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ON SINGULAR WISHART AND SINGULAR MULTIVARIATE
BETA DISTRIBUTIONS

BY HARALD UHLIG

Princeton University

This paper extends the study of Wishart and multivariate beta distri-
butions to the singular case, where the rank is below the dimensionality.
The usual conjugacy is extended to this case. A volume element on the
space of positive semidefinite m x m matrices of rank n < m is introduced
and some transformation properties established. The density function is
found for all rank-n Wishart distributions as well as the rank-1 multivari-
ate beta distribution. To do that, the Jacobian for the transformation to
the singular value decomposition of general m x n matrices is calculated.
The results in this paper are useful in particular for updating a Bayesian
posterior when tracking a time-varying variance—covariance matrix.

1. Introduction. Consider n draws Y;,j=1, ...,n, from a normal distri-
bution N (0, ¥), where ¥ is m x m and positive definite. The random variable
X= E}LleYJ{ has a Wishart distribution W,,(n, ). Usually, Wishart distribu-
tions are studied only for n > m—1. This paper extends the study of Wishart as
well as multivariate beta distributions to the singular case, where 0 < n < m,
n an integer, that is, where the rank of the random matrix is below its dimen-
sionality. The usual conjugacy between Wishart and beta distributions [see
Muirhead (1982), Theorem 3.3.1] is extended to this case (see Theorems 1 and
7). A volume element on the space of positive definite m x m matrices of rank
n < m is introduced (see Theorem 2) and some transformation properties es-
tablished (see Theorems 3 and 4)—this is necessary in order to talk sensibly
about densities on that space. The density is found for the rank-n Wishart
distribution for all integers n, 0 < n < m (see Theorem 6) and the rank-1 mul-
tivariate beta distribution (see Theorem 7). To do that, the Jacobian for the
transformation to the singular value decomposition of general m x n matrices
is calculated (see Theorem 5). This paper thus extends the results established
by Fisher (1915), Wishart (1928), James (1954), Khatri (1959), Olkin and Roy
(1954) and Olkin and Rubin (1964). Their results are presented clearly and
concisely in book form in Muirhead (1982): We will follow his terminology and
formulations closely.

The results in this paper are, in particular, fundamental and useful for up-
dating a Bayesian posterior when tracking a time-varying variance—covariance
matrix: that, in fact, motivated this investigation [see Uhlig (1992)]. Imagine
the following time series model, which is a simple multivariate state space
alternative to the popular ARCH models. [For an overview of the extensive
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ARCH literature, see Bollerslev, Chou and Kroner (1992). For a univariate
state space specification, see Shephard (1994).] There is an unobservable pre-
cision matrix P;, evolving over time according to

1
(@}) P, = l%u(Pt—l)thu(Pt—l)’

where U(P;_,) is the upper-triangular Cholesky factor, that is, that upper-
triangular matrix T with positive diagonal elements which satisfies P,_; =
T'T. Suppose that the @; are drawn i.i.d. from a multivariate beta distribu-
tion B,(p/2,1/2). Suppose further, a researcher starts with the prior that
P,_; is Wishart distributed, P;_; ~ Wn(A~1,AS;}}), where X = 1/(p + 1), so
that E[P;,_;]1-! = S,_;. If the usual conjugacy between Wishart and multivari-
ate beta distributions holds, then the prior for P, is a Wishart Wy (p,S;},/p).
Suppose now that the researcher observes a single draw Y; from a multivariate
normal distribution with that precision matrix, Y; ~ (0, P; 1). The posterior
for P, is then given by a Wishart Wy (A\=1,1S; 1), where S; = AY;Y/+(1 — \)S;_;
so that E[P;]-! = S, and the game can begin anew. To find the parameter
p governing the degree of time variation, the explicit likelihood function is
needed. The problem with these arguments is that the singular multivariate
‘beta distributions B,,(p/2,1/2) have yet to be defined and the “usual conju-
gacy” between Wishart and this multivariate beta distribution has yet to be
established. To do that, singular Wishart distributions have to be analyzed as
well since they are fundamental for the study of singular multivariate beta
distributions. Furthermore, in order to state the likelihood function explicitly,
the density function for a B,,(p/2,1/2)-distributed random variable @ has yet
to be found, since I, —  is of rank 1 and thus is singular almost surely. Solv-
ing these problems is the purpose of this paper. In the course of doing so, some
generally useful theorems for the analysis of multivariate random variables
are established.

2. Results. Unless stated otherwise, all our notation, definitions and ter-
minology follow Muirhead (1982). First, we generalize the definition of mul-
tivariate beta distribution B,(n/2,p/2) to integers 0 < n < m. Let m and
n be positive integers, p > m — 1 and X be of size m x m and positive defi-
nite. Recall Definition 3.1.3 in Muirhead (1982), that a random variable A is
Win(n, Z)-distributed if A can be written as

A=¥"YY!, withY;~AN(0,%)iid.

For a positive definite matrix S, let 2/(S) denote the upper-triangular Cholesky
factor, that is, that upper-triangular matrix T with positive diagonal elements
which satisfies S = T'T.

DEFINITION 1. A random variable X is Bp,(n/2,p/2)-distributed, if it can
be written as

X=U(A+B)'AU(A +B),
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where A ~ W,,(n,I,) and B ~ Wy,(p,I,) with A represented as above for X =71
and the Y}, j =1, ...,n, independent from B. X is By,(n/2,p/2)-distributed if
A ~ Wy(p,In) and B ~ Wy,(n,I,,) instead.

This definition is molded after Theorem 3.3.1 in Muirhead (1982) and is
therefore contained as a special case in Definition 3.3.2 in Muirhead (1982),
for n > m — 1. However, for n < m — 1, this definition is new and Theorem
3.3.1 in Muirhead (1982) needs to be established for these parameters as well.
This is done in the following theorem, which is stated “backwards” from the
version in Muirhead (1982) to make it particularly suitable for the purpose of
posterior updating alluded to in the Introduction.

THEOREM 1. Let m and n be positive integers and’let p > m — 1. Let H ~
Wn(p +n,%) and @ ~ B,(p/2,n/2) be independent. Then

G=UH)'QU(H) ~ Wn(p,Z).

PROOF. The theorem follows from the following somewhat broader claim:

CLAM. Let A ~ Wn(p,In), B = T, Y;Y!, with ¥; ~ N(0,I,,) iid., and

H ~ Wn(p+n,X), where A, Y}, j =1,...,n, and H are independent. Define
C=A+B,Q = UC)AUC)™L, G = UHYQUH) and D = H — G. Then
C ~ Wn(p+n,Iy), G ~ Wn(p,X) and D = 37, Z;Z! with Z; ~ N(0,X), where
C,Gand Z;,j=1,...,n, are independent.

The proof mimics the proof of Muirhead [(1982), Theorem 3.3.1]. Define
Z; = UH)YU(C)Y'Y; and note that D = ¥7.,Z;Z}. It follows from Muirhead
[(1982), Theorem 2.1.4] that

(dA) A (dH) A (Y1) A--- A (dYy)
= (dC) A (dH) A (dY3) A--- A (dY,)
= (detH)™/%(det C)"/2(dC) A (dH) A (dZ1) A -+ A (dZ,)
= (detH)"/2(det C)*/2(dC) A (dG) A (dZ1) A+ A (dZn),

exploiting G = H — D for the last equality. Writing out the densities, it now
follows that

(2m°/2T,,(p/2)) ™" etr(-A/2)(detA)P—m-1/2
x (2m™P/2T,, ((n+p)/2)(det T)™+P)/2) ! etr(—£-1H/2)(det H)™+»—m-D/2
x (2)~™/2 etr(~B/2) (dA) A (dH) A (dY1) A - A (dY,)
. = (221, ((n +p)/2)) " etr(—C/2)(det C)mP—m-1/2
x (27°/2T,(p/2)(det T)P/2) ™! etr(~£71G/2)(det G) P~ 1/
x(2r)~™/2(det )2 etr(~D/2) (dC) A (dG) A (dZ1) A--- A (dZn),
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exploiting detA = detCdet @, H = G + D and det H = det G/ det @. Inspecting
the latter density finishes the proof. O

Let m > n > 0 be integers. For the computation of a likelihood function,
say, a density on a space of appropriate dimensionality is needed. Densities do
not exist for V.~ W,,(n,X) or X ~ Bp,(p,n/2) on the space of symmetric m x m
matrices, since V and I,, — X are singular and of rank n almost surely [see
Muirhead (1982), Theorem 3.1.4]. As shown below, however, densities do exist
on the (mn — n(n — 1)/2)-dimensional manifold of rank-n positive semidefinite
m x m matrices S with n distinct positive eigenvalues; denote that manifold
by Sy, .- A natural global coordinate system for this manifold is to use the
decomposition S = H,LH}, where L is n x n, diagonal, L = diag(l;, ...,l;) with
ly >l > --- > 0 and where H; € V, p, the (mn — n(n + 1)/2)-dimensional
Stiefel manifold of m x n matrices H; with orthonormal columns, H{H; = I,.
This parameterization is unique up to the assignment of n arbitrary signs
to the columns of H;. The task is to define the volume element (dS): with
the chosen parameterization, (dS) needs to be defined as some function of
H; and L multiplied with (H}dH;) A A}, dl;. [We follow Muirhead (1982),
page 56, in ignoring signs of the overall differential and defining only positive
integrals. For the definition of (H) dH,), see Muirhead (1982), page 63 and the
discussion following page 67.] Note that dS = dH; LH' + H; dL H; + H,L dHj.

Find an m x (m — n) matrix H,, so that H = [H;:H,] € O(m), that is, so that
H'H =1, and let h; be the i-th column of H. Let R = H' dS H and calculate
that

R —_ H’ S H —_ 12‘1 Ie;)
=Hd - [Rb 0 ] ’
where

R, =H|dH,L +dL + (H,dH, L)'

dl (- lo)hydhy - (I —1,)h,dhy
(1 — I)hy dhy dly coo (ly— 1), dhy
(1, — )W, dhy (I3 —1,)h,dhy - dl,,

[exploiting the skew symmetry of HjdH;, see Muirhead (1982), bottom of
page 64] and

Ry =H,dH, L

l1h]

n+l

dhy - LW, dh,

Lk, dh, --- Lh, dh,
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Appealing to the analogy that (dS) would be the exterior product of all distinct,
nonzero entries in R by Theorem 2.1.6 in Muirhead (1982), if S were a full-
rank symmetric matrix, we define (dS) to be the exterior product of all entries
on and below the main diagonal of R, and of all entries in R; times a factor 2—"
to correct for the fact that each matrix S is the image of 2" decompositions
H,LH] due to the arbitrary assignment of signs to the columns of H;. We
therefore get the following theorem.

THEOREM 2. Let m > n > 0 be integers. On the space S;, , of positive
semidefinite m x m matrices S of rank n with n distinct positive eigenvalues,
the volume element (dS) is

@) 2"‘Hl’"‘”H (L - L) (Hy dHy) N /n\dl,-,
i<j i=1

with S represented as S = H1LH}, Hy € Vy 1 and L = diag(ly, ...,ln), 1 > 1z >
e > 0.

We aim at expressing the densities with respect to this volume element
subject to the restriction that the density is the same whenever two pairs
(Hy,L) and H I,Z) differ only in the assignment of signs to the columns of H,
and H;. The following useful theorem also justifies defining (dS) in terms of
the nonzero and distinct entries of R.

THEOREM 3. Let X,Y € S;, , be related by X = QYQ', where @ € O(m).
Then (dX) = (dY), where (dX) and (dY) are the volume elements on Sy n defined
above.

PROOF. Decompose Y = H,LH}, H, € V, » and L = diag(ly, ...,l:),l; >
la > --- > 0. Note that G, = QH; € Vy m, so that X = G1LG] is the decompo-
sition for X. Since (H; dH,) is invariant to multiplication on the left with an
orthonormal m x m matrix, that is, since (G} dG,) = (H; dH;) [see Muirhead
(1982), bottom of page 69], the result follows. O

The following theorem is a version of Muirhead’s Theorem 2.1.6 [Muirhead
(1982)] for the case n = 1. The general rank-n case is an open problem.

THEOREM 4. Let X,Y € S, | be related by X = BYB', where Bis m x m
and of full rank. Form the representatzons X = G1KGy, Y = H,LH}, where
G,H, € Vy,, and K,L € R. Then

(dX) = |G} BHy|™ det(B)(dY).

Since Xv = (KG1v)G, = (LH{B'v)BH,, for any v € R™, and since ||Gy| = 1
(where we use || - || to denote the norm of the m x 1 vector constituting G,),
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we have G; = BH,/||BH, || and K = | BH,||°L, and thus
® \BH: =|| BH, ||= (K/L)"*=1/ | BTG, |,

enabling explicit calculation of the expression in the theorem. We conjecture
that the formula for the general rank-n case is given by

(dX) = det(G,BH; )™ det(B)"(dY).

PROOF OF THEOREM 4. We first show this for the case that B = D is
diagonal. Find m x (m — 1) matrices Gy and Hj, so that G = [G;:G3] and
H = [H,: H,] satisfy G'G = I, and H'H = I,,, that is, G,H € O(m). Let g; and
h; denote the ith columns of G and H. Let E = G'DH and note that

G'dXG=EH'dYHE,
where, for example,

s oo [ dL (HydhyLY
HdYH '[HgdhlL o |

Thus, the first column of E H'dY H E’ has
m
€111 dL + Z(eneij + eilelj)h} dhl L
Jj=2

as its ith entry. Taking the exterior product over all these entries, ignoring
the overall sign for now and using the abbreviation fi; = ene;, fij = ene; +
ej1eyj yields

(@x)=\ (fildL +_fiik) dh1L>

i=1 Jj=2
= ( Z Sgn(U)Hﬁaa)> L™ YdL A /\h}dhl
oell(m) i=1 j=2
- (det F) (@),

using the skew symmetry of the operator A, where II(m) is the set of all per-
mutations of (1, ...,m) [c¢f. Horn and Johnson (1985), page 8] and where F is
the matrix [f; 12",

The first column of F is the first column of E, multiplied with e;; = G{DH; #
0. The jth column of F is the sum of the jth column of E multiplied with e;; and
* the first column of F multiplied with eyj/e;;. By the rules about calculating
with determinants, it follows that

det F = det(epE) =, det E =7, det D.
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Since (dX) has a positive sign, the absolute value of e;; needs to be taken,
demonstrating the claim for B = D diagonal.

For general B, write B as B = P'DQ, where P,Q € O(m) and D is diagonal
[see Theorem A9.10 in Muirhead (1982), page 593]. Let G1 = PGy, H, = @H,,
X = PXP' and Y = QYQ'. With the aid of the previous theorem and the proof
above for diagonal matrices D, it follows that

(dX) = (dX) = (GDHy)™ (det D)(dY) = (G\BH;)" (det B)(dY),
as claimed. O

The following theorem is an extremely useful cousin of Muirhead’s Theorem
2.1.13 [Muirhead (1982), page 63]. The proof is not a straightforward gener-
alization of the proof of that theorem, but it proceeds along similar lines. Let
Z be an m x n (m > n) matrix of rank n and with distinct eigenvalues of
Z'Z. Using the nonsingular part of the singular value decomposition, write
Z = H,\DP', where H, € Vn,m, D is diagonal with Dyy > Dgg > --- > D, > 0
and P € O(n): this decomposition is unique up to the arbitrary assignment of
signs to columns of P as can be seen upon examination of, for example, The-
orem 7.3.5 and its proof in Horn and Johnson [(1985), page 414, with A = Z’
there].

THEOREM 5. Let Z be an m x n matrix and Z = H,DP' the nonsingular
part of the singular value decomposition, where Hy € Vy, n,, D is diagonal with
Dy >Doy > -+ > Dy >0and P e On). Then

4  (dZ)=27"(det D)~ [] (D% - D})(H,dH,) A (dD) A (P’ dP),
i<y
where

(5) (dD) = \dD;;.

i=1

PROOF. Find an m x (m — n) matrix Hj so that H = [H,:H,] € O(m). Since
dZ =dH,DP' +H,dDP + H;DdP,
it follows that

A / A
© i azp - [HidH1D+dD + (P dPD)].

H,dH, D

Since (dZ) = (H' dZ P) by Theorem 2.1.4 in Muirhead (1982), calculating the
exterior product of the differential forms on the right-hand side of equation
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(6) delivers the solution. The exterior product of all elements in the bottom
part HydH, D is

% (HydH,D) = (det D) \ A\ hidh,

i=1j=n+1
using Theorem 2.1.1 in Muirhead (1982). The top part
T=Hi;dH,D +dD + (P’dPD)'
is an n x n matrix of differential forms with entries
dD;, ifi =j,
TU = h: dh;D;; — Diipg dpj, ifi >j,
h; dh; D.ii —_ Dup; dpi, ifi <j,

exploiting the skew symmetry of H; dH; and P'dP. To calculate the exterior
product of these elements, write that product conveniently as

(8) (T) = ATs AT ATy
i=1 i<j

[where the overall sign of (T) is, as usual, ignored for now]. Examine the entry
Tj A T}; in equation (8). Written explicitly, we have

Tij A Tji = (hj dh; D.ii - D,-ip} dpi) A (h_; dh;D; — D_i,‘p; dpi)
- —DZp|dp; A b dh; — D2h!dh; A p} dp;
+DiiDj,'h],- dh; A h; dh; + DiiDjip_;‘ dp; A p]'- dp;.
Note that, for example,
h], dh; A h; dh; = szjHU(dei ANdHy; + dH; A de,')

k<l
=0

due to the skew symmetry of the operator A. Likewise, —p;dp; A hidh; =
h;dh; A p;dp;, so that
Tij A Tﬁ = (D,2, - Dfl)h; dh; A p} dp;.

Combining equations (7) and (8), the overall exterior product of the elements
of the right-hand side of equation (6) after appropriate reordering (and again
ignoring the overall sign) is thus

(HydH, D) A (T)
n m n n n n n

= (det D)™ A A hidh; [](D% -D}) AdDir A A\ bidhia \ A pjdp:
i=1j=n+1 i<y i=1 i=1j=i+1 i=1j=i+1

= (det D)™~ [ [ (D% — D) (HydH,) A (dD) A (P'dP).
i<y
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Allowing finally for arbitrary assignment of signs to the columns of P makes
Z the image of 2" decompositions Z = H,DP’, so that the density has to be
divided by that number in order for the integration over the entire space
P € O(n) to yield the correct result. O

THEOREM 6. Let m > n > 0 be integers. The density for a Wy(n, £)-distribu-
tion on the space S;, , of rank-n positive semidefinite m x m matrices with
distinct positive eigenvalues with respect to the volume element (dS) defined
above is given by

7r(—mn-'-n’)/2

-1 (n—m-1)
2mn /2T, (n/2) (det )n/2 etr (~2715/2) (det L)/,

(C)]

where L = diag(ly, ...,1,), S = H,LH].

PROOF. Let Y = [Y; ... ¥,], where Y¥; ~ N(0,5) iid, Y is m x n. Let
8 =YY'. It is easy to check that S has n distinct positive eigenvalues almost

surely, and we will assume so from here onward. The density for Y is given
by

(10) (2m)~mn/2(det £)~"2 etr (—-£718/2) (dY).

Decomposing Y = H1DP’ as in the previous theorem results in S = H;LH}, the
desired parameterization, where L = D? and [; = L;;. Note that

n n n
Adl =2"[[ D \dDy
i=1 i=1 i=1

and that det D = (det L)'/2. Replacing (dY) by the right-hand side of (4) and
integrating over (P’ dP) with Corollary 2.1.16 in Muirhead (1982), one there-
fore obtains the density stated in the theorem. O

The following theorem is a version of Muirhead’s Theorem 3.3.1 [Muirhead
(1982)] for the case n = 1. The general rank-n case is an open problem. [The
referee suggested the following general approach. Show that U in Theorem 7
has the same distribution as (A + B)"/2A(A + B)"/2 and that its moment gen-
erating function can be written in terms of a confluent hypergeometric func-
tion of matrix argument; see Muirhead (1982). The matrix argument will be a
matrix of the same (and thus reduced) rank as A. Reduction formulas in Herz
(1955) can then be used to rewrite the moment generating function of U as a
moment generating function of lower dimensionality.]

THEOREM 7. Let m > 1 be an integer and let p > m — 1. Let A and B be
indépendent, where A is Wy(1,%) and B is Wy(p,X). Put A +B = T'T, where
T is an upper-triangular m x m matrix with positive diagonal elements. Let U
be the m x m symmetric matrix defined by A = T'UT. Then A + B and U are
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independent; A + B is Wy,(p + 1, %) and the density function of U on the space
S,, 1 with respect to the volume element (dU) on this space defined above is

- Tm((p+1)/2) ,_ m—
(—m+1)/2 m/2 _ (p—m-1)/2
(11) m SO (p/z)L det(I,, — U) ,

where U =H1LH§_, H, € Vl,m, LeR

We conjecture that the density in the general rank-n case is given by

_ T ((p+n)/2) m—
( mn+n?)/2 det(L)»—™-VD/2 det(I., — U)P~m-D/2,
T(n/2)Tm(p/2) (&) (I - 0)

PROOF OF THEOREM 7. The proof is almost a verbatim copy of the proof of
Muirhead’s Theorem 3.3.1 [Muirhead (1982)] and is stated here for reasons of
completeness. Find the representation A = G1KG), where G; € V1 »,K € R.
The joint density of A and B is

(—m+1)/29—m(p+1)/2 —(p+1)/2
7r 2 (detx)—P tr(_z_l(A+B)>
F(1/2)Fm(p/2) 2
xK~™/%(det B)P~"~V/2(dA) A (dB).

Let C = A + B and note that (dA) A (dB) = (dA) A (dC). Set C = T'T, where T
is upper triangular with positive diagonal elements, and A = T'UT' Find the
representation U = H;LH}, Hy € V1 ,, L € R. Theorem 4 implies that

(dA) A (dC) = (K/L)™/?(det T)(dU) A (dC),

remembering that T is a function of C alone. Substituting into the density
above and collecting terms yields the desired conclusion. O

Analogously to Definition 3.3.2 in Muirhead (1982), we have the following.

DEFINITION 2. A matrix U with density function (11) is said to have the
multivariate beta distribution B,,(1/2,p/2) with parameters 1/2 and p/2.

A matrix V with density function (11) for U = I,, — V is said to have the
multivariate beta distribution B,,(p/2, 1/2) with parameters p/2 and 1/2 (note
that one then needs to decompose I, — V = H{LH},H; € Vi ,L € R).

It is clear from Theorem 7 that, for n = 1, Definition 1 is a special case of
Definition 2. Furthermore, by reading Theorem 7 “backwards” and switching
the roles of A and B, one obtains another proof for Theorem 1 for the case
n=1.
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