The Annals of Statistics
1994, Vol. 22, No. 1, 106-117

A TOPOLOGICAL CRITERION FOR HYPOTHESIS TESTING

BY AMIR DEMBO! AND YUVAL PERES?
Stanford University

A simple topological criterion is given for the existence of a sequence of
tests for composite hypothesis testing problems, such that almost surely
only finitely many errors are made.

1. Introduction. Suppose you are given, sequentially, independent ob-
servations X;,X5,X3, ... from an unknown distribution u, with the goal of
deciding between two mutually exclusive hypotheses: 4 € Hy or p € H;.
For each n, after viewing Xj, ...,X,, you guess 0 or 1. When can you en-
sure, with probability 1, that you will guess correctly from some point on?
For example, limiting ourselves to distributions supported on a finite in-
terval, we shall see this is possible if Hy is {u: u has a rational mean} and
H, is {u: 1 has mean in Q + v/2}, but it is impossible if H; is enlarged to
{u: p has an irrational mean}.

Our interest in this problem was initiated by the results in [7] which, fol-
lowing [2], obtain certain sufficient conditions by explicit constructions. The
main results of this work, which are necessary and sufficient conditions under
which deciding between Hy and H, is possible, are stated in the next section.
We also discuss there the relation with the classical works of [6] and [8]. For
other related works, see [10] and [11]. Two lemmas concerning a deterministic
metric space setting are established in Section 3. Section 4 is devoted to the
proofs of our main results while extensions are discussed in Section 5.

2. Statement of results.

DEFINITION. Let Hy and H; be two ensembles of probability measures on
R?. We say that Hy and H, are discernible if there exists a sequence of Borel
functions f,: (R%)® — {0,1} such that for j = 0,1 and each p € Hj, if {X3}2>1
are independent R%-valued random variables with distribution p, then

Jim fu(X1,Xz, ...,X,) =j almost surely (a.s.).

Our first result characterizes exactly the pairs (Hy, H;) which are discernible
when H; are determined by the location of the mean of the distribution.
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THEOREM 1. Let Ag and A, be subsets of R%. Denote by H(A;,p) the set of
all distributions with mean in A; and finite p-th moment.

(i) For p > 1 the ensembles H(A,,p) and H(A,,p) are discernible iff Ag and
A; are contained in disjoint F,-sets (an F,-set is any countable union of
closed sets).

(ii) The ensembles H(Ay,1) and H(A,,1) are discernible iff Ag and A; are
contained in disjoint open sets.

REMARK 1. We find it interesting that moment assumptions are reflected
in the separation conditions for discernibility.

In fact, any integrability condition stronger than first moment suffices for
the equivalence in part (i) to hold. More precisely, let A(¢) be any Borel positive
function satisfying :

lim & = 00,

t—oo ¢
and denote by H(Aj;)) the set of distributions ; with mean in A; for which
ff°°° Mx|) du(x) < co. Then H(Ag;\) and H(Ay;)\) are discernible iff Ag and A,
are separated by F,-sets. See the remark following the proof of Theorem 1 in
Section 4.

REMARK 2. In a different direction, the equivalence in part (i) of the the-
orem also holds for the ensembles H¢(A;) of compactly supported measures
with mean in A;, and even for more restricted classes of distributions (see the
proof).

EXAMPLES.

(i) IfA, is a closed set and A, its complement in R?, then H(Ay,p) and H(A;,p)
are discernible iff p > 1.
(ii) The same holds for any pair A, A; of disjoint countable sets such as Ao = Q
and A; = Q+ V2.
(iii) For Ay = Q and A; = R\Q, the ensembles H(A;,p) are not discernible for
any p, since by Baire’s theorem (see [13], Theorem 5.6) the irrationals are
not an F,-set.

COROLLARY 1 (cf. [7]). Let Ay C R? be an F,-set. Then there exists a subset
A; C R? — Aq such that the complement of Ag UA; has Lebesgue measure zero,
and the hypotheses H(A,p) and H(A1,p), determined as in Theorem 1, are
discernible for any p > 1.

PrROOF. In fact, Lebesgue measure can be replaced here by any Radon
méasure v. Simply find an F,-set A; C R? — Ag such that v[R? — (Ao UA)] =0
(this is always possible [13], Theorem 2.18) and apply Theorem 1. O
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REMARK. This corollary was established in [2] for Ay which consists of a
countable number of points.

Focusing on the mean of a distribution is somewhat arbitrary. Replacing it
by another linear functional is straightforward. However, one may consider
families of distributions determined (nonlinearly) by other parameters (e.g.,
the cumulants). It is natural to assume that the parametrization is continuous;
thus we are led to the following statement, in which the topology on probability
measures corresponds to convergence in law.

THEOREM 2. Let Hy and H, be two disjoint families of probability measures
on R4,

(i) If Hy and H, are contained in disjoint F,-sets of measures, then they
are discernible.

(ii) The converse holds under the assumption that all measures in Hy U Hy
are absolutely continuous with respect to Lebesgue measure and, for each
u € Hy UH,, there is some p > 1 such that the density of p is in LP(R?).

REMARK. Let F be the distribution function of a specific probability mea-
sure supported on finitely many rational points. Taking Hy and H; as the
ensembles of measures with distribution functions {F(x — ¢): ¢ € Q} and
{F(x —¢): ¢ ¢ Q}, respectively, it is clear that Hy, and H; are discernible, al-
though they cannot be separated by F,-sets. This example illustrates the need
for some auxiliary condition in part (i) of Theorem 2, although the particular
assumption made there could be weakened.

Theorem 2 extends to the discernibility of any finite or countable number of
hypotheses. To that end, {H;};c1, are discernible iff there exist Borel functions
fo: (RE" — I such that lim,_,.. f,(Xy, . ..,X,) =j whenever {X;};>; are ii.d.
random variables with distribution € H; and j € I.

COROLLARY 2. Let I be a finite or a countable set. If {H;};c1 are contained
in disjoint F,-sets of measures, then they are discernible. The converse holds
under the assumption that all measures in | );c; H; are absolutely continuous
with respect to Lebesgue measure, with each density in some LP, p > 1.

REMARK. Corollary 1 and Theorem 1 extend to a countable number of
hypotheses in a similar manner (cf. [2] and [14)).

The notion of distinguishability studied in [6] is the same as our discernibil-
ity apart from replacing the a.s. convergence with convergence in probability.
It is shown there that a sufficient condition for distinguishability is that H
and H, are contained in disjoint K S-open sets of probability measures on
"R?, and a necessary condition is that they are contained in disjoint open sets
with respect to the variational metric on probability measures. Here K S-open
refers to the topology induced by the Kolmogorov—Smirnov distance between
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distribution functions. While useful for the study of parametric ensembles (see
the study of multivariate normal distributions in [6]), these conditions yield
little information in the context of Theorem 1.

The work of [8] extends [6] in giving a necessary and sufficient condition
for the consistent estimation of real-valued parameters. When specialized to
the context of Theorem 2 this condition involves all n-fold product measures
obtained from the measures in Hy U H; and is thus difficult to verify. It is
considerably simplified once Hy U H; is a countable union of sets of measures,
each set being sequentially compact with respect to the T-topology. However,
the setup of Theorem 1 does not fall into this category.

3. Metric discernibility. In proving Theorem 1, it is natural to use the
convergence of the sample means to the expectation..In fact, some (standard)
estimate on the rate of convergence is needed. We shall find it convenient to
consider this in a more general setting.

DEFINITION. Two disjoint sets Ag and A; in a metric space ({2, p) are metri-
cally discernible if for every positive sequence ¢, — 0 there exists a sequence
of functions g,: Q@ — {0,1} such that (for j € {0,1}) if {y,} is a sequence in
- satisfying p(yn,2) < €, for some z € A; and all sufficiently large n, then
&n(yn) —j as n — oo.

REMARK. We refer to the sequence {g,} as a discerning sequence corre-
sponding to {e,}.

LEMMA 3. Two sets in a metric space are metrically discernible iff they are
contained in disjoint F,-sets. In this case the functions g, in the definition of
metric discernibility can be taken to be Borel measurable.

Before proving Lemma 3, let us emphasize the role of the (arbitrary) “rate”
sequence {e,}; the required separation of Ay and A; becomes much stronger
when this sequence is discarded.

LEMMA 4. Let Ay and A, be subsets of a metric space Q). There exist func-
tions h,: Q — {0,1} such that, for j € {0,1}, we have h,(y,) — j as n — oo,
for any sequence {y,} which converges to a point in A;, iff Ay and A, can be
separated by open sets in Q.

PROOF. If there exists a sequence {h,} with the specified property, then
Ay is in the interior of the set {y € Q: ¥72,hn(y) < oo} [or, otherwise, one can
find z,, — y € Ap with h,(z,) = 1 for infinitely many values of n, leading to
a contradiction]. Likewise, A; is in the interior of {y € Q: £2,[1 — h,(y)] <
oo}. Since these sets are disjoint, we have separated Ay and A; by open sets.
Conversely, if Ay C Gy, A; C G1, where Gy and G, are disjoint open sets, then
hn(y) = Leq, have the specified property. O
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PROOF OF LEMMA 3. (i) By assumption there are closed sets B, and C,
such that B = |J;2, B, is disjoint from C = |J;2, C» and Ao C B, A; c C. We
are given a positive sequence ¢, — 0. Fory € Q and n > 1, let

Ko(y,n) = inf{k > 1: p(y,Bs) < &}
and
Ki(y,n) = inf{k > 1: p(y,Ci) < en},

where the infimum of the empty set is +o0o. Define g,(y) = 0 if Ko(y,n) <
Ki(y,n) and g,(y) = 1 otherwise. Let {y,} be a sequence in Q satisfying
p(yn,2) < &, for n > ny. Suppose first that z € Ag. Then z € B, for some r and
thus p(z, UJ'.___1 C;) > 0. For any n which is large enough so that p(z,y») < €, and
2¢, < p(z, Uiz Cp); we have p(yn, U, C) > €n. This implies that Ko(yn,n) <
r < K1(yn, n) and therefore g,(y,) = 0. The case z € A; is similar, which proves
that {g,} is a discerning sequence of functions corresponding to {e,}. Clearly
these functions g, are Borel measurable.

(ii) Now assume the existence of discerning functions g,: @ — {0,1} for
Ay, A; C Q and some positive sequence ¢, — 0. Let B; ,, = {y: gn(y) =j} and,
for j = 0, 1, consider

Q= G ﬁ{x € @ p(x,Q\Bj,;m) > €m}.

n=1m=n

Since {x € Q: p(x,2\Bj m) > en} are closed (and disjoint for fixed m), the sets
Qo and ©, are disjoint F,-sets. The definition of metric discernibility ensures
that Ag C Qo and A; C Q,. For example, ifx € Ay and x & Qo, then p(x, By m,) <
€m, for some subsequence m; — oo, contradicting the metric discernibility. O

REMARK. The proof shows that the existence of a discerning sequence of
functions corresponding to one positive sequence ¢, — 0 suffices for metric
discernibility; this is also easy to verify directly.

4. Probabilistic discernibility: Proofs.

PROOF OF THEOREM 1. (i.1) Assume that Ay, A; C R? are separated by F,-
sets. Let ¢, = 1/log(n +1). Lemma 3 provides us with a discerning sequence of
functions g,: R? — {0, 1}, corresponding to {e,}. If X;,Xp, ... is a sequence of
independent observations from a distribution x on R? with mean z = [, x dp
and a finite p-th moment, for some 2 > p > 1, then Marcinkiewicz’ theorem
asserts that almost surely

S (% -2)

i=1

lim n~1/P
n—oo

=0,
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where | - || denotes the Euclidean norm (see [9], Section 16.4). In particular,
almost surely, for sufficiently large n,
1 n
- ZX, —2|| < ep.
n <
i=1

(If we restrict attention to distributions with finite second moment, then the
law of the iterated logarithm or weaker estimates suffice.) Thus if w € H(Aj,p),
that is, if z € A;, then almost surely

ln
8n (;;:E;;X}> '*uﬂ
i=

so we define f,(x, ...,x,) = gn((1/n)LT}x;).

(i.2) Now we assume that the ensembles H¢(A,) and H(A;) of compactly
supported distributions with mean in Ay and A;, respectively, are discernible,
and we infer that Ay and A; are separated by F,-sets; this clearly suffices.
Denote by f,: (R9* — {0,1} the functions in the definition of discernibility.
Let L4y, be Lebesgue measure on R?". Lusin’s theorem [13] provides continuous
functions ¢,: (R)* — [0, 1] such that

Lanlo € B 400) #£0)) < 2.

Consider i.i.d. random variables X, X, X3, ... which are uniformly distributed
on a unit cube centered at the origin in R?. For z € A; (where j € {0,1}), we
have

iX1+2,Xe+2,...,X,+2) =] as.asn— oo.

We may take expectations here (bounded convergence) and then use the choice
of ¢, to infer that

E¢pn(X1+2, X342, ..., X, +2) >j asn — oo.
For each n, the set

B,=({y eR:E(X1+y,.... X +y) < 1}

k=n

is closed by the continuity of ¢. Clearly Ay C |, B,. Thus B = Une1 B» and

C=UN{y R En(Xi+y, ... Xu+y) > 3}

n=1k=n

are disjoint F,-sets which separate Ay and A;.
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(ii.1) If Ap and A, are separated by open sets Gy and Gy, then the strong
law of large numbers immediately implies that H(Ay,1) and H(A;,1) are
discernible—simply take f,(x;, ...,%,) = 16,((1/n)TE 1x;).

(ii.2) The converse is less straightforward; the following construction is mo-
tivated by the construction in [3]. We are given that H(Ao, 1) and H(A,, 1) are
discernible. Let f,: R — {0, 1} be the sequence of functions which discerns
between them. Assume that Ay and A; cannot be separated by open sets in
R?. This implies that (at least) one of the sets intersects the closure of the
other; without loss of generality, assume that A, intersects A;. Thus there is
a sequence of points {y,} in A; which converges to some point z € A¢. Passing
to a subsequence if necessary, we may assume that

o ] -
Z lym+1 — ym|| < oo.

m=1

Next, we shall define inductively a sequence {u,} of probability measures
such that [x dum = ym. The sequence will converge in norm to a measure y
with mean z: independent observations from y will masquerade for a long time
as observations from u,,, which will yield the desired contradiction. First, let
11 be the point mass

1 =6(y1).

If pm is already defined and has mean y, € A,, then by the definition of
discernibility there is an integer N(m) such that

n>N(m) = / fuleny -y xn) du > 1,

where 4} is the n-fold product measure. We may, and shall, take N(m) >
N(m -1)form > 2.
Now fim41 is obtained from u,, by averaging with a small point mass:

Hm+l = (1 - am)l»"m + amé(a;;l(ymﬂ _ym) "'ym),

so that indeed [x dpms1 = Yms1.

Here we take oy, = 2~™N(m)~!. Using the total variation norm on mea-
sures, ||ttm+1 — pm|| < 20, so the sequence {u,} converges in norm to some
probability measure u. This measure has a finite first moment since

oo
J el i < Dl + 3 [5men =+ amnl] < o

m=1

Therefore its mean is

/xd,u="}i£xg° x dpm =2 € Ay.
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(All the measures u,, are bounded by a constant multiple of 4, so the leftmost
equality above follows from uniform integrability.)
We have

e — pmll €2 ap < N(m)~1227™,

k=m

Now, for every n,

" = pumll < 7 llp — pml|

and also

/fn(xl, e xn) A 2 /fn(xl, o) i — |l — ]
Taking n = N(m) yields
/fn(xh cor¥n) A2 | — | > 3 - 227

Since 1 € H (Ao, 1), our choice of {f, } forces the left-hand side in this inequality
to tend to zero as m and n = N(m) tend to co, a contradiction. O

REMARK. A stronger version of Theorem 1(i) was stated immediately after
the statement of that theorem; the proof is identical, except that instead of
Marcinkiewicz’ law of large numbers the following result, proved in 1946 by
Feller [4], is invoked.

LEMMA 5. Let {X,};2, bei.i.d. real random variables such that E[M(|X, )] <
0o, for some Borel positive function A(t) which satisfies
lim M = 00.
t—oo L
Then there exists a sequence €, | 0, depending only on the function ), such that
almost surely

1 n
~> X —EXi| <en,

i=1

for all sufficiently large n.

Strictly speaking, Feller proves this (with precise estimates on ¢,) assum-
ing that \(#)/t increases to co and that A(¢)/t* decreases for some 1 < p < 2.
However, for any function ) satisfying A(t)/¢ — oo, there exists another func-
tion X with these two properties such that \(¢) < A(¢) for all large ¢, so we can
apply Feller’s result to A.
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PROOF OF THEOREM 2. (i) The space of probability measures M;(R%) may
be equipped with a translation-invariant metric p compatible with convergence
in law. Let Xy, ...,X,, ... be independent observations from p € M;(R%). Let
L, = (1/n)X}.,6x, denote the n-th empirical measure.

For any ¢ > 0, there exist 6(¢) > 0 and continuous functions f;: R% — [—1,1],
for I =1, ...,K(e), such that, for any yu € M;(R%),

/ﬁdu—/ﬁdv <6(5)}.

Note that K(e), é(c) and the functions f; are independent of u. Therefore,

1S o) - [ fidu|> 6(e)>

i=1

K(e)
{vi p(v,n) <€} D n {1/:
l=1

K(e)
Prob (p(Ln,p) > €) < Z Prob (

I=1
< K(e)e—nﬁz(e)/2

where the right-hand inequality follows from Hoeffding’s bound [5]. Let N(m)
increase rapidly enough so that

SrG)m2) <k

Choosing ¢, = 1/m for N(m) < n < N(m + 1) we find that
[o o)
Z PrOb(p(Lm #) > En) < 00,
n=1

and by the Borel-Cantelli lemma almost surely, p(L,, u) < ¢, for all n large
enough. Finally, given hypotheses Hy, H; ¢ M(R%) which are separated by
F,-sets, we invoke Lemma 3 to obtain a discerning sequence of functions g,:
M;(R?%) — {0,1} corresponding to {¢,} above. Setting

1 .
fn (X1, -+ %n) = &n (;’L— Zé‘”‘>

i=1

shows that H, and H; are discernible.

(ii) We are given hypotheses Hy, H; ¢ M(R%) and functions f,: R% — {0, 1}
which exhibit their discernibility.

Step 1. Choose continuous functions ¢,: R% — [0, 1] such that

Cdn{v € R"; ¢n(v) #fn(v)} <n7™"
where L, is Lebesgue measure. We claim that, for any u € Hy U H,,

lim - 'fn (xl, e ,x,,) el ¢n (xl, e ,x,,)[ dp,"’ =0.

n—oo
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Indeed, letting ¢ denote the density du/dLg, there is, by assumption, some
p > 1 for which ¢ € LP(R?). Defining q by 1/p+1/q = 1, we have by Holder’s in-
equality, .

/ 1o = Gul Y D)W () -+ () Lo

1/q 1/p
< [ [it-sr dcdn] [ [y ver dcdn]
<na||gln =0 as n— oo,

establishing the claim.

Step 2. By the definition of convergence in law, it is easily shown that, for
any finite &, the mapping taking u € M;(R%) to u* € M;(R%) is continuous.
Therefore the sets {1 € M1(R?): [ drdi* < 1} are closed for all k (recall that
¢p, are continuous and bounded functions). Thus,

B:Gﬁ{peMl(R‘i): Looat <3}

n=1k=n
and

c=UN{nem®): [ otz

n=1k=n

are disjoint F,-sets in M;(R%).
Step 3. It only remains to verify that Hy C B and H; C C. Let u € Hy and
let X;,X5,X3, ... be i.i.d. observations from u. By discernibility,

fuX1, Xz, ..., X,) = 0 as.asn— oo.

Taking expectations using the bounded convergence theorem and utilizing
Step 1, we conclude that

» On (X1, ..-,%p) du” — 0 asn — oo.

This shows that u € B; as H; C C is established similarly, the proof is completé.
m]

PROOF OF COROLLARY 2. (i) Assume that {H;};c; are contained in disjoint
F,-sets. Then so are H(l’”) = U< Hi and 0’") = Ujsm Hi, for any m € L.
By Theorem 2 the sets Hg") and H(l'") are discernible (for any m € I). Let

h{™: R — {0,1} be the “discerning” functions corresponding to Hy™ and
(H(l'") and construct f,: R¥" — I as follows:

fu(x) =m iff Ai™(x)=1and AP (x) =0, for all i <m,
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where f,(x) is arbitrary if A9(x) = 0 for all i € I.

If 4 € Hy, then p € {;,, HY} N H™. Thus, if X1,X5,Xs, ... are iid. with
law u, then almost surely for all n large enough, 2™ (X, ...,X,) = 1 while
A9Xy, ..., X,) =0,i =1,2,...,m — 1. Since this holds for all m € I the
collection {H;},; is discernible.

(ii) Assume that {H;};; are discernible. Then definitely so are Hg") and
H™, for any m € I (simply construct h™ = 1¢ <m). By Theorem 2 the sets
H{™ and H™ are separated by disjoint F,-sets, say, H™ C B,, and H™ c
Cp.. Now, {ﬂi=i'lB,-} N Cp, for m € I, are disjoint F,-sets which separate
{Hm}per O

5. Extensions. So far we have considered only i.j.d. observations. How-
ever, the definition of discernibility extends naturally to two families of stochas-
tic processes and the same general principle applies, as long as a universal
rate of convergence ¢, can be established. For example, the following proposi-
tion is the analogue of Theorem 2 for finite-state Markov chains.

PROPOSITION 6. Let M C R? be the set of all nonnegative, irreducible
stochastic d x d matrices. With each P € M associate the Markov chains
{Xn} over {1, ...,d} whose transition matrix is P, where the initial state X, €
{1, ...,d} is determined according to some arbitrary law. Then the hypotheses
Hy={P €Ay Cc M} and H, = {P € A; C M} are discernible iff Ay and A; are
contained in disjoint F,-subsets of M.

PROOF. (i) Suppose Ap C B and A; C C, where B and C are disjoint F,,
subsets of M. For any P € M, there is a unique stationary distribution =
which is strictly positive. The mapping {P;} — {mP;} is then an invertible
closed mapping (i.e., the image of a closed subset of M is closed). By the law
of the iterated logarithm for Markov chains (see [1], Sections 14-16), almost
surely for any 0 < a < % and sufficiently large n,

1 n—-1

-

sup |(— Z 1x;=i, PR 7!'in <n ".
ij,% |* g

Thus, the discernibility of H; follows as in the proof of Theorem 1.
(i) If Hy and H; are discernible, then there exists f,: R* — {0, 1} such that
Ao C Un2i Meen B and A; € U2 N2, Cr, where

B, =({P e M: Ep[fi(Xy, ..., Xa)|Xo =xo) < 1},
0 }'

C, =ﬂ{P€ M: Ep[ﬁ,(Xl, ...,Xk)|X0 =x0] > %

Xo

Since Eplfy(Xy, ..., Xp)Xo = %ol = Tix: fitey, . 1p)=1} 1155 Prz,,, are continuous
functions of {P;;}, indeed B; and C}, are (disjoint) closed sets, that is, Ay and
A; are contained in disjoint F,-subsets of M. O



TOPOLOGY OF HYPOTHESIS TESTING 117

Similar ideas apply for Gaussian processes when the empirical covariances
converge almost surely to the underlying covariance with a uniform rate.

Returning to the i.i.d. setup, note that in Theorem 2(ii) Lebesgue measure
may be replaced by any reference measure. In this formulation the theorem
holds with R? replaced by any Polish space &, since M;(€) is still a metric
space with respect to convergence in law and Lusin’s theorem is applicable
(see [12]).

QUESTION. In Theorem 2(ii), can one remove the assumption that the den-
sities of measures pu € Hy U H; are in LP, for some p > 1?
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