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UNIVERSALLY CONSISTENT CONDITIONAL U-STATISTICS!

BY WINFRIED STUTE

Universitit Giessen

We introduce a general class of conditional U-statistics and present
sufficient conditions for their universal consistency in rth mean. It is shown
that under mild assumptions on the smoothing parameters, window and
kn—nearest neighbor estimators are universally consistent. An application
to a new nonparametric discrimination problem is also included.

1. Introduction and main results. This paper constitutes a continua-
tion of work on so-called conditional (local) U-statistics as introduced in Stute
(1991). These statistics may be viewed as generalizations of regression func-
tion estimates, similar to Hoeffding’s (1948) extension of a sample mean to
what is now called a U-statistic. To be specific, assume that (X;,Y;), 1 <i <n,
are i.i.d. random vectors in some Euclidean space R4+, defined on some proba-
bility space (Q, A, P). As in the regression case the X and Y may be considered
as input and output variables, respectively, the stochastic dependence of which
being described by the pertaining regression function. In order to measure the
impact of a few X’s, say (Xj, ...,Xp), on a function A(Y;, ...,Y}:) of the per-
taining Y’s, set

m(x) =m(xy, ...,2%) :=E[R(Yy, ...,Y2) | X1 =21, ..., Xp =x2].

Here & is a given real-valued function on R*** (the U-kernel) such that, for
some r > 1,h(Yy, ...,Ys) € L,, the space of all random variables Z for which
|Z|" is integrable; & is called the degree of h (resp. m). Stute (1991) contains
several examples, and another example will be discussed in greater detail in
Section 3.

In this paper we study a fairly general class of conditional U-statistics of
the form

(1.1) m,,(x) = ZW,,n(x)h(Y,r),

designed to estimate m(x). Summation in (1.1) takes place over all permu-
tations 7 = (my, ..., m) of length & such that 1 < m; < n. Of course, Y, =
(Ya,, -..,Yr,). We shall also write X, = (Xr,, ...,Xr,) whenever convenient.
In order to make m,(x) a local average, W,(x) has to give larger weights to
those h(Y,) for which X is close to x. For detailed conditions, see (i)—(v) below.
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While in our previous paper pointwise consistency and asymptotic normal-
ity of m, were investigated, the present paper deals with consistency in rth
mean. For the regression case this was first done in a seminal paper by Stone
(1977). According to his suggestions we shall call {W,,} universally consis-
tent iff

m,(X) » m(X) in L,

under no conditions on A (up to integrability) or the distribution of (X,Y). Here
X = (X9, ...,X0) is a vector of X’s with the same distribution as (X, ...,X)
and being independent of (X;,Y;),i > 1. In the discrimination setup of Sec-
tion 3, (X;,Y;),1 < i < n, will be a training sample and X is a vector to
be classified.

Theorem 1.1 presents sufficient conditions for universal consistency. In
Theorems 1.2 and 1.3 it is shown that window weights and k,-nearest neigh-
bor (NN) weights are universally consistent under mild assumptions on the
smoothing parameters.

In what follows || - || will be the maximum norm on R?. We also set

X —xI|: = max Xz, — i

The fact that || - || will be used to measure the distance between X, and x
as well as the distance between points in R? will not cause any confusion; u
denotes the distribution of each X;. Finally, without further mentioning, we
shall omit the index n from W,.

Consider the following set of assumptions [cf. conditions (1)-(5) in
Stone (1977)1:

(i) There exists some finite C > 1 such that, for each f > 0 and every
n 2 ny, say,

[ 3w ()| < R (o)
(i) For some D > 1,

IP(Z W, (X)| < D) =1
As n — oo,
(iii) Z |W1r(x)ll{||X,,—X||>e} —0 in probability for each ¢ > 0,
(iv) Z W,.X) — 1 in probability,

\J > @W,X)W,X)| — 0 in probability,

0o
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for each 1 < q < k, where £@ denotes summation over all permuta-
tions 7, 0 which have q indices in common (not necessarily at the same
position).

The constants C and D need not be known and may depend on the under-
lying distributions.

We now state our main result. It constitutes an extension to the U-statistic
setup of Stone [(1977), Theorem 1].

THEOREM 1.1. Assume that h(Y, ...,Y}) € L. Then, under (1)«v), we have
ma(X) - m(X) in L,
that is,

B[ [ Ima(x) - m(®)[ ) - ()| 0.

Theorems 1.2 and 1.3 deal with two special cases: window weights and NN-
weights. Consistency of window estimates for the regression function has been
obtained by Devroye and Wagner (1980) and Spiegelman and Sacks (1980).
NN-weights for the regression function have been studied in Stone [(1977),
Theorem 2].

To define the window weights, put

W, (x) = L0 —xli<hn} / > L(x,—xi<ha)» if well-defined,
0, 7 otherwise.

Here A, > 0 is a given window size to be chosen by the statistician.

THEOREM 1.2. Assume h, — 0 and nh% — 0o as n — oo. Then
m,(X) » m(X) in L.

For the NN-weights recall that X; is among the k,-NN of x € R? iff d;(x):=
|IX; — x| is among the k,-smallest ordered values dy(x) < -+ < dp.n(x) of the
d’s. Ties may be broken by randomization.

For a given 1 <k, <n, set

k¢, if X, is among the k,-NN of x; for 1 <i <k,
W ={"

otherwise.
THEOREM 1.3. Assume k, — oo and k,/n — 0 as n — oo. Then

m,(X) —» m(X) in L.

Theorems 1.2 and 1.3 will be proved by verifying conditions (i)~(v) in
Theorem 1.1.
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2. Proofs. To prove Theorem 1.1, a few lemmas are needed.

LEMMA 2.1. Under (i)(iii), we have, for each f such that foX € L,,

E[ S W, (®)](%:) - /(R)[] - o

PROOF. For ¢ > 0 given, choose a continuous g on R?** with compact sup-
port such that

E|f(X) -g(X)|" <e.

By (i), assuming ng = 1 w.lo.g.,
E[Z | W (X)] |F(Xx) —g(Xw)I’] < CEIf(X) —g(X)I" < Ce.
From (ii),
B[ X WL ()] /(%) - 5(®)f| < e

Altogether this shows that we need to prove the lemma only for continuous f
with compact support. Set M = ||f||oo, the sup-norm of f. Since f is uniformly
continuous, for a given ¢ > 0, we may find some § > 0 such that

|x —x;]| <& implies |f(x)—f(x;)I" <e.

By (i)
E[Z|W,,(x)| If (Xx) -f(x)lr] < (W)'E[Z|Wr(X)l1{||x"-xn>6} +eD.

Use (ii) and (iii) to conclude that the last expectation converges to zero. This
completes the proof of the lemma. D

LEMMA 2.2. Under (i)Hiv), for each f such that f o X € L;, we have

Y W (X)f(Xz) = F(X) in r-th mean.

PROOF. By (ii),

> Wl (X) -1

< (1+D)" with probability 1.
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Thus, by (v),

-
— 0.

(2.1) E

[;Ww(X) -1]fx)

Further, apply (i), Lemma 2.1 and Hélder’s inequality to get

(2.2) E| ) W.(X)[f(Xx) - F(X)] ‘ - 0.

Clearly, (2.1) and (2.2) imply the assertion of the lemma. O
Lemmas 2.1 and 2.2 now readily yield a proof of Theorem 1.1.

PROOF OF THEOREM 1.1. For this note that since E|a(Yy, ...,Y;)|” < oo by
assumption, Jensen’s inequality implies

E[|m(X)[] = ]E[lE[h(Yl, R AYD ...,X,,]]']
<EA(Yy,...,Y3)| < co.

Now,

> Wi (X)A(Yn,, ..., Yn,) — m(X)
@3 =Y W (X)m(X,) —m(X) + 3 Wr(X)Zs,
where

Zp=h(Yn,...,Ys) -E[h(Y,,,, ...,Y,,,,)|X,,]
=h(Ynp ..., Y) — m(Xy).

The first term in (2.3) converges to zero in rth mean according to Lemma 2.2.
For the second sum we first treat the case r = 2. We then have

(2.4) E[Z W (x)z,,]2 =) E[W.(X)W,(X)Z,Z,)].

It is easily seen that the expectation vanishes if 7 and o do not have any
indices in common. So, fix 1 < q < &, with g indicating the number of indices
appearing in both = and . Then

E[W, (X)W, (X)Z,Z,] =E [W,, (X)W, (X)E[Z+2, | Xr, X, x]]
= E[W, (X)W, (X)E[Z.Z, | Xr, X)),
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by independence. Furthermore, by Cauchy—Schwarz and independence,

|E[Z+Z,|Xx, X,]| < /E[22 X, | E[22]X,]
= ’Y(Xw)’Y(Xa),
Assume for a moment that v is bounded. Condition (v) then guarantees that

Z(")|W X)W, (X)|v(Xx)¥(X,) — 0 in probability

and therefore, by (ii), also in L. The case of a general (integrable) v is easily
traced back to a bounded ~. For this, write

Y =7l y<my + Ysmy = 1+ %2
Hence

V(X )Y (Xo) =1 (Xe )11 (Xo) +71(Xn)72(Xo)
+72(Xe )n (X5) +72(Xn)12(Xs ).

Since ~; is bounded, the sum over the first terms need not be dealt with again.
As to the second group, say, we have

Z(q) ]E[|W (X)W (X) I’)’l( )')’2(X )]

= [ W00 )] [ S )] |
<512 0 W 00 ()] B2 52 e ()|
<D]E1/2[Z|W X) |2 (x. ]E1/2[Z|W |72(X]

By (i), the last term may be bounded from above by DCEY/2+4(X)E!/2+2(X).
However, |y;| < v and

Ev3(X) =E[h(Yy, ..., Y3) - m(Xy, ..., X)) < 0.

So we may choose M so large that Ey2(X) < ¢, where ¢ > 0 is any given positive
number. In summary, we have found an upper bound for (2.4) which tends to
zero. However, (2.4) is nonnegative, and the theorem is proved for r = 2. For
a general r > 1, let M > 0 and write

h= 1{|h[$M}h + 1{|h|>M}h = h1 +h2.
Denote with m; and mgy the corresponding regression function, so that

m=mj;+msy.
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Then
E|ma(X)|" <E|he(Y1,...,Y:)| =0 asM — oo,

as well as, by (i) and (ii), upon applying Hélder’s inequality,

]EZW,(X)hz(Y,,) —0 asM — oo,

uniformly in n. So it suffices to deal with bounded A4’s. For such an A, we have
already shown convergence in L£;. Consequently, we obtain convergence in
probability and therefore, by boundedness, convergence in £,, foranyr > 1. O

The following lemma provides a useful sufficient criterion for (i) to the effect
that (i) only needs to be verified for tensor products of d-variate functions.

LEMMA 2.3. Assume that (i) is satisfied for all nonnegative f of the form

f(xl, ...,xk) = fIﬁ(x,-).

Then Q) is fulfilled in general.

PROOF. Since both sides in (i) are linear in f, (i) also holds for (nonnegative)
finite linear combinations of tensor products. Further, to each (integrable)
f > 0, there exists a sequence (f;), of such functions with

fr—=Ff p®---® p-almost surely and in the mean.

Now apply Fatou’s lemma to get

E[; |Wa (X) |f(x,)] = E[lirrggxf; |Wx(X) If,(X,,)]

< lirrggxfm[z |W..(X) |f,(x,,)]
<lim inf CEf,(X) = CEf(X). u]

Next we show that conditions (i)—(v) are satisfied for the window estimator,
thus proving Theorem 1.2. According to Lemma 2.3, for (i), only f of the type

f(xl, ...,xk) =f1(x1) .- -ﬂ(xk)

need to be considered. For x € R% and & > 0 we denote with B(x; k) the closed
ball with center x and radius A. A° is the complement of a set A.
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LEMMA 2.4. There exists some finite constant C = C(k,d, u) such that, for
each nonnegative tensor product f = ®J’?___1f},

E[Z WW(X)f(X,r)] < CE[f(X)],
for all n > ny, say.

PROOF. Fix some 7 = (my, ...,m). Recall that X = (X}, ...,X}). By inde-
pendence, the conditional expectation

E [Wﬂ(x)f(Xﬂ') |X,Xn 1<i<n,i #Wh <oy Thy l{llx"l_xp||<h"}’ 1 S.], < k]
SRS

equals

We(OE [{(X0) X 1(py oy 1S5 1<H

Given X = (x1, ...,x), the last conditional expectation is an elementary func-
tion which is constant on each set {X,, € A(xy), ..., X, € A(xz)}, where A(x;)
is either B(xj; h,) or B¢(x;j; h,). The attained value

: 1
_r o\ ap
g P(X; € A(x))) /{XleA(xj)}ﬁ(Xl)

does not depend on 7. Since %, W, < 1 and W(X) vanishes if | Xx, — xj|| > kn
for at least one 1 <j <k, we obtain

E[zw,,(x>f(x,,)]

/H P(X; € A(xJ) /{XleA(xj)}f}(Xl) dPu(dxy) - p(de).

The conclusion follows from Lemma 2.5. O

—B Be

LEMMA 2.5. There exists a finite constant C such that, for each x € R? and
all small enough h > 0,

/ w(dy)
Bashy H(B(y;h)) ~
u(dy)

W oy BB ) =

PROOF. Part (i) follows from Lemma 2 in Spiegelman and Sacks (1980).
Part (ii) is trivial if u has continuous marginals or, more generally, at least
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one marginal is not purely discrete. If u is purely discrete with masses «; at
z;, then each integral in (ii) is bounded from above by

S <
; 1—q; ) (m]

As already noted,
> IW-(X)| <1,

whence (ii). Also, for h, < ¢,

Lx, —xyi<ha} L{ix, —Xy>e} = 0,

proving (iii). Conditions (iv) and (v) will follow from the next lemma.

LEMMA 2.6. Assuming h, — 0 and nh? — oo, we have

n P(|X1 — X2 < kn) = 0.

PROOF. From Corollary (10.50) in Wheeden and Zygmund (1977),
Tim A74P(1X; — 2| < ) = 17(x)
exists for pu-almost all x € R? and is positive, possibly infinite. Hence
(2.5) Jlim nP(| Xy — x| < hn) =00 p-almost surely.
Integrate out to obtain the assertion of the lemma. O

LEMMA 2.7. Under h, — 0 and nh% — o, conditions (iv) and (v) are satis-
fied.

PROOF. Wrrite, for x = (x4, ...,x;) € RI%k,

_(n—k)! L{1X, —x|i<ha)
Sn(x) = =3 AT

s
Note that the denominator does not depend on 7 and equals
k

TTR0X: = xill < ko) = V.

i=1

A straightforward extension to dimension d of the arguments utilized in the
proof of Theorem 2 in Stute (1991) to handle B, there yields, for p1 ® --- ®
p-almost all x,

(2.6) S.(x) — 1 in probability as n — co.
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Together with Lemma 2.6 this implies
Z 1{ix,—x||<h,} — o0 in probability.
Integrate out to obtain

Z 1{x,-X|<h,} — 00 in probability

and consequently (iv). To verify (v), due to (2.6), it suffices to show that in
probability

n—=k
(2.7) [( ) ] Z(‘”l{nxn—xnm o —xl| <k} = 0.
For this, assume first that x;, ...,x; are pairwise distinct. Hence
€= r{grn |l; — x| > O.
From some no on, we have h, < ¢/2. It follows that |X; — x;|| < A, for at

most one of the x’s, 1 <j < n. Denote with R,(i) the number of data points X;
satisfying ||X; — x;|| < hn. As for (2.6), we obtain in probability

R, (i) .
-1, 1<i<kEk.
nP(|1X; — x| < ha)

Since ¢ > 1, the sum in (2.7) is therefore, for n > ng, bounded from above by
-1
Op(1) max [n]P(||X1 —x < hn)]

Apply (2.5) to get (2.7).

If 1 has no atoms, the above reasoning applies to u ® --- ® u-almost all x,
proving (v). Ties among the x; can only occur (up to a null set) if they are
atoms. The proof is similar to before. Actually, it simplifies a bit since the
corresponding factors in V, are bounded away from zero so that, for these x;,
application of the SLLN rather than a differentiation argument suffices. O

Lemmas 2.4-2.7 establish the proof of Theorem 1.2.

The following lemma is well known and is stated here just for the sake of
reference. It will be needed for the proof of Theorem 1.3. Denote by supp(u)
the support of u. Recall dy.,(x).

LEMMA 2.8. For each x € supp(n) we have, under k,/n — 0,

di,n(x) =0 asn — .

As a consequence, Fubini’s theorem yields the following lemma.
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LEMMA 2.9. Assume Xy ~ p. Then, under k,/n — 0,
dp,n(Xo) = 0 as n — oo with probability 1.

We are now in a position to verify conditions (i)~(v) from Theorem 1.1. Recall
X=(X?,...,X?) and set, for 7 = (my, ..., m),

A = {X,,,. is among the k,-NN of X? in the sample Xj, . ..,X,,,X?},
B, = {X,O is among the k,-NN of X, in the sample X7, ..., X}?, X,

j#ﬂ'l» '--»Wi—l»wi+l9-'-»7rk}-

Note that, for any f > 0,

/ f(X,)dP = / £(X) dP.
However,
By, C {X? is among the (k, +& — 1)-NN of X,
in the sample X{’, ...,X,?,Xl, ...,X,,}.

According to Bickel and Breiman [(1983); Corollary S1] there exists some fi-
nite C(d) such X? can be among the (k, + k& — 1)-NN of at most C(d)(k, +k — 1)
points. Conclude that

e[S e )] < o) [t ),

n

proving (i). Since
> Wl (X)=1

and
Y @WR(X)Wo(X)| = O(k; ) =o(1)

for 1 < q <k, only (iii) is left. But this follows from Lemma 2.9 and
D Wa (X)L x,—xi>er < Lmasicih dipaZ>e)-
o

The proof of Theorem 1.3 is complete. O

3. Nonparametric discrimination. The classical problem of discrimi-
nation is one of estimating the value of an unobservable random variable
Y? taking values from a finite set {1,2, ...,M}, say. This estimation takes
into account an observable vector X° which is (hopefully) correlated with Y°.
The optimal predictor g(X°) minimizing the probability or error P(g(X?) # Y?°)
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among all g’s is called the Bayes rule. It is well-known that this g satisfies
g(x) = arg max p;(x),
1<<M

where
pi(x) =P(Y°=j | X" =x).

Since in practice the p; are seldom known, they need to be estimated from
a training sample (X;,Y;), 1 < i < n. Universally consistent regression func-
tion estimators then guarantee consistent estimation of the p; and hence of
g, resulting in asymptotically Bayes-risk consistent discrimination rules. See
Devroye and Wagner (1980) for a nice treatment.

The results of the present paper enable us to extend the classical discrim-
ination problem to a more complex one. Suppose that not just one X° but
k > 2 random vectors XY, ...,X? are available for which the corresponding
Y = (Y7, ...,YD) is not observable. Take, for example, & = 2 and let the Y’s be
real-valued. We may then wonder whether Y < Y? or not. Setting

_ la if y1 < Y2,
h(y1.72) = {0, if y1 > y2,

we arrive at a discrimination problem for A (Y?,YY). Given (X7,XJ) and a
training sample (X;,Y;), 1 < i < n, a decision has to be made as to whether
h =1 or 0. For an arbitrary & > 2, we might be interested in that j, 1 <j <k,
for which YJ0 is the r-largest among the Y’s. As another example, we may

wonder if Y) and Y) are within a given distance ¢. Finally, for discrete Y’s,
Y? and Y may coincide or not.

More generally, let 4 be any function taking on at most finitely many values,
say, 1, ...,M. The sets

Aj={(yla-"’yk): h(yl’---’yk) =j}a 1<j<M,

then yield a partition of the feature space. Predicting the value of (YY), ...,Y})
is tantamount to predicting the set in the partition to which (Y?, ...,Y}?) be-
longs. Now, it is easily seen that, for any discrimination rule g,

P(X) = A(¥)) = Y PE(®) =), A(Y) =)
- i/{ﬁ:j}n»(h(y) =j1X)dP
-3 /{ ey ™ OO (1) ()

x: g(x)=j}

< i [ mex () i)
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with

mi(x) = P(h(Y) =j | X = x).
The above inequality becomes an equality for

(3.1 go(x) = arg max m’/(x);
1<jsM

go defined by (3.1) is again called the Bayes rule, and the pertaining proba-
bility or error

L' =1—P(go(X) =h(Y)) =1 - E[lg% mf(x)]

is called the Bayes risk. Each of the above m/’s can be consistently estimated
by one of the two methods discussed in Section 1. Let

mi,(x) = Z Wa(%)1iny,my, 1<J<M,

and set

gno(x) = arg max mj,(x).
1<j<M

Write
Ly: = P(gno(X) #(Y)).

The following theorem shows that the discrimination rule g, is asymptotically
Bayes-risk consistent, under no assumptions whatsoever.

THEOREM 3.1. Assume the weights {Wxr,} are universally consistent. Then

L,—L* asn— .

PrROOF. Follows from Theorem 1.1 and the obvious relation

0<L,-L*< ZIE[ max
1<j<M

(%) - md ()] :

Theorem 1.1 may also be utilized to study the conditional error given the
data

L. =P(gno(X) #A(Y) | X1, Y1, .., Xn, Ya).

Similar to before, one obtains

Lo~ L% < 2/ max |m),(x) - m/(x)|u(dx1) - (i),
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and therefore
i,, — L* in the mean

(and hence in probability).
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