =xk)
x9<x1 < <X

% oo, ,,(xo)k'{ 1L ‘;’:()x s }dxo.
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Note that, conditioned on the values of the order statistics, the concomitants
are inndependent. Hence, we can write

k.
Fk,n(y) =/ {k!/ HP(Y[n—i+1:n] <y |Xn—i+1:n =xi)
X0 X0

<2< <xp i=1

fi(x:)
————dx; dxp.

X 1 ‘_Fl(xo) 2 an—k:n(xo) 0
The integrand of the multlple integral in brackets above is a symmetric func-
tion of the variables xy, ..., Thus, it can be expressed as

{ /xo<xF2(y lx)& dx}k = {P(Y <y|X> xo)}k

1—F1(x1)
=F2(y|x0) .

This simplification leads to the following compact representation for the c.d.f.
of Vk’ ne

@1 Fin®)= [ (B30} fe . (x) du.

xX=—00

3. Asymptotic distribution of V; , in the extreme case. Now let us
suppose that % is held fixed while n — co. Let us assume that there exist
constants a,,b, > 0, such that (X,., — Gp)/bp —4 W;, where W; is a nonde-
generate random variable with c.d.f. G. If this holds, we say that F is in the
domain of attraction of G and we write F; € D(G). It is well known that G can
be one of the three extreme value c.d.f’s and following, for example, Resnick
(1987), we will denote them by ®,, ¥, and A. Von Mises (1936) gave sufficient
conditions for F; € D(G) for each of the three cases. A convenient reference for
these conditions is Resnick [(1987), Propositions 1.15-1.17]. Further, the von
Mises conditions are necessary and sufficient for the p.d.f. of (X},., —a,)/by to
converge to g, the p.d.f. of G. It is also khown that if (X;,., — a,)/b, —a¢ Wi,
then (X,_4+1:n — @n)/bn —4 Wi. The random variable W), behaves like the kth
lower record value from the c.d.f. G, if we count the first value in the sequence
from G as the first (lower) record value. Combining all these results, we can
conclude the following.

LEMMA 1. If the von Mises conditions are satisfied, there exist constants
@n, by > 0, such that the p.d.f. of (X,—i+1.n — @n)/bn converges to g;, the p.d.f. of
W;, the ith lower record value from the c.d.f. G, for any fixed i. Further, the joint

.p.d.f. of Wy,..., Wi, and the marginal p.d.f. of Wi,1 are given, respectively, by

8s1)(W1s - -, Whe1) = 8(Whe1) H [ ] wy>Wg > -+ > W,

G(w-)
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and

gra(w) = C2ECW ()

where G = ®,, ¥, or A.

Now we are ready to obtain an expression for the limiting c.d.f. of appro-
priately normalized V, ,.

RESULT 1. Suppose the conditions of Lemma 1 hold and assume that there
exist constants A, and B, > 0 such that

3.1 F3(As +Buylay +byx) — H(y|x)

as n — oo, for all x and y. Then, as n — oo,

(3.2) Fun(An+Bu) = [ {HG10) g0 (x) s

PROOF. From (2.1) we have
o] k .
Fin(tn+Bw)= [ {Fyan+ B9} ... () e
oo k
- / [F3(An+ Buylan +52)} {Bufi,_, . (an + bu) } d.

The first factor in the above integrand is a nonnegative bounded function
converging to {H(y|x)}* for all x, by the assumption made in (3.1). Further, the
assumed von Mises condition implies that the second factor, a p.d.f., converges
to the p.d.f. g;,1(x) as n — co. Hence we can appeal to the extended dominated
convergence theorem [Rao (1973), page 136)] to conclude that (3.2) holds. O

Let us examine condition (3.1). As n — 00,a, + byx — &1(1), for all x. Now
suppose the joint distribution of (X,Y) is such that as x — &,(1),Fa(y|x) —
H(y). Then (3.1) holds with H(y|x) = H(y) and A, = 0,B,, = 1. This fact is
formalized in the following lemma.

LEMMA 2. If, for some y,

(3.3) Jm Fo(ylx) =H(y),
then
(3.4) _lim F3(y|x) = H(y).

- &)
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PROOF. If (3.3) holds, then, for every ¢ > 0, we can find an x; such that,
for all u > x,,

H(y) —e < Fy(ylu) <H(y) +¢

and consequently, for all x > x;,

(H(y) —¢) /:ofl(u) du < /xoon(ylu)fl(u) du < (H(y) +¢) /:ofl(u) du.

This means
H(y) —e< Fg(y lx) < H(y) +¢,
since
" e Fa(ylu)fi(u) du
(3.5) Fi(y|x) = RO

Therefore (3.4) holds. O

So we can conclude that if (3.3) holds and the appropriate von Mises condi-
tion holds for Fy, then, as n — 00, P(V},, < y) — {H(y)}*. Thus, if H is a c.d.f,
Vi,n —a V, where V behaves like the maximum of a random sample of size
from the c.d.f. H.

EXAMPLE 1. Let (X,Y) have the joint p.d.f. given by
(3.6) flxy)=2, O<y<x<l.

This is the joint p.d.f. of the order statistics from a random sample of size 2
from the standard uniform distribution. Clearly, given X = x,Y is uniformly
distributed over (0,x) and hence (3.3) holds with H(y) as the standard uniform
c.d.f. Further, Fi(x) =x2,0 < x < 1, and hence

(1-=x)fi(x)
=R "

as x — 1. This is the von Mises sufficient condition for F; € D(¥,). Thus, as
n—00,PVy,<y)—-y*,0<y<l

Condition (3.3) does not hold for the bivariate normal distribution. Let us
see what happens in that situation.

EXAMPLE 2. Let (X,Y) be bivariate normal with zero means, unit variances
and positive correlation coefficient p. It is well known that F; = & € D(A) and
satisfies the associated von Mises condition. Further, convenient choices for
the norming constants are [see, e.g., David (1981), page 2641,

3.7 an =2 logn—lw and b, = 1

2 /f2logn T V2logn’
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Clearly, a, — £;(1) = oo while b, — 0 as n — oco. Now choose A, = pa, and
B, =B = /1 — p2. Hence, from (3.5),

Jumsbys F2(An + Bylu)fy (u) du

1—Fy(an +byx)
_ [ F2(An + By|an + byw)nbafi(an + baw) dw
N n{1—Fi(an +bux)} ’

F3(An +Byla, +bpx) =
(3.8)

on setting u = a, + b,w. Since the conditional distribution of Y given X = x is
N(px,1 - p?), Fo(A, + By|a, + bw) is simply ®(y — pB~1b,w). It is nonnegative
and bounded by 1 and approaches ®(y) as n — co. Further, the convergences
of the c.d.f. and the p.d.f. of (X,., — as)/b, together imply that nb,fi(a, +
b,w) — e~", an integrable function. Hence, on using the extended dominated
convergence theorem once again, we conclude that, as n — oo, the numerator
in (3.8) converges to [, * &(y)e~* dw. Since F; € D(A), the denominator in (3.8)
approaches —log A(x) or e~*. Hence the ratio converges to ®(y). Therefore we
can conclude from Result 1 that, as n — oo,

(3.9) {M} —d Zp:k,
(1-p2)

where the norming constant a, is given in (3.7). Since the second term there
tends to 0 as n — oo, we conclude that

(3.10) (Vk,n—P\/ETgn—) —a V1= p?Zy.4.
It may be noted that (3.10) holds even when p < 0.

4. Asymptotic distribution of V, , in the quantile case.

4.1. Basic limit theorem. Let us assume k = [np],0 < p < 1, so that the
top 100p% of the X-values are selected. We will now examine the limiting

distribution of V}, , as n — oc.

RESULT 2. Assume that fi(x') > 0, where x' = &,(q), with ¢ = 1 — p. For
constants A and By, > 0 free of x, and for fixed y, define

4.1) H.(y|x) = {F3(As + Bry|2)}".

Assume that, as n — oo, for all real u,

4.2) H, (y

X + %) —H(y|x).

Then, Fy, ,(A; + Bry) — H(y |x').
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PROOF. Under our assumptions, it is well known that

Z, = { V() Kntin =) } —a Z.

VPq
In fact, from Reiss [(1989), page 111] it follows that, for every Borel set E,
4.3) ?, (E) — QD(E),

where @, is the measure induced by the distribution of Z,. Now, from (2.1)
and (4.1), we have

Fk,n(Ak +Bky) =E{Hn(y IXn—k:n)}
=E{H,(y|%' +coZa/vn)},

where ¢y = /pq/fi(x'). Note that h,(2) = H,(y|x’ + coz/+/n) is nonnegative
and bounded (by 1). Hence if A,(z) — h(2), from (4.3) and Royden[(1968),
Proposition 18, page, 232] it follows that Eh,(Z,) — Eh(Z). Now in (4.2) we
assumed that A(2) is H(y |x'), and thus we can conclude that Fj, ,(A; +By) —
H(y|x). O

Let us now examine the condition given in (4.2). Define H;(y |x) = nP(Y >
Ap + Bry|X > x) and H*(y|x) = {—logH(y|x)}/p. Since Hp(y|x) = (1 —
n~lH: (y|x)"P), (4.2) holds iff HX(y|x' + u/y/n) — H*(y|«x'). Since PX >
x") =p > 0, this holds iff

(4.4) nP(X >x' +u/vn,Y > A, +Byy) — {—log H(y|x')}/p.

Thus, (4.2) holds iff (4.4) holds for all u, and the latter condition appears to
be easier to check.
Now, if H(y |x') > 0, (4.4) is equivalent to the condition

(4.5) nP(X €I,,Y > Ay +Byy) — 0,

where I, is the open interval with the endpoints x' and x’ + u/+/n. Recently,
Joshi and Nagaraja (1992), in their study of joint distribution of maxima of
concomitants, have used (4.5) to reach a conclusion similar to the one reached
in Result 2.

4.2. Sufficient conditions.. The assumptions regarding the existence of the
norming constants and the validity of either (4.2) or (4.4) are hard to verify
directly. Thus we will search for easily verifiable sufficient conditions. A simple
one ensuring that (4.2) holds is given by the following lemma, whose proof is
omitted. :

LEMMA 3. Suppose that H,(y|x) — H(y|x) for x in I, a neighborhood of
x', and that H(y|x) is continuous at x', where H, is given by (4.1). Then (4.2)
holds.



MAXIMUM OF SELECTED CONCOMITANTS 485

We now introduce the concept of tail equivalence from extreme value theory.
This will help us in our search for the constants A; and B;, appearing in Result
2, which have to be free of x. Fix x in I, and assume

lm — P> o 1=F0)
=W P(Y >y|X >x) y—~&01-Fi(y|x)

(4.6)

where c(x) is positive and finite. If (4.6) holds, then F3(y|x) and Fa(y) are
said to be tail equivalent. From Resnick [(1987), Proposition 1.19, page 67] it
follows that if Fy € D(G) as k — oo such that {Fy(A; + Bry)}* — G(y) and if
(4.6) holds, then H,(y|x) — H(y|x), with H(y|x) = G(A(x) + B(x)y). Further,

A(x)=0 and {B(x)}"=c(x) ifG=2,,
4.7 A(x)=0 and {B(x)} “=c(x) ifG=1,,
Alx)=loge(x) and B(x)=1 ifG=A.

Since G is a continuous c.d.f., if ¢(x) is continuous in I, then from (4.7) it is
clear that H(y | x) is also continuous in I. From Lemma 3 we can then conclude
that (4.2) holds. Thus, if Fo € D(GQ) and if, for x in I, (4.6) holds, where c(x)
is continuous at x’, then all the conditions for the application of Result 2 are
satisfied. We formalize this discussion with the following assertion.

RESULT 3. Suppose Fy € D(G); that is, there exist constants Ay and B, > 0
such that P(Yy., < A +Bry) — G(y), for all real y. With x' = £1(q), assume
fi(x") > 0 and there exists a neighborhood I of x' in which (4.6) holds with c(x)
being continuous at x'. Then P(V}, , <A, +By) — GAX') + Blx')y) as k — oo.
The functions A(-) and B(-) are dependent on c(x') and the form of G, and are
given in (4.7).

Convenient choices for A, and B, are also well known and depend only on
the c.d.f. F5. See, for example, Galambos [(1987), pages 53—-54]. Result 3 means
essentially that, under certain conditions, V}, , (appropriately normalized) has
the same limit distribution as that of the sample maximum of a random sam-
ple of size k from the c.d.f. F3(y|x'). The key conditions are Fy € D(G), and
F3(y|x) and Fa(y) are tail equivalent for all x in I. These conditions can be
replaced by F3(y|x') € D(G) and the tail equivalence of F3(y|x') and F3(y|x).
These would be more natural conditions. However, the form of the conditional
c.d.f. Fj in general is more involved than that of the marginal c.d.f. F5. One
would thus expect the determination of the norming constants for Fy to be
easier than those for F3(y|x').

4.3. Examples.

EXAMPLE 1 (Continued). When the joint p.d.f. is given by (3.6), 1 — Fa(y) =
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(1-y)%,0<y<1,and hence

(1-2)f(y) o
1-Fy(y)
This implies the von Mises sufficient condition for Fo € D(¥3). The norming

constants are A = £2(1) = 1 and By = &(1) — &(1 — (1/k)) = 1/Vk. The c.d.f. of
VE(Y.;, — 1) converges to ¥y as k — oo. Now, for 0 < x < 1,

2

. Tox’ 0<y<=x<l,
F2(y|x)= (1_ )2
1- 1_12, O<x<y<l.
Therefore,
1 —_— < = =1-x%
e ) 1-F3(y|x) (%) g

which means that Fo(y) and F3(y|x) are tail equivalent for all x, and c(x) is
continuous in (0,1). Further, clearly f;(x') is positive. Thus, Result 3 is appli-
cable. Note that c¢(x’) = p and, since G = ¥y, from (4.7) we have A(x’) = 0 and
{B(x")"2} = p, or B(x') = 1/,/p. Thus, we can conclude that

P(VE(Vi,n — 1) <) = Y2(y/vP) =exp(-y*/p), ¥ <0,
as k — oo. In other words, v&(1 — V4,») converges to a Rayleigh distribution.
EXAMPLE 2 (Continued). When (X, Y) is standard bivariate normal, F;(y) =

Fy(y) = ®(y) € D(A) and £5(1) = oo. On noting that X, given Y =y, is N(py, 1 —
p%) and using the form f(x,y) = fo(y)fi(x]y), we see that

PX>xY >y)= /yoofz(v) /:ofl(ulv)dudv
- /y“«p(v){l—@((x—pv)/M)} do.

Hence

1-Fyy) _ (1= 3())[1 - 9() |
T F301%) ~ [ 61— 8((x— o) /v/1— )} do

On using I'Hopital’s rule, it follows that

L A-R0) g o 1
O IR P T oy sy )
=1-&(x),
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since p > 0. Thus (4.6) holds with c(x) = 1 — ®(x).

Now it is easy to check that all the conditions assumed in Result 3 are
satisfied. Also note that c(x') = 1 — ®(x’) = p. Since G = A, from (4.7) it follows
that A(x') = log p and B(x') = 1. Hence, our conclusion is that, as 2 — oo,

(4.8) P(Vi,n <Aj +By)—A(y +1logp) = exp(—(e™?/p)),

for all real y. The norming constants A; and B}, can be chosen as a; and b,
respectively, where a, and b, are given by (3.7).

REMARKS. In contrast to (4.8), when p = 0, or when X and Y are indepen-
dent, P(V}, , <Ay +Bpy) — A(y) for the same choices of A, and B;. Thus, while
the limit distribution is free of p and depends only on p as long as p > 0, it is
free of p when p = 0. When p < 0, F; and Fj are not tail equivalent and hence
Result 3 is not applicable. Recent work by Joshi and Nagaraja (1992) indi-
cates that in that case, while the limiting c.d.f. of V}, , is still A, the norming
constants are different and depend on both p and p.

5. A simple linear regression model. Our example on the bivariate
normal population is a special case of the following simple linear regression
model discussed extensively in the literature on concomitants [see, e.g., David
(1981), pages 110 and 282]:

56.1) Y[i:n] = ﬂXi:n + U[i]’ 1<i<n.

We assume U, not necessarily normal, has c.d.f. F3, Uj;; and X;., are indepen-
dent, and take 8 > 0. Under these assumptions, we investigate the possible
limit distributions for Vj,,.

An expression for F} , is given by (2.1) where, on recalling (3.5), we note
that

S

5.1. Asymptotic distribution in the extreme case. If £,(1) is finite, X, ;1.5
—p&(1), fori=1,...,k, and hence, from the definition of V; ,,

(5.2) Vi,n —a BE(1) + max (Upy, . . ., Up—pen) = BE1(1) + U,

with Uy, having c.d.f. FE.

Now suppose £;(1) is infinite. If X,,.,, has an additive weak law [Galambos
(1987), page 244] so that X,,., —c, —p 0, then X, _;,1., — ¢, —p0,i=2,...,k.
Consequently,

(5.3) Vin — Bcn —aq Ug:p.

Suppose F; € D(G). If G = ¥,, then £(1) is necessarily finite and hence
(5.2) holds. If G = A and £;(1) is finite, then again (5.2) holds. To see what
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happens in other cases, let us suppose (X, ., —a,)/b, —4 W, and rewrite (5.1)
as

Y[i:n] '—,Ban - }(i:n —Qn + H[L_]
Bby bn Bb,’

When G = ®,,a, can be taken to be 0 and b, to be & (1 — n~1), which
approaches infinity. Therefore in (5.4), {U};;/8b.} —p 0. Hence we can conclude

that
Yn:n _ n Y,,__ +1:n] — n
({( L ,B]bnﬁa )},..-,{( L ,IBb,]L IBa )}> *d (Wl)-..,Wk))

where, as noted in Lemma 1, the W’s are the successive lower record values
from the c.d.f. G. Thus we have, with a, =0,

V n n
(5.5) {Li'—ﬂ—a—@—l} —q Wi

When G = A, we can choose a, = &(1 —n~!) and b, = EX — a,|X > a,).
Suppose b, — b. If b is zero, then X,,_;,1.,—a, —p 0 and hence (5.3) holds with
¢n = ap. This is what happens when (X, Y) has a bivariate normal distribution,
a conclusion drawn at the end of Section 3. If b is infinite, (5.5) holds. If b is
finite and positive, using (5.4) and the independence of the X’s and U’s, we

conclude that
(Y[n:n] - ﬁan) (Y[n—k+1:n] - ﬂan)
Bby Y Bbn

‘ —d (Wl+(,Bb)_lUl,...,Wk+(,3b)_1Uk).
This means that {(V},, — Ba,)/Bb} —4 V, and

(5.4) n—k+1<i<n.

(5.6) V =4 max(Wy + (8b) Uy, ..., Wi + (8b)~Up),

where the U’s are i.i.d. random variables, independent of the W’s. Since the
W’s are dependent, it is not evident how one can find the c.d.f. of V in (5.6)
in a closed form. Of course, we can condition on the values of the W’s and
express Fy in terms of a k-dimensional integral. However, a more convenient
form of V is possible in view of the following result.

LEMMA 4. Let W;,i > 1, be the lower record values from the c.d.f. A, and
let U;,i > 1, be i.i.d. random variables independent of the W’s. Then, if ¢ > 0,

(6.7 max(Wy +cUy,..., Wi +cUyp) =g Wiyy + max(Ty +cUns,..., Ty +cUy),

where the T’s are i.i.d. Exp(1) random variables independent of all the other
random variables.
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PrROOF. We prove the lemma by showing that the random variables on
both sides of (5.7) have the same c¢.d.f. When G(x) = A(x) = exp(— exp(—x)), the
joint p.d.f. of wy,..., Wi, can be expressed by Lemma 1 as

k
g(k+1)(w1, .. -,wk+1) =g(wk+1) Hexp(—wr), W1 >W2 > > Whel-

r=1

Consider the c.d.f. of V by using the form given on the left-hand side of
(5.7). By conditioning on the values of Wy,..., W,;, we can write

k.
Fy(v) = { [1Fs(c™ (v — w;)) exp(—w;) dw; }g(wk+1) dwp.
w1 SWhe i=1

As in Section 2, we use the symmetry of the function in brackets and the
symmetry of the region of integration. This yields

Fy(v) = / { /w >WMF3(c“1(v—w))exp(~w)dw}k%g(wku)dwku.

Wi

With ¢ = w — wp41, We obtain

Fy(v)= - { /;Ff'(f‘(v ~t —wp.1)) exp(~t) dt}k

% exp(—kwk+1)
k!

(5.8) = / {P(T+cU <v~ wk+1)}kgk+1 (wrs1) Awpsr
Wpyy

&(Wre1) dWpa

= P{max(T, +cUy,...,Th +cUs) < 0 — Wp41)}8k+1 (Wis1) dWps1
W1
=P({Wk+1 + max(T1 +clUy,...,Tp + cUk)} < v).
Thus the lemma is established. O

COROLLARY. In the model given by (5.1), suppose the c.d.f. of Xy.n —an)/bn
converges to A and b, — b, finite and positive. Let T* =4 T + (U1/3b). Then
(Vi,n = Ban)/Bby —q V, where

(5.9) V=g Wie1 + T ps

and Wy, and T}, are independent.
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REMARKS.

(i) The appearance of the i.i.d. Exp(1) random variables in Lemma 4 is
not a surprise. It is known [Weissman (1978)] that when G = A the random
variables W; — Wy, ..., W, — W, are i.i.d. Exp(1) random variables and are
independent of W,,;. However, it is not clear how this fact enters into the
equality of the distributions appearing in (5.7).

(ii) We can obtain the representation for V as given by (5.9) if we apply
Result 1 and the approach used in Example 2 to determine an explicit form for
H(y|x) [(5.8) is nothing but (3.2) of Result 1]. However, to use that approach
one has to assume that the related von Mises condition holds, which is avoided
here.

(iii) The representation for V as given by (5.6) involves the maximum of %
dependent, stochastically decreasing, random variables. In contrast, the form
given in (5.9) is the sum of two independent random variables, where one of
them behaves like the sample maximum of a random sample. The latter ver-
sion is much easier to handle, especially if we are interested in the moments
of V. The following example illustrates that fact.

EXAMPLE 3. Let X, Y behave, respectively, like sample minimum and max-
imum in a random sample of size 2 from an Exp(1) distribution. These can
be viewed as the failure times of the first component to fail and of the series
system made up of two components with i.i.d. exponential life-length distri-
butions. It is well known that 2X and U = Y — X are i.i.d. Exp(1) random
variables. Suppose the selection is made on the basis of X-value and interest
is about Y, the system failure time. We can then use the model given in (5.1)
with 3 =1 to describe their relationship.

We know that 2X,,., — logn —4 W;, where W; has c.d.f. A. Thus, from the
corollary it follows that 2V, ,—~log n —4 V =4 Wy,1+T}.,. Since T =4 T1+2U4,
it has the distribution of the sample maximum of a random sample of size 2
from an Exp(2) population. Consequently, T;., =q 2T .2, and V =3 Wp,q +
2T2k 12k

The first two moments of W,,; are given by Weissman [(1978), page 813]
and those of Ty . ;. can be obtained, for example, from David [(1981), page 49].
On using these and the fact that the two random variables are independent,
we conclude that E(V) = v — ¥ i~ + 25,2 i1, where v is Euler’s constant

(0.5772...) and Var(V) = (n2/6) — ¥} |i~2 + 432, 2.

5.2. Quantile case. When k = [np], where 0 < p < 1, we do not have any
special technique for handling the asymptotic theory for V; , as was done in
the extreme case. Thus, we may use Result 3, which involves the tail equiv-
alence condition given by (4.6). In the bivariate normal example we could

.use the knowledge of the conditional distribution of X given Y =y to verify
that (4.6) holds. Now let us see what happens for the bivariate distribution
introduced in Example 3.
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EXAMPLE 3 (Continued). Since Fo(y)=(1—e7)%, y > 0, it is easily verified
that the von Mises condition for Fs € D(A) is satisfied. Since Fs is the c.d.f. of
the maximum of a random sample of size 2 from Exp(1), Y., =4 Tar.2:. This
means the norming constants can be chosen as A; =log(2%) and B, = 1.

We now evaluate the c(x) in (4.6). For this consider, for 0 < x <y,

PX>xY>y) =/ / 2e~ ) dy dv
yu<vx
=e V(2" —e™).
Thus, for x <y,
1-Fy(y) _[1-Fi[@)][1-Fa(y)]
1-Fi(y|x) PX>xY>y)
e e Y(2-e7)
T e(2e % —ev)’

which converges to e * as y — co. This is our c(x).

Now «’ = (—log p)/2 and c(x') = \/p. Since G = A, from (4.7) we have A(x') =
(log p)/2 and B(x') = 1. Hence, it follows from Result 3 that, as & — oo, P(V},, —
log 2k < y) — exp(—(e™/,/p)), for all real y.

REMARKS. In the first two examples, c(x) coincided with 1 — Fy(x). This
meant PX > x|Y > y) — 1 as y — £(1). This is not the case with Example
3. This example also illustrates the possibility that even when Fa(y|x) and
F3(y|x) are tail equivalent to Fy(y) the limiting value of {(1 — Fa(y))/(1 —
F3(y|x))} and that of {(1 — F2(y))/(1 — Fo(y|x))} can be different.

6. Numerical comparisons. Feinberg (1989) considered the standard
bivariate normal population discussed in Example 2 and simulated E(V}, ,) for
all &, with n = 25,50 and 100, and selected values of p?(p > 0). For the sake
of illustration, in Table 1 we have chosen n = 50 and p? = 0.01,0.05,0.10,0.25,
0.50 and 0.90 and have taken & = 1,2, 3,4, 5,50. In that table, E; stands for
the values of E(V}, ,) simulated by Feinberg (1992), each entry being based
on one million replications. He also used the exact expression for the c.d.f.
of Vi, given in (2.1) to evaluate E(V} ,) through numerical integration, and
he reports strong agreement between those values and the simulated values
given by E;.

In Table 1 we also display two approximations to E(V},,) as suggested by
the asymptotic distribution of V} , in the extreme and quantile cases. They
are Ey = pa, + \/1 — p2E(Z;.;), as suggested by (3.9), and Ej3, given by (4.8)
as A + B, E(V) = a; + b {y —log(k/n)}. The approximation E3 did not perform
well for moderate & values and hence its value is given only for 2 = 50 (=n).
Even there, it does not do well. This is not surprising in view of the following
facts: (i) The norming constants as well as the limit distribution are free of p;
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TABLE 1
Simulated values of and asymptotic approximations to E(V}, 5) for samples from the
standard bivariate normal population

k P 001 005 010 025 050 090

1 E; 0.2262 0.5034 0.7119 1.1240 1.5902 2.1333
E, 0.2101 0.4698 0.6644 1.0504 1.4856 1.9931
Exact 0.2249 0.5029 0.7112 1.1245 1.5903 2.1337

2 E; 0.7672 1.0118 1.1892 1.5247 1.8767 2.2105
E, 0.7715 1.0197 1.1996 1.5390 1.8845 2.1715

3 E; 1.0342 12551 14145 1.7066 1.9957 2.2323
E, 1.0521 1.2946 1.4672 17833 2.0840 2.2607

4 E, 1.2048 14097 15548 1.8161 2.0626 2.2407
Eq 1.2343 14731 1.6409 19419 22134 2.3186

5 E, 1.3283 15199 1.6538 1.8909 2.1056 2.2445
E, 1.3672 1.6033 17676 2.0576 2.3079 2.3608

50 E; 2.2491 2.2489 2.2493 2.2489 2.2489 2.2488
E3 2.3072 23072 23072 23072 2.3072 2.3072
Exact 2.2491 22491 22491 22491 2.2491 2.2491

(ii) the rate of convergence of the sample maximum to the c.d.f. A is known to
be rather slow. The rows corresponding to 2 = 1 and 50 also contain the exact
values of E(V},,), pE(Z50.50) and E(Zs0.50), respectively.

From Table 1 it appears the approximation E; performs extremely well for
k = 2 over the range of values of p considered. As % increases the gap between
E, and E, appears to widen. This is expected as we move away from the
extreme case.

In Table 2 we carry out a similar comparison for a sample size of 100,
where we have displayed E, for £ < 5 and Ej3 for larger selected values of &.
The conclusion is essentially the same. The performance of E5 is uniformly
poor and it fails to be monotonic in & as well. For both sample sizes, the
approximation E; comes closest to E; when k = 2, more so for n = 100.
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TABLE 2
Simulated values of and asymptotic approximations to E(V}, 109) for samples from the standard
bivariate normal population

Kk P 001 005 010 025 050 0.90

1 E; 0.2506 0.5604 0.7905 1.2529 1.7735 2.3793
E, 0.2366 0.5291 0.7483 1.1831 1.6732 2.2448
Exact 0.2508 0.5607 0.7930 1.2538 1.7731 2.3789

2 E, 0.7940 1.0720 1.2735 1.6611 2.0676 2.4609
E, 0.7980 1.0790 1.2835 1.6717 2.0721 2.4232

3 E; 1.0626 1.3201 1.5037 1.8479 2.1932 2.4854
E, 1.0787 13540 1.5511 1.9160 2.2716 2.5124

4 E; 1.2354 14774 16472 1.9622 2.2648 2.4957
E, 1.2608 1.5324 1.7248 2.0746 2.4011 2.5703

5 E; 1.3601 1.5895 1.7496 2.0412 2.3121 2.5008
E, 1.3938 1.6626 1.8516 2.1903 2.4955 2.6126

10 E; 1.7055 1.8936 2.0217 22401 2.4189 2.5070
E; 2.7039 2.7039 2.7039 2.7039 2.7039 2.7039

50 E; 2.3212 23922 24320 2.4842 25056 2.5078
E;3 2.5550 2.5550 2.5550 2.5550 2.5550 2.5550

100 E; 25075 2.5080 2.5073 2.5074 2.5076 2.5078
E; 2.5565 2.5565 2.5565 2.5565 2.5565 2.5565
Exact 25076 2.5076 2.5076 2.5076 2.5076 2.5076
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