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A STUDY OF LEAST SQUARES AND MAXIMUM
LIKELIHOOD FOR IMAGE RECONSTRUCTION
IN POSITRON EMISSION TOMOGRAPHY'
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Positron emission tomography (PET) is a radiologic tool offering a
unique capability for measuring tissue metabolism in vivo. A number of
biological and physical factors limit the resolution of PET so often the
statistical aspects of image reconstruction have an appreciable effect on
the quality of information obtained from a study. To a first approximation,
reconstruction involves the solution of a linear inverse problem with a
line-integral Radon-type transform. Standard filtered back-projection re-
construction is based on the method of least squares. Although computa-
tionally efficient, the method does not enforce positivity constraints lead-
ing to undesirable negative artifacts in the results. Maximum likelihood
based approaches to reconstruction do not suffer from this problem, but
their computational complexity has limited the ability to determine quan-
titatively the improvements in image quality. In this paper, asymptotic
approximations and numerical simulations are used to examine the least
squares and maximum likelihood methods in some detail. The studies are
carried out for idealized representations of conventional and time-of-flight
tomographs. The asymptotic analysis indicates that for a range of Sobolev
norms the rates of estimation of least squares and maximum likelihood
reconstructions are of the same order. This is borne out by numerical
studies. However, in these studies maximum likelihood is found to be
more efficient than least squares: on a conventional distance—angle tomo-
graph, the root mean square error is on the order of 10-20% smaller for
maximum likelihood reconstructions. The corresponding reduction in the
root mean square error on a time-of-flight tomograph is in the 5% range.
Similar results are found using more complex region of interest based
measures of reconstruction accuracy. In addition it is found that much of
the effect of maximum likelihood can apparently be realized by postpro-
cessing least squares solutions in an ad hoc manner to reduce negativity
artifacts. Since the postprocessing scheme is computationally fast, this
suggests that in PET it may be possible to realize the benefits of maxi-
mum likelihood without the substantial computational overhead of the
EM algorithm.

1. Introduction. Positron emission tomography uses the decay charac-
teristics of a radioactive isotopes such as F-18 fluoro-deoxyglucose or O-15
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water [32, 39] to image the biologic function of tissue in vivo. Relative to more
conventional radiologic techniques such as X-ray computed tomography [33]
and magnetic resonance imaging [24], the spatial resolution of positron
emission tomography (PET) is limited by dose constraints of the injected
radioisotope. However, because the information provided by PET has the
potential to quantify the metabolic state of tissue [32, 39, 58], there has been
substantial scientific interest in developing refined approaches to data analy-
sis functions associated with the technology [36, 42]. Motivated by this, the
statistical aspects of the reconstruction problem have attracted considerable
practical and theoretical interest. (A referee pointed out that other aspects
such as variance estimation should be receiving more statistical attention [9,
22].) Mathematically, the reconstruction problem is formulated as the inver-
sion of a linear integral operator based on Poisson-distributed data [5, 40, 29,
54, 59]: the observable data is regarded as a realization of an inhomogeneous
Poisson process whose intensity is related to the target source distribution of
interest by a linear integral equation. The reconstruction problem is to
estimate the source distribution given a realization of the Poisson process.
The conventional approach to reconstruction in PET is an algorithm known
as filtered back-projection (FBP). This can be viewed as a discrete Fourier
approximation to a least squares reconstruction. Maximum likelihood recon-
struction was initially suggested by Rockmore and Mackovski [44]; it became
feasible when Shepp and Vardi [45] and Vardi, Shepp and Kaufmann [54]
showed how the expectation—maximization (EM) algorithm could be used for
its computation. Building on this, a rich collection of refinements of the
approach have been developed [16, 17, 19, 30, 40, 46, 48]. Unfortunately,
the computational burden of these methods has limited the ability to quantify
the practical gains in reconstruction accuracy [16, 18, 40]. A simple maximum
likelihood reconstruction currently requires at least two orders of magnitude
more computing time than FBP. As a result maximum likelihood reconstruc-
tions are only rarely used in an operational setting [18]. Comparisons be-
tween maximum likelihood and least squares continue to be of some theoreti-
cal interest.

In this paper, the least squares and maximum likelihood approaches to
PET image reconstruction are studied using asymptotic approximation and
numerical simulation tools. The analyses are carried out for idealized repre-
sentations of conventional and time-of-flight tomographs which have been
previously employed in the statistical literature [5, 29, 59]. The measurement
models and reconstruction methods are described in Section 2. Section 3
develops upper bounds on rates of convergence in Sobolev norms for regular-
ized versions of least squares and maximum likelihood reconstructions. These
calculations indicate that for a fixed target function the rates of convergence
of the least squares and maximum likelihood reconstruction methods are the
same. This is consistent with min-max error computations of Bickel and
Ritov [5], Johnstone and Silverman [29] and Zhang [59]. The analysis of the
maximum likelihood case is complicated by the nonlinear nature of the
estimator. The results complement the recent work of Eggermont and
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LaRiccia [14]. The asymptotic analysis developed in this paper also applies to
more general versions of maximum likelihood reconstruction, recently pro-
posed by Vardi and Lee [53] for the solution of linear inverse problems with
positivity constraints.

Johnstone and Silverman [29] pointed out the need to demonstrate the
relevance of asymptotic analysis, via min—max rates of estimation [5, 29, 59]
or even heuristic arguments based on the Cramér—Rao inequality [54], in
practice. Motivated by this, numerical studies are carried out to examine the
error characteristics of the reconstruction methods in a more practical setting
(see Section 4). The results indicate good agreement with the qualitative
dose-response (rate of estimation) relationship suggested by the asymptotics.
More detailed comparisons between the reconstruction methods are recorded.
Over a range of simulated injected doses, maximum likelihood is found to be
more efficient than least squares: On a conventional distance—angle tomo-
graph, the root mean square error is typically 10-20% smaller for the
maximum likelihood approach. The corresponding reduction in the mean
square error on a time-of-flight tomograph is much smaller: around 5%.
Similar results are found using more complex region of interest based mea-
sures of reconstruction accuracy. The numerical studies also indicate that
much of the effect of maximum likelihood can apparently be realized by
postprocessing the least squares solution in a rather heuristic manner to
reduce negativity artifacts. The computational cost of this postprocessing is
roughly equivalent to two or three applications of filtered back-projection.
Techniques of this type are of considerable practical interest because cur-
rently the computational demands of maximum likelihood reconstructions
are too great for routine operational use.

2. Tomograph model and reconstruction methods.

2.1. Measurement model. In a PET study a subject is placed in the
aperture of the tomograph and injected with a quantity of a positron emitting
radioisotope. When the isotope decays the emitted positron is annihilated by
a nearby electron resulting in the creation of a pair of 512-keV photons
radiating along a straight line from the annihilation site in opposite direc-
tions from each other. The orientation of the line of flight of the photons is
uniformly distributed in space. Multiple banks of integrated detectors ar-
ranged in circular rings describe cross-sectional planes through the tissue
section. By appropriate collimation, measurements are made on those emis-
sions for which the line of flight of the photon pair lies in one of these
cross-sectional planes. Figure 1 shows a schematic. Conventional tomographs
measure the line of flight of the photon pair. This information is encoded in a
distance (d) and angle (a) measurement. More elaborate time-of-flight tomo-
graphs, such as the SP-3000 UWPET [31], use the difference between the
time of detection of the individual photons in the pair to measure the location
of the annihilation source along the line of flight. This is referred to as a time
(t) measurement (see Figure 1). The system has several sources of noise
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Fic. 1. Illustration of PET measurements for conventional and time-of-flight tomography: time
(t), distance (d) and angle (a) measurements for a positron emission at the point (x, y).

which lead to statistical errors in the time, distance and angle measurements.
Currently, these errors are modeled as independent Gaussians. The most
significant errors occur in the time and distance measurements. The resolu-
tion of the tomograph is determined by the standard deviation (o) of the
distance measurement. Ultimately this parameter is used to set the size of
the picture elements (pixels) in image reconstruction software [26]. The
standard deviation of the time-of-flight measurements (o,) is substantial,
typically 15-20 times larger than o,. For example, the UWPET is a time-of-
flight tomograph with o, = 0.19 cm and o, = 3.82 cm.

Let Z denote the two- or three-dimensional (with time-of-flight) observa-
tion domain. The information gathered on a collection of n detected emissions
{z;, i=1,2,...,n} can be regarded as a random sample from a probability
density ¢ with g: Z — R. The relationship between g and the source
distribution of radioisotope (denoted by 6,) is described by a system operator
R with g = R#,. Since the distribution of isotope changes over time, due to
metabolism, 6, actually represents a time-averaged source distribution corre-
sponding to the window of time during which the tomograph measurements
are made [32]. In a conventional tomograph, the model in Figure 1 implies
the relation

g(d,a) = Rawyko[d],

where w,*6, is the convolution of the source distribution with a spherically
symmetric Gaussian with componentwise standard deviation o,; R, is the

parallel beam line-integral Radon transform at angle a [33, 50]. With time-
of-flight data,

g(t,d,a) = RTw,x0[d,¢],
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where the R” convolves the function w, %6, in the ¢-direction (see Figure 1)

with a one-dimensional Gaussian whose standard deviationis o = /0> — 0.

Note that, as o, » ©, RTw,*60[d, ¢t] - R,w,*0[d] for all ¢.

Several additional factors must be accounted for in practice: the most
important are object attenuation; nonuniformities in detector efficiencies; and
random coincidences [26, 29, 40]. Object attenuation and nonuniformities in
detector efficiencies modify the probability that an event associated with a
particular line of flight will be recorded. The system operator is better
approximated by a scaled version of the operator R introduced in the preced-
ing paragraph. Thus the system operator is K = CR, where C is a diagonal
operator whose action is to multiply a function by a fixed function c(z) for
z € Z. In PET, tissue attenuation is routinely measured by a separate
transmission scan obtained before emission data is acquired [26]. The random
coincidence effect arises due to inaccuracies in detection: a recorded event is
defined as a pair of photon detections occurring within a small time interval
of one another. The time interval is known as the coincidence time window.
Depending on the width of this coincidence window, however, it is possible for
two unrelated photons to be detected as a false event. Such events are known
as random coincidences. If the size of the coincidence window is made too
small, the sensitivity of the tomograph is compromised. In practice, random
coincidences account for between 10 and 20% of detected events; thus it is
important to account for the effect [21, 40]. With random coincidences, a
reasonable model for the probability distribution of recorded events is

(1) g=Kb, +g*,

where K= CR and g* is proportional to the probability distribution of
random coincidences. Reliable estimates of C and g* are available to the
reconstruction process, so the only unknown is the probability distribution of
the source distribution 6,. Additional adjustments for the detection of scat-
tered events are also of interest [2, 3]. This is a complex problem. Typically,
detector collimation and energy acceptance thresholds are such that scatter
can be regarded as a second-order effect, relative to attenuation, detector
nonuniformity and random coincidences [54].

2.2. Reconstruction methods. Reconstruction is carried out in a dis-
cretized framework [26, 40, 46, 50, 54]. Given the resolution limits of the
tomograph, the reconstruction goal is focused on the recovery of the source
distribution up to convolution with a Gaussian kernel representing the
accuracy of the detectors (i.e., the target function is 6, = w,*6,). A similar
type of reduction is standard in computerized tomography [33, 47]. Without
this reduction the reconstruction problem would be hopelessly difficult from
an asymptotic statistical point of view [8]. Let there be I discretization
elements in the imaging domain and < discretization elements in the obser-
vation domain. In this discretized setting, the data consist of a vector of
binned counts y;, for j=1,2,...,J, which are modeled as independent
Poisson variates with rate parameters given by w;, for j = 1,2,...,J. The
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source distribution is a vector A = (A;; i = 1,2,..., I). Formally, A; and M's
are the integrals of 6, and g over the appropriate discretization elements in
the imaging or observational domains, multiplied by a scale factor associated
with the dose of radioisotope injected into the tissue; A and w are connected
by a linear equation,

w=Krx+pu,

where K is a J X I matrix representing the discretized linear integral
operator K in (1) and u” are the rates of random coincidences.

Following Vardi, Shepp and Kaufman [54] and Geman, Manbeck and
McClure [16], it is convenient to present reconstruction methods in their raw
form first and subsequently discuss techniques used to impose spatial
smoothing constraints by regularization or by low-pass filtering.

Maximum likelihood and the EM algorithm. The raw maximum likeli-
hood (ML) solution maximizes the likelihood or log-likelihood of the data
under the assumed Poisson model. Up to a constant, the negative log-likeli-
hood is given by

J
Z(yI0) = X {y;log(Kjr + w)) — KA},
j=1

where KA is the dot product between the jth row of K and A. Vardi, Shepp
and Kaufman [54] showed that the expectation-maximization (EM) algo-
rithm could be used to compute the ML solution. The extension to a model
with random coincidences is developed in Politte and Snyder [40]. The EM
iteration involves two steps corresponding to the calculation of a conditional
expectation of the log-likelihood and its subsequent maximization. When
these two steps are combined the iteration (A%'9 — A"¢%) is

yjkji/k-i

/\old + /*(‘; 4

Anew — )\Qld . Z
' ! Z"skjs s

J
where k;; is the (j,i)'-th element of the matrix K and k.; = ¥;k;. This
iteration is performed to convergence and the raw ML estimate A™ is set to
the final value of A™¥. Vardi and Lee [53] pointed out that the EM algorithm
could be used even if the Poisson assumptions for the data y did not hold. In
this case, the negative log-likelihood #(y|A) is merely regarded as a distance
criterion. As noted in the next section, for consistency it is important that
Ey = KA° + u", where A° is the target parameter of interest.

Least squares and filtered back-projection. The raw least squares solution
minimizes the residual sum of squares between a corrected data vector and
its expected value under the model. The corrected data is

y=CHy—n),
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where C is the discretized diagonal scaling matrix. With this, the least
squares estimate A'® minimizes the quadratic

19(y12) = 3 L (RN = LysR)a,
J J

where R; is the jth column of R. The solution is given by
(2) s = (R/R)—lR/yc

In the case that R corresponds to a Radon-type transform (e.g., PET) and the
discretization is fine enough, the matrix R’'R is approximately Toeplitz (i.e.,
has spectral decomposition in terms of the two-dimensional discrete Fourier
transform). Analytic approximations to the spectrum are available [33, 50]. In
conventional tomography the ith eigenvalue is proportional to i~! for i =
1,2,..., I. For time-of-flight tomography, the eigenvalues have a more compli-
cated structure [50]. Note that the eigenvalues of a Toeplitz matrix may be
computed numerically in terms of its action on a single vector. If § is a
vector, the application of R'R to § gives a vector p with p = R'Ré and to
within the Toeplitz approximation,
p=¢§0,

where the caret indicates the discrete Fourier transform. Thus the vector
£=p/8 contains the spectrum of R'R. Figure 2 shows &1 for a conven-
tional and time-of-flight tomograph (see Section 4 for details of the discretiza-
tion). In both cases the spectrum is essentially linear.

The approximate Toeplitz structure is the basis of filtered back-projection
(FBP) algorithm. The data are first backprojected to create the quantity R'y¢;
subsequent multiplication by the Fourier approximation to (R'R)™' is the
filtering step. On a time-of-flight machine FBP is referred to as confidence-
weighted filtered back-projection [26]. The connection between least squares
and FBP formally depends on the degree of discretization; FBP is the
reconstruction algorithm used on almost all operational PET machines. The
great advantage of FBP is its computational speed. After back-projection,
filtering is carried out using fast Fourier transform techniques. By way of
comparison, each iteration of the EM algorithm used to compute the ML
reconstruction, involves a projection (multiplication by K) and back-projec-
tion (multiplication by K') operation. As a result, a single EM iteration is
roughly equivalent to two applications of FBP. The most efficient implemen-
tations of the EM algorithm (with approprlate initialization) typically require
on the order of 1000 iterations to produce satisfactory estimates [16, 40]; thus
EM reconstructions can be as much as three orders of magnitude slower than
FBP. The integration of smoothing into the EM algorithm can substantially
reduce the number of iterations required (for a fixed amount of smoothness).
For example, the approach of Snyder and Miller [48] uses on the order of 100
iterations for practical reconstructions. Still this is two orders of magnitude
more computing time than filtered back-projection. As a result maximum
likelihood has been only rarely used in operational settings. One could argue
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Fic. 2. Comparison of the reconstruction filters used in conventional (marked “c”) and time-of-
flight (marked “t”) filtered back-projection algorithms: the filters are radially symmetric, only the
diagonal of the matrix ¢ is shown up to the folding frequency. The computation is carried out
by the approach described in Section 2 using the discretization parameters in Section 4. The full
dimension of the image domain is 26.88 cm, so the folding frequency occurs at 13.44 cm.

that recent advances in algorithms used to compute ML-type reconstructions
[28] and the increasing speed of computers may ultimately change this
situation.

Spatial smoothing by filtering and regularization. Reconstructions must
be smoothed in some manner in order to obtain acceptable (consistent) results
[54]. There are a wide variety of possible approaches, including regulariza-
tion, the method of sieves and kernel , smoothing. The most commonly used
approach with filtered back-projection is to smooth the raw FBP solution by
convolution with a smoothing kernel [5, 26, 59]. A radially symmetric Gauss-
ian convolution kernel is the typical choice. A similar approach to smoothing
ML solutions was suggested by Vardi [52]. An advantage of this is that it
allows the examination of a range of solutions corresponding to different
amounts of smoothing in a simple manner.

An alternative approach to smoothing is regularization. In regularization
(as well as more general Bayesian methods) the objective function (likelihood
or least squares criterion) is modified by adding a term which measures the
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plausibility (e.g., smoothness), of the solution [15, 16, 30, 46]. Asymptotic
properties of continuous analogues of some regularization methods will be
examined in the next section. The method of sieves achieves smoothness by
restricting the range of optimization in least squares or maximum likelihood
[48, 40]. Formally the method of sieves can sometimes be related to regular-
ization because regularization may be regarded as a Lagrangian form for a
method of sieves approach.

Further techniques for smoothing, which have been proposed in the con-
text of maximum likelihood reconstructions, include early stopping of the EM
iteration [16, 54, 55] and a smoothed EM algorithm introduced by Silverman,
Jones, Wilson and Nychka [46]. The latter approach has been extended and
developed by Eggermont and LaRiccia [14]. Silverman, Jones, Wilson and
Nychka [46] describe a dramatic improvement in computational efficiency for
these algorithms relative to the initial approach of Vardi, Shepp and
Kaufman [54] similar to the experience of Snyder and co-workers with their
method of sieves approaches. Detailed numerical comparisons over a range of
count rates between method of sieves and the smoothed EM approach would
be interesting.

3. Asymptotic analysis of regularization estimators. Convergence
results for regularized versions of the least squares and maximum likelihood
type reconstruction methods are developed in this section. In order to cover
more general estimators of the type recently introduced by Vardi and Lee
[53], the stochastic aspects of the observational model are extended beyond
the Poisson structure appropriate for PET. Some statistical background for
the asymptotic approximation of regularization estimators is contained in
[11], [34] and [56]. Also, Natterer [33] has a brief introduction from a
numerical analysis point of view. As in previous work in the field [5, 14, 29,
59], a continuous analogue of the tomograph model will be analyzed. This
reduction simplifies the theory; however, the numerical work in the next
section indicates that the results from the continuous model provide a
" reasonable qualitative guide to how least squares and maximum likelihood
reconstructions perform in a more practical discretized setting.

Let ( € R? be the imaging domain and let L be an mth-order linear
differential operator on L,(Q, R). Penalty functionals of the form

P(9) = [QLG[x]z dx = (L6, L6)

will be considered in the definition of regularization functionals (cf. [34] and
[56]). Regularization estimators are naturally studied in terms of Sobolev
norms (see Natterer [33], section VIL.4, for a five-page introduction adequate
for the development here). For m a real number (not necessarily an integer),
let H™ be the Sobolev space of functions on R¢ with norm

01 = [ (1 +1€1%)"16C6)1 d,
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where 6 is the Fourier transform of 6 and |£€| is the Euclidean norm of a
vector in R¢. For a bounded open subset Q of R¢, H{'(Q) is the restriction of
H™ to functions supported on the closure of Q; H™(Z) is the Sobolev space of
functions defined on the extension of Z to its entire range, that is, the infinite
cylinder [0,27] X R! for conventional PET or [0,27] X R? with time of
flight. (See page 45 of Natterer [33] for further generalizations.) Two sets of
assumptions will be made. The first is as follows.

ASSUMPTION 1.

(1) The set Q is a bounded, open, simply connected, nonempty set with C*
boundary. The observational domain Z is a closed bounded subset of R? or
R,

(ii) The operators R: Ly(Z) and L: Ly(Q) — L,(Q) are linear operators,
and for some B > 0 and m > 0 there are positive constants M, and M, such
that, for all 6 € L,(Q),

Myll6lla;e) < IROlL,z) < M 1I10llm;5.0)
and, furthermore,
- {”ROIILZ(Z) + ||L9||L2(n)}
0= {||9||H513(Q) + ”0”H6"(Q)}
The penalty function is P(6) = LI} ).

Assumption 1(i) is used for the construction of Sobolev spaces and their
interpolants on  [33]. The first inequality in Assumption 1(ii) specifies
smoothness characteristics for the operator R [cf. Natterer [33], equation
(IV.1.10)]. The parameter B specifies the difficulty of the reconstruction
problem: the larger the value of B, the more difficult the reconstruction (see
Theorem 1). The second set of inequalities in Assumption 1(ii) will allow the
construction of a natural set of parameter spaces for considering regulariza-
tion estimators and determining their approximation characteristics [11, 34].
The assumption implies that there are sequences of eigenfunctions {¢, €
H{(Q): v=1,2,...} and corresponding eigenvalues {y,: v=1,2,...} with
0 < y; <vyy< - satisfying

(3) (R¢,,Re,) =3,, (Lo, L) =1%5,,

for all pairs v, u of positive integers, where §,, is Kronecker’s delta. Also

with r =m + B, v,/v" is bounded away from zero and infinity as » — . For
b=>0,let

lellz = X (1 + %) (R¢,, R6)?,

14

and let ©, be the completion of the set {§ € HJ*(Q); ||0]l, < «} in the norm
ll-llp; ®, is a Hilbert space with inner product

<o,£>b = Z(l + ’YVb)(R(bv’RO)(R(bV’Rg)
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Regularization will be carried out in the space ® = 0,. By interpolation
theory, Assumption 1(ii) implies that, for & € [0,1], ®, and H{"*#*~P(Q)
are equal as sets and have equivalent norms. Throughout this section, the
parameters b, s and s, are used to refer to interpolation spaces and norms
(@, etc.); m and B refer to Sobolev spaces and norms (H™ etc.).

Assumptions for the observational model and target parameter are given
next.

ASSUMPTION 2.

(i) The observed data is a random sample {(y,, z,), i = 1,2,..., n}, where
z; € Z and y; € R. The conditional mean and variance of y; given z, = z are
bounded, uniformly in z.

(ii) For some & > d/2 (where d is the dimension of Z) there is an s, > 0
and positive constant M such that, for 6: O — R,

RO mez) < M0,

(iii) For some 1 > s > 2s, + 1/r with r = m + B, the target parameter 6,
is in O, and satisfies

8(z) = h,(2)h(z) = c(2)Rb,[ 2] + &7,

where £ ,(2) is the conditional expectation of y given z. The functions ¢ and
g* are uniformly bounded away from zero and infinity; ¢, g* and A are in

H%2).

The introduction of the additional complication to the measurement, the
term y;, allows the theory to be applied to the generalized versions of
maximum likelihood type reconstructions discussed by Vardi and Lee [53]. In
a discretized setting the observed data could be a realization from a marked
Poisson process. In PET, the y,’s would traditionally be assumed to be
identically equal to 1. Note that the target parameter lies in a space ®, which
does not have to be as smooth as the nominal parameter space 0;.

Letting the discretization in Section 2.2 get finer yields continuous ana-
logues of the least squares and maximum likelihood criteria. Regularized
least squares and maximum likelihood type estimators are minimizers over
O of the functionals

Ro[z]g*(2) 1 y:RO[ 2]
(5 E TR T

1 T
£30(6) = [ e(2)Ro[ ] dz = — Ly, log(e(2) RO 2] +£°(2)) + 5 P(0),

1
£59(0) = 5 [Rol=T dz + [ + %P(O),

respectively. The regularization parameter is 7 > 0. Bayesian interpretations
of regularization estimators can be found in Wahba [56], for example. In
general it should be emphasized that the “likelihood” component of the
functional /,ff‘l) is not necessarily interpretable as a likelihood except for the
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Poisson sampling model of Vardi, Shepp and Kaufman [54] (where y, = 1).
Other examples of regularization functionals of this type are discussed in Cox
and O’Sullivan [12]. Note that by Assumption 2(ii) and Sobolev’s imbedding
theorem, the regularization functionals are continuous in ®, for b > s,. Also,
both functionals are convex and thus amenable to gradient based minimiza-
tion algorithms. The elements of ® can be written in a series expansion
(convergent in @)

0=269,

where 6, = (R0, R¢,) for v = 1,2,... . An explicit representation for the least
squares estimator %9 is

_ IzR$,[2]g*(2)/c(2) dz — (1/n)E;y;R¢,[ 2;]/c(2;)
[1+7y] '

It is easy to check that 6% is in ®. The maximum likelihood estimator does
not have an explicit representation; however, by the following theorem its
existence in @ is guaranteed, at least for 7 sufficiently small. The following
theorem is proved in the Appendix.

nt

(RO, Re,)

THEOREM 1. Suppose there is an « satisfying

s—1/r
(4) s<a< T
2
and a sequence 1, — 0
(5) n—17;2(a+ 1/r) N 0

Then under Assumptions 1 and 2, given & > 0, there are a constant M and an
ng such that, for all n > n,,

P{O,flfz and 6" existin ® and ¥ b € [0, ], and satisfy

(6)

168D — §ylly < M [7=272(10ylls + n~ 127, EF/P/2]L > 1 — 6,

The proof of the theorem is given in the Appendix. Note that the limits on
s in Assumption 2(iii) implies there is an «a satisfying (4). The first term on
the r.h.s. of the inequality in (6) gives an upper bound on the order of the
asymptotic bias in the || - ||;-norm and the second term gives the order of the
asymptotic standard deviation. Minimizing the sum with respect to 7 gives

(7) T, =~ n—l/(s+1/r)’
which results in

6

nr,

2 _ -
- 00”b = Op(n (s b)/(8+1/r)).

It is easy to see that we can choose a so that both (4) and (5) hold when 7, is
given by (7). With b = B/( B8 + m), with Assumption 1(ii) an upper bound on
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the integrated squared error of the regularization estimators is obtained. If
6 € HJ*(Q) (i.e., s = 1), then this bound is of the form

2 _
16,,, = OollLyc0) = Op(n =™/ + 148,

nt,

This can be compared with the 0,(n"™/(™*D) bound for two-dimensional
nonparametric regression function estimation in similar spaces [10]. Cox [10]
actually considers Sobolev spaces without the zero boundary condition; how-
ever, the results rely on the asymptotic spectral characteristics of certain
elliptic differential operators not affected by replacing the Sobolev spaces of
Cox [11] with the H{"(Q)) spaces considered here [51].

For the least squares estimator, the upper bound on the rate of conver-
gence obtained from Theorem 1 is also the upper bound on the expected value
of the reconstruction error in the || - [;-norm (see Lemma 1). In the case that
the y,’s are all unity (i.e., the usual PET model) min—max optimality of this
rate can be established by simple adaptation of the arguments in Johnstone
and Silverman [29]. The argument relies on the fact that balls in the spaces
®, have a rather simple structure so it is straightforward to modify the
proofs of Propositions 5.1 and 5.2 of Johnstone and Silverman [29]. Indeed,
this is already contained in the comments of paragraph 3, Section 8 of their
paper.

Application to PET. Verification of Assumptions 1 and 2 is straightfor-
ward in the context of PET. We only consider the case that o, = 0. The
structure of R*R is described as a ramp filter in the Fourier domain [33].
Here the asterisk denotes the L,(Z) adjoint. Figure 2 is consistent with this.
For 6 € HJ*(Q)),

o Me0(€)
BRO=—

where the caret denotes the Fourier transform and m, is a normalization
factor which ensures that the integral of R*R6 and 6 are the same. If L is an
mth-order differential operator, L*L is an elliptic differential operator of
order 2m in R? [51]. Using the Sobolev space estimates for the Radon
transform (e.g., Natterer [33], Theorem I1.5.1), Assumption 1(ii) follows with
B = 3 for conventional PET. Also, Theorem II.5.3 gives Assumption 2(ii) with
sg=6/r and sy, > 1/r.

With time-of-flight data [50, 59] the Fourier domain representation of
RT*RT becomes

RT*RT0 = m,6( é)[fm a, exp{—|£ /%2 cos(a)’) da]
—mw/2

= 2m,6( f)[[ﬂﬂat exp{—|§|2(rt2 cos(a)z} da],
0

where m, is another normalization factor. Here, since cos(a)/(7/2 — a) is
bounded away from zero and infinity on [0, 7/2], by change of variable the
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integral can be related to a Gaussian form and from this it follows that for
|£€] > n > 0 there are finite positive constants M, and M, for which
M,
Fy

Hence, ucing the Cauchy—Schwarz inequality, the operators R and R” are
equivalent in the sense that

M,|IR6||L,zy < IR™0II 1,2ty < MlIROI L2y,

w/2 M2
< [[_W/Qat exp{—|§|2crt2 cos(a)z} da| < IR

for M, and M, finite strictly positive constants and Z’ denoting the observa-
tional domain for time-of-flight PET measurements. Using interpolation (see
[33], Theorem II1.5.2), the equivalence is easily extended to more general
Sobolev norms on Z or Z* to obtain

M, IR6| g2or5zy < ||RT0||}75(Z’) < M,||R6llz25/3zy,

for & > 0. Thus for time-of-flight PET we can take & > 2 and again let
8o > 1/r to obtain Assumption 2(i).

Relative to estimation of a density based on direct measurements, the
indirect measurements of PET is seen to slow the asymptotic convergence by
introducing an extra 0.5 in the denominator of the rate; that is, the inte-
grated squared error is O,(n~"/"*1®) ag opposed to O,(n~™/™*1) for
regular two-dimensional density estimation with a target function having m
orders of smoothness. This result has a very similar flavor to those obtained
by Bickel and Ritov [5] and Zhang [59] in Hélder spaces. Also note the
calculations indicate that the rates of convergence for conventional and
time-of-flight PET are the same, which compares well with the work of Zhang
[59].

4. Numerical studies. Practical versions of least squares and maximum
likelihood reconstruction were investigated by some numerical simulation.
The focus was to develop an empirical understanding of the relationship
between the count rate in the PET study (n) and the reconstruction error and
to compare this qualitatively with the behavior suggested by the asymptotic
analysis. It was also of interest to study the manner in which time-of-flight
information improves reconstruction.

4.1. Simulation model and reconstruction methods. Simple computer rep-
resentations for conventional and time-of-flight tomographs were used [31,
50, 54]. For a conventional tomograph, the specifications were set in accor-
dance with Hoffman, Cutler, Digby and Mazziotta [25]; an imaging domain
with I = 128 X 128 pixels of dimension 2.1 mm, an observation domain with
J = 128 X 160 distance—angle bins of size 2.1 mm X 7/160 rad and a trans-
verse detector resolution of o, = 1.9 mm. For the time-of-flight tomograph, a
time measurement was added. The standard deviation of the Gaussian
time-of-flight measurement error was 3.82 cm and the discretization in the
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time direction was 32 bins each of length 2.3 mm [31]. Attenuation, detector
efficiencies and random coincidences were not included in the simulation,
thus ¢(z) = 1and g*(z) = 0. The observational model was Poisson, y ~ P( ),
with

uw=KA=RA\A,,

where R is a simple trapezoidal approximation to the line integral (or
weighted line integral) Radon transforms; A, is the discrete convolution
between the underlying source distribution A and a spherically symmetric
Gaussian distribution whose standard deviation is o,. Note that this implies
that the full-width-half-maximum of the Gaussian is 4.5 mm (a scale which is
used more frequently in the PET engineering literature).

Three phantom source distributions (A’s) were considered in the simula-
tions (see Figure 4a—c in Section 4.3). The first phantom was slice number 8
of the brain phantom set of Hoffman, Cutler, Digby and Mazziotta [25]. There
are three grey levels, corresponding to background, white matter and grey
matter. The second phantom has a greater range of grey scales; it comes from
Vardi, Shepp and Kaufman [54]. The third phantom is a digitized version of
the Jaszczak phantom commonly used for quality monitoring in operational
tomographs [31]. Data sets were generated from each of these phantoms
using pseudo-Poisson random deviates [43]. The phantom was scaled so that
the expected total counts N = }¥;u; ranged (linearly on a log, scale) over
nine discrete values between N = 10* and N = 10°® counts. This range of
counts is comparable to what is typically seen on individual scans in a
dynamic F-18 deoxyglucose brain study [39]. Reconstructions were obtained
using FBP and maximum likelihood computed by the EM algorithm dis-
cussed in Section 2. The maximum number of EM iterations used in the ML
reconstructions was 3000 with a uniform initial guess. Raw reconstructions
were smoothed by convolution with a spherically symmetric Gaussian kernel.
The standard deviation of the Gaussian was adapted to minimize the root
mean square (RMS) error between the reconstruction (A) and the true
phantom (),

2

Zi(/\i - Xl)
RMS(error) = — 7
(While this can be done in a simulation setting, a data-dependent method is
needed for application in practice. Such a method is proposed in Pawitan and
O’Sullivan [38].) In the figures below, the RMS error is scaled by the standard

deviation of the phantom [s.d.= ‘/(Zi(/\» - )\)2)/1 with A the mean of Al.

13

The adaptation of the amount of smoothness was found to be critical as
different reconstruction algorithms require different amounts of smoothing
[37].

Postprocessing of FBP. Included in the simulations studies was a postpro-
cessing algorithm proposed by O’Sullivan, Pawitan and Haynor [37] for
correcting negativity artifacts in FBP solutions. The approach is quite ad hoc.
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The motivation is that negative values in FBP reconstructions are typically
surrounded by a number of values where the solution is relatively large and
positive. Theoretically, this might be explained by the fact that the ramp-type
filter used in FBP (see Figure 2) accentuates high frequencies and conse-
quently tends to induce negative spatial autocorrelation [7]. The postprocess-
ing algorithm iteratively applies a local cancellation rule to distribute the
negative artifact at a given pixel over the surrounding neighborhood, while
preserving the total number of counts in the reconstructed image. The
algorithm is as follows (A" is the raw FBP reconstruction and A"®" is the
postprocessed result):

Initialize:
A < A5 crit « oo tol = .0001; maxit = 100; iter = 0; w « 2
While (crit > tol and iter < maxit)
iter « iter + 1
Scan the image, A; for i = 1,2,...1
if (A; < OX
a. Find the most positive value (A;+) of A in a w-neighborhood of
pixel s
b. Adjustments: A; < min(A; + A;+, 0); A;+ < max(A; + A;+, 0)}
maxi:Al<0|/\i|

crit = ——————}
mean;,, . o(A)
AT
End

The neighborhood in step (a) is defined as the set of all pixels which are
within a distance w of s. In the case that no positive values are found, the
neighborhood may be expanded by a factor of 2 until the condition is met.
Typically, we find the magnitude of the maximum negative artifact FBP
solution is reduced by at least two orders of magnitude by the algorithm. The
computational cost appears to be roughly comparable to an additional one or
two back-projection steps. Thus the computation of the postprocessed FBP
solution, which we will denote FBP-p, retains much of the efficiency of FBP.
Raw FBP-p reconstructions were smoothed using the same approach as that
used for the FBP and ML reconstructions. Previously it was found that FBP-p
was quite competitive with maximum likelihood on idealized distance—angle
tomographs [37]. The simulations here examine how the method might be
performed in a time-of-flight setting.

4.2. Evaluation of performance. The overall reconstruction was measured
using the RMS error as well as with a more elaborate region of interest (ROI)
based measurements. For the ROI error, regions S s for j=1,2,...,J, were
defined on each phantom as follows: white and grey matter for the Hoffman
phantom (J = 2); the six homogeneous elliptical regions as well as the
complement of those structures over the head region for the Shepp—Vardi
phantom (J = 7); and the six cold spheres in the Jaszczak phantom (J = 6).



POSITRON EMISSION TOMOGRAPHY 1283

Note that none of the regions of interest considered include background. The
ROI error was defined as an average relative error over the regions in the
phantom. Formally, let A> and A’ be the average value over region S; in
the true phantom and reconstructed image, respectively. Then we use

AD — o\
2D ¥ 0.1/1

ROI(error) = \/E

J

The scaling of the difference between XY and AY) is to ensure that each
region receives equal weight; the factor 0.1/I is particularly important for
the Jaszczak because the average intensity of each of the regions of interest is
zero there.

4.3. Results. Figure 3a—c shows sample reconstructions for each of the
phantoms on conventional (distance—angle) and time-of-flight (time—dis-
tance—angle) tomographs. Background negative artifact is only apparent with
the FBP reconstructions on a conventional tomograph. The effect is quite
diminished with postprocessing. Time-of-flight reconstructions are much im-
proved. Here differences between the reconstruction methods are quite dif-
ficult to discern, qualitatively.

The behavior of the RMS and ROI errors as a function of total expected
counts is shown in Figure 4a-c. The RMS errors are more stable than the
ROI error. Not surprisingly the ROI errors for the Jaszczak phantom are
particularly variable. The differences between FBP and maximum likelihood
reconstructions are consistently greater for the RMS error. The reason is that
the RMS error includes background while the ROI error does not. For both
error assessments, the postprocessed FBP is seen to improve on FBP; indeed,
for the Shepp—Vardi and Jaszczak phantoms postprocessed FBP is very close
to maximum likelihood at least for moderate counts. The greatest discrepancy
between the postprocessed FBP and maximum likelihood occurs at high
counts with the Hoffman phantom; here, in the extreme, the ROI error for the
postprocessed FBP is 42% greater than the maximum likelihood error. Note
that FBP is only an approximation to least squares, and this may be what
drives the disparity at high counts. Table 1 summarizes relative increases in
the RMS and ROI errors averaged across count rates N. For the RMS error
the FBP is 13-20% greater than ML, while the postprocessed FBP is 2 and
5% greater than ML. The corresponding relative increases for the ROI error
range from 13 to 26% for FBP and from 3 to 15% for the postprocessed FBP
reconstruction.

Apparent rates of estimation for the different reconstruction methods were
computed from the data sets plotted in Figure 4a—c. This calculation was
based on fitting the model

log(Error(N)) = ay — a; log N + noise,
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Hoffman Brain Phantom
(N=0.316 X 10°6)

D-A

T-D-A

FBP FBP-p ML
()

Shepp-Vardi Brain Phantom
(N=0.316 X 10%6)

oA

FBP FBPp ML

(b)
FiGc. 3. Sample two-dimensional reconstructions for conventional and time-of-flight tomography
with expected counts N = 0.8316 X 10°; there are three sets of plots (a, b, ¢) with six images on
each: (a) Hoffman brain phantom; (b) Shepp—Vardi brain phantom; (¢c) Digitized Jaszczak
phantom. Note that the color scales on each image range from the maximum to the minimum
value for that image. Maximum likelihood (ML) and modified filtered back-projection (FBP-p)
achieve a dramatic reduction in the background artifact seen in filtered back-projection (FBP).
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Digitized Jaszczak Phantom
(N=0.316 X 10°6)

D-A

T-DA

FBP FBPp ML
(©

Fic. 3. continued.

where the “Error” is either the RMS or ROI error. For a given phantom, the
slope «, was constrained to be the same across the different reconstruction
methods; the intercepts were not. Since the model implies

Error(N) = AN 1,

the estimate of «; is the apparent rate of estimation. The results are shown
in Table 2 (estimated standard errors are in parentheses). Overall the rates
of estimation for the ROI error are seen to be slower than the RMS error.
With the RMS error, the rate of estimation for the Hoffman phantom is seen
to be slower than for the other phantoms. The theoretical rate of estimation
suggested by Theorem 1 as well as by similar results in Zhang [59] would be
@; = m[2(m + 1.5)], where m is a measure of the smoothness of the target
function. It would be satisfying if the theoretical smoothness of the target
function were predictive of the empirical rate of estimation observed over the
count rate considered. For example, the Shepp—Vardi phantom is piecewise
continuous, so one would expect it to lie in a Sobolev space H™ with m
arbitrarily close to 0.5 (see, e.g., [33]). Based on this, one would predict a rate
of @; = 0.125 rather than the value of 0.10 which was observed. Some related
work on simpler nonparametric regression found the same effect [6]. The
reason for the mismatch may have something to do with the fact that the
experimental setup is discretized and so the sampled target function could
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Fi1G. 4. Reconstruction error as a function of expected counts ( plotted on a log—log scale): there
are three parts to the figure, corresponding to (a) Hoffman brain phantom, (b) Shepp-Vardi
phantom and (c) digitized Jaszczak phantom. The top panel on each part shows the RMS error;
the bottom panel, the ROI error (see Section 4). Results for conventional (DA) and time-of-flight
(TDA) appears in the second and third columns, respectively.

equally well correspond to an analytic or perhaps not even an L, function. If
the function were analytic, theory would predict an essentially parametric
rate of 0.5; on the other extreme, if the function is just L,, the rate would be
arbitrarily close to zero. Thus it would seem very difficult to predict the
empirical estimation characteristic in a discretized setting using asymptotic
theory. This result may help to stimulate some thought about the practical
applicability of asymptotic rate of estimation formulae. Perhaps there would
also be an implication for how one might refine the implementation of modern
bandwidth selection procedures for density estimation that are derived from
such formulae [20].

Comparisons between conventional and time-of-flight reconstructions are
shown in Figure 5. The ratios of the reconstruction error with time-of-flight
data to the corresponding error with conventional distance—angle data are



POSITRON EMISSION TOMOGRAPHY 1287

D-A T-D-A
0.3 0.9
F
F
F
Mop F .
M . F L.
M F M
02 M F 02
E F B n
("] f - F
E M l’ E\
A
b, k E ;
M W g
M
0.18 014
10M4 5104 1078 6°10%6 1076 10M 56°10Md 1075 5°106 1048
D-A T-D-A
084 M 0.84
v OF
P ; . I3
v B .
y b
¢
» 06 069
Shepp-Vardi B’ -
Brain Phantom g
M F ]
¥ ® B
M F fi E
i " f
1] M
0.4z 04g "
104 5*10M 1076 51006 10%6 10M 5°10M  10/5 51006 10%8
(b)

FIG. 4. continued.

represented in boxplots. Each boxplot has nine values corresponding to the
reconstructions done at different counts. For the RMS error, time-of-flight is
seen to yield a major improvement with FBP reconstructions. The differences
are still appreciable although less dramatic with other reconstruction meth-
ods and the ROI error. An asymptotic analysis of least squares estimators by
Zhang ([59], see Theorem 5) suggests that in the case that the target source
distribution lies in a disc of radius ¢ and the rate of estimation for the mean
square error is 2a,, the ratio of the mean square reconstruction error for
time-of-flight PET to the mean square for conventional PET might be bounded
by the constant [ o,7%/2 /(2¢)]%*1, with equality for source distributions putting
all their mass on the edge of the disc. In the present circumstance, the upper
bound is plotted using o, = 3.82, ¢ = 13.44 cm (admittedly liberal) and o,
taken from Table 2. While there is no reason why asymptotics should be
predictive of small-sample performance, it is remarkable that the bound of
Zhang [59] has the right order of magnitude. Technically the bound is
appropriate for the FBP reconstructions with the RMS error. There is obvi-
ously some discrepancy. Part of the problem may be that the bound is based
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FI1G. 4. continued.
TaBLE 1
Summary of simulation results
Phantom Hoffman Shepp-Vardi Jaszczak
Relative improvement in RMS error: mean (s.d.)
100 X (FBP-ML)/ML [DA] 12.5(3.5) 20.4 (4.1) 20.2 (3.5)
100 X (FBP-ML)/ML [TDA] 7.8(5.9) 4.8(2.2) 3417
100 x (FBP-p-ML)/ML [DA] 4.7(3.2) 3.1(1.3) 2.4(1.4)
100 X (FBP-p-ML)/ML [TDA] 59(5.7) 3.1(1.8) 1.8(1.1)
Relative improvement in ROI error: mean (s.d.)
100 x (FBP-ML)/ML [DA] 15.0(7.8) 5.2(3.8) 13.2(3.2)
100 x (FBP-ML)/ML [TDA] 19.5(18.7) 5.6 (5.9) 3.34.1)
100 X (FBP-p-ML)/ML [DA] 9.7(9.7) -1.7(1.7) 4.6(2.1)
100 x (FBP-p-ML)/ML [TDA] 17.5(18.1) 4.3 (5.6) 2.2(3.5)
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TABLE 2
Estimated rates of estimation

Phantom Hoffman Shepp-Vardi Jaszczak
RMS error 0.075 (0.002) 0.103 (0.001) 0.101 (0.001)
ROI error 0.051 (0.002) 0.054 (0.002) 0.041 (0.002)
Hoffman Shepp-Vard| Jaszczak
1.0¢ 104 1.09
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(@)
Fic. 5. Comparisons between conventional (DA) and time-of-flight (TDA) reconstructions: the
top panel shows the ratio of the RMS error for TDA reconstruction to the RMS error for the DA
reconstruction; the bottom panel shows the corresponding ratios for the ROI errors. Columns
correspond to the different phantoms. The asymptotic bound suggested by Zhang for the RMS
error is shown by the dotted line.

‘

on consideration of a worst-case source distribution. A further explanation,
less likely in my view, is that Zhang’s calculation uses Epanechnikov rather
than Gaussian smoothing kernels.

Replication of the above experiment did not change the conclusions. It is
perhaps noteworthy that the within-count variability in the RMS error was
found to be remarkably small, presumably the result of it being a rather
smooth functional.
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5. Discussion. The reconstruction problem of PET has been examined
from a theoretical point of view using analytic and computational tools. The
asymptotic analysis indicates that the rate of convergence of maximum
likelihood and least squares reconstruction methods are the same. This is
largely supported by numerical simulations evaluating the mean square
reconstruction errors as a function of count rate. Similar results are found for
more complex region of interest based measures of reconstruction accuracy.
Time-of-flight significantly reduces reconstruction errors. In practice, how-
ever, this result needs to be balanced against the additional complications
associated with obtaining time-of-flight data [31]. Maximum likelihood recon-
structions were always found to be more accurate than least squares imple-
mented by filtered back-projection. The differences were typically quite
modest in the time-of-flight setting. An ad hoc postprocessing of FBP recon-
struction to reduce negativity artifacts resulted in reconstructions which
were competitive with maximum likelihood. This may be of some practical
interest because the computation of maximum likelihood by the EM algo-
rithm requires orders of magnitude more computing time than the postpro-
cessed filtered back-projection reconstruction. Thus some further investiga-
tion of the approach might be of interest. In this context alternate methods of
postprocessing of FBP, perhaps using statistically based image restoration
algorithms [4], could prove useful.

The analysis fails to account for some physical effects, photon scatter, for
example, and as a result the relationship between counts in the simulation
model and an equivalent count rate for an actual tomograph requires careful
validation. In practice, detector efficiencies (and even attenuation) can be
highly variable and sometimes close to zero leading to severe streak artifacts
in FBP reconstructions [15]. Qualitatively the reconstructions shown in Fig-
ure 3 are substantially more resolved than what would be produced on an
operational tomograph with the same number of counts. Thus the results
here would benefit from some calibration with actual tomograph phantom
studies.

The extent to which the results might carry over to other situations in
which positivity constrained reconstruction is of interest [53] is not clear. For
a simple parametrized family of one-dimensional Poisson deconvolution prob-
lems, numerical experiments in O’Sullivan, Pawitan and Haynor [37] found
the differences between least squares and maximum likelihood reconstruc-
tion to be remarkably small, after correcting for the different amounts of
smoothing required by least squares and maximum likelihood reconstruc-
tions. I doubt that this is true in general, although it does seem to be true for
PET.

APPENDIX

Proor oF THEOREM 1. The proof uses analysis tools developed by Cox and
O’Sullivan [12]. The approach is based on Taylor series expansions for the
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regularization functional, very much in the style of the Cramér approach to
the analysis of M-estimators developed by Huber [27]. Theorem 1 follows
from linearization results in Theorems 2 and 3. To apply the theory of [12], a
set of assumptions ([12], A.1-A.6) must be verified. The first four assumptions
develop properties of some Hilbert spaces related to the regularization func-
tionals. The finite positive constant M is used generically in the following.
Note that successive appearances in a proof typically correspond to larger
values.

Assumptions A.1-A.4 of [12]. Let U and W be operators defined on ® by

Y
1+

14

1
Ue=)_ 6 .
- Lol "

14

]¢V, Wo=1Y6,

These extend to bounded linear operators on ®, for b > 0. In fact U is a
bounded linear operator from @, into ®,_ ,. Also (6,U8) = (R0, R9) and
P(6) = (6,W) and Assumptions A.1 and A.2 of [12] follow. Note the se-
quences {¢,: v=1,2,...} of eigenfunctions and corresponding eigenvalues
{y,: v=1,2,...} may equivalently be expressed as the spectral decomposition
of W relative to U, that is,

(8) <¢v’U¢p,> = 81/;1,? <¢V’W¢/.L> = yv,avp'
Thus, as in [12] the norm and inner product on ®, can be expressed as

61, =<6, 0%, <8, = 2 [1+ 4°]<0,Ud, )L, Ud,>.

Useful properties of the norms || ||, are given in [12, Lemma 2.2].

Next it is necessary to consider derivatives (score functions) of the regular-
ization functionals and their limiting forms. These are defined, using As-
sumption 2(i) and (iii), as the expected value of regularization functionals,
that is,

1 9 T
EfZRO[z] dz — fZRO[z]RGO[z] + 5 P(0), LS,

1.(6) = fzc(z)RO[z] dz

- [ log(e(2)RoL=] +7(2))a(2) dz + -;—P(e), ML,

where, from Assumption 2(iii), g(z) = c(2)R6,(2) + g*(z). The symbols LS
and ML refer to least squares and maximum likelihood, respectively. Let
1(6) = 1,(0) and [,(0) = 1,,(6). By Assumption 2(iii) and the definition of U,
it is clear that in the least squares situation 6, is the unique global
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minimizer of /(#) in @,. For the maximum likelihood case, let N, = {6 € 0,:
16 — 6yl < £}, where & is chosen so that c(z)R6(z) + g*(2) is bounded
away from zero (uniformly in z). This is possible by Assumption 2(ii) and (iii)
using Sobolev embedding. It follows that 6, is the unique minimizer of 1(6)
in N, .

Froom Assumption 2(ii), the third order Frechet derivatives [41] of [ and [,
exist and are continuous. Letting D denote differentiation, the derivatives of
1,(0) are given by the following:

otttz ae - £
Ru[z]g*(2)
Dl,(0)u = +[Z—;(z)—dz,
yic(z)Rulz,]
fc(z)Ru[z] dz - _Z c(z,)R0[ 2] +g*(z)’
(9) /Rv[z]Ru[z]dz,
. Z
D1, (0)uv = 1 yie(z;)" Rul 2,1 Rv| 2,] .
n7 (e(z,)R6[ 2] +g*(zi))2’

0,

2 yic(zi)sRu[zi]Rv[zi]Rw[zi]
n (c(2z;)RO[ 2;] +g*(zi))3

D31,(0)uvw

Here the first row in each expression corresponds to least squares and the
second to maximum likelihood. Corresponding expressions for the derivatives
of 1(6) are readily obtained. Assumption A.3 of [12] follows; D?1(6) defines a
bounded linear operator U(8) on ® by D2l(0)uv = {u,U(8),v). In the least
squares case U(0) = U. For maximum likelihood,

2 (c(2)RO,[ 2] +g%(2))

(C(Z)Re[z] +g*(z)) c(z) dz.

(¢,U(0) ) =/ZR¢[z]

From Assumption 2(iii), the definition of N, and Sobolev’s embedding, for
6 € N,, there are finite strictly positive constants M, and M, for which

M ($,Ud) <{¢,U(0)¢) < My(,Ud).

This proves Assumption A.4 of [12]. The spectral decomposition of W relative
U(6*) for 0* € N, gives rise to sequences of eigenfunctions {¢,,: v = 1,2,...}



POSITRON EMISSION TOMOGRAPHY 1293

and eigenvalues {y, ,: v = 1,2,...}. These may be used to define norms || ||,
and associated Hilbert spaces 0, , by analogy with equation (8); ®,, = 0, as
sets and they have equivalent norms (see [12], Proposition 2.1).

Linear approximations. Approximations to the systematic (bias) and
stochastic (variance) components of the estimation error are developed in
terms of first-order Taylor series expansions for the limiting and sample score
vectors DI (6) = Z (0) and DI, (0) = Z,,(6), respectively. The existence of
these score vectors as elements of ®, for b > a is developed in [12]. For
0 €N,,, let

G.(0) = U(6) + *W;

G.(0) is a bounded linear operator on @, for b € [0, 1] (see [12], Section 2).
The bias is approximated in terms of 6, — 6,, where

= -1
0, — 0o = —G.(8) Z.(8).
The variance is approximated using 6,. — 6,, where

Onr

~6,= ~G.(6,) " Z,(6,)

and 6, € N, . Actually it is required that Z,(6,) = 0, but this will be guaran-
teed by Theorem 2, at least for all 7 sufficiently small. The asymptotic
behavior of the linearizations is as follows.

LEMMA 1. There exists a 7, > 0 such that, for 0 < b < a with o satisfy-
ing (4) and some constant M, the following hold for all T € (0, 7,]:

@) d(r, )2 =16, — 6,113 < M7°~°]16,12;
(i) d,(r,8)* =18,, — 6,13 = O,(n" 17 C+1/7),

Proor. For part (), let 6* = 6,,

18, — 8,112 = 1G,(8,) “Z.(0,)II2
=11G,(8,) " (vW8y)II3
< MIG( 00)_1(TW00)”2*b
= MY (1+ 7%, G.(6,) " TWO,, U(00) $o,) °

=MY (14 7%,)(1 + 1v4,) (W, ¢,

Tv"

1+ 7"

2
<MY (1+ yr)”( ) (0, U(0y) b, )
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Here the equivalence of the |||, ,- and the | - |[,-norms is used in the third
inequality, the series expansion of |- ||, for the fourth and Lemma 2.2 of [12]
for the fifth. The fact that 6, = £,(6,, U(6,)d,>¢d,,, the defining relations
for the ¢, ,’s and the growth rate of vy, , is used in the sixth inequality. Now
the claim follows from the argument of Theorem 2.3 of Cox [11]; see also
Lemma 5.4 of Cox [10].

Part (ii) follows by Markov’s inequality. For 6* = 6, a reduction similar to
that used in part (i) gives

18, — 6,13 < MY (1 + v, )1 + v,,) *
(10) ’
X{DL,(6,) b+, — DI(6,5,)}".

Using Assumption 2(i) and (iii),

Mn1 Var{———ylizﬁz[)z] }, LS
E{(DL,(6,)¢ — DI(6,) ¢} < Mn_IVar{ ye(2)Ro[ 2] } ML
c(z2)RO[z] +g*(2) |’

< Mn 'E{yR¢(2)}*

< Mn_1~fZ(R¢[z])2 dz < Mn~Y|¢|1%,,.

Since ll¢,,lI%, = 1, substituting into equation (10) and using Lemma 2.2 of
[12] gives

E[d,(7,8)"] < Mn~1r-®+1/D, o

Bounds on derivatives. In order to show that the linearizations can be used
to approximate the behavior of the regularization estimators, some derivative
operators related to the regularization functional are analyzed (cf. the analy-
sis of M-estimators in Huber [27]). For 0 <b < a, 7> 0, 6,0, € N,, and
u,v € 0, with |lull, =llvll, = 1, set

G.(6,) [ D?1,(0,)u — D*1(6,)u]

K,,(t,b) = sup sup|

01,0, u

b?

G.(0,) ' [D*1(6,)uv]

K(7,b) = sup sup|

01,65 u,v

b?

K3n(7? b) = sup supl Gf(el)_I[Dsl"( 02)uv] ||b

01,65 u,v
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LEMMA 2. For a satisfying (4) there is a constant 0 <M < © and a
random variable A, = O,(1) such that, for all 6 € N,, and all u,v,w € @,
the following hold:

@) (D*U(Ouvw)® < Mull’- vl - llwll;
(i) (D?1,(0)uv — D?I(Ouv)? < A Mn_1||u||a lvll2;
(Gii) (D31 (tﬁ’)uvw)2 <A, Mlul?- ||v||2 “(lwll§ + n_l||w|| ).

PrOOF. In the least squares case, each of the terms on the left-hand side
of the inequalities is identically zero. For the maximum likelihood case, part
(i) follows by application of the Cauchy—Schwarz inequality together with
Assumption 2(ii) and (iii), noting s, < a.

The analysis for part (ii) is more elaborate:

¢(z)’Rul z]Rv[ 2]
(c(2)Ro[ 2] +g*(2))

{D21,(0)uv —D2l(t9)uv}2 = {fz 5 [P — P,|(dz)

where P{® is the y-weighted empirical measure of the z/s, dP{™ =
(1/n)L;y;8, , with &, Dirac’s delta function; P, is the limiting form of P(”)
from Assumptlon 2(1) and (iii), dP, = [c(2)R Oo(z) + g*(2)] dz.

Let A be a function in H?(Z). Us1ng the Fourier transform 4 of A and the

Cauchy—-Schwarz inequality,
{fzh(Z)[P;"’ - PZ](dz)}
= {/Z/[;ngl( v)exp(wv- Z)[PZ(”) — Pz](dz) dy}

(11) < {[Rah + Ivlzlalﬁ(v)lzdv}

}

- ||h||%a(z){/R3[1 + |y|2]‘_’5‘/zexp(w-z)[Pz(”) — P,|(dz)

X {[R3[1 + |v|2]_8‘/zexp(w-z)[Pz(") — P,](dz)

2}
where « = Vv — 1. However, using the argument in Lemma 1(ii),

< Mn~'Ely exp(w-2)|®

E /‘Zexp(w-z)[Pz(") — P,](dz) 2

< Mn 'E|ly?| < Mn~!
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However, [gs[1 + [v|*]7° dv is finite for 6 > d/2; thus

[E{fRS[l Fl]

Substituting into (11) gives

’ /Zexp(wz)[P;n) ~ P,|(dz)

2
} < Mn'.

{/h(z)[Pz(") - Pz](dz)}2 = Mn_lAn”h”%TS(Z)’

with A, = O,(1), independent of A. Since 6 > d /2 from Lemma 4 of Cox and
O’Sulhvan [13] with 2(z) = c¢(2)?Rul z]Rv[ 2] /(c(2)RO[ z] + g*(2))?,
(12) ||h||%75(z) < M||C||2ﬁ5(Z)||g*||%75(z)||R0||%73(Z)||Ru||2ﬁ5(2)“RU||2ﬁ5(z)
< MI0NZ i3 o],

The result follows since « > s, and 6 € ©,.
Part (iii) is proved by considering
(13)  |D31,(0)uvw| <|D31(6)uvw| +|D?1,(0)uvw — D31(0)uvw]|.

Part (i) is used to bound the first term, and the second term is handled as in
part (ii). O

From the above the following estimates are obtained.

LEMMA 3. There is a constant 0 < M < » and a random variable A, =
O,(1) such that the following hold for b < 2 — a — 1/r, where a satisfies (4):

() Ky(r,b)? < M7 @+1/n;
(i) K, (7, b)? <A, Mn~ lT—(a+b+1/r)
(iii) K, (7, b)? <A M@+ + n—lT—a}

Both M and A, are independent of T and b.

ProOF. The result is established by an analysis almost identical to that
used in Lemma 2.5 of O’Sullivan [35]. The details are straightforward. O

Linearization theorems. The main theorems follow after verifying As-
sumptions A.5 and A.6 in [12].

THEOREM 2. Let o satisfy equation (4). There exists 7, > 0 such that, for
all 7€ [0, 7,)], there is a unique 6, € N, with Z,(6,) = 0 satisfying 116, — 6;lla
< 2d(r, a). Furthermore, for 0 < b < a and some constant M, ||, — 0,ll, <
MrE=0/2 g,

Proor. We check Assumption A.5 of [12], which requires d(r, @) —» 0 and
r(r, a) — 0, where

r(r,b) =Ky(7,b)d(r, a).
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However, from Lemmas 2(i) and 3(i), for some constant M, d(r, a)? <
M7= 2)|0,)1> and r(r,b)? < My~ +1/ps—a < Mrs—1/7-22 Since 2a<s —
1/r, Assumption A.5 of [12] holds, and the result follows from Theorem 3.1 of
[12]. O

THEOREM 3. Suppose {1,} € (0,7,] (with 7, given in Theorem 2) is a
sequence such that, for some o satisfying equation (4),

(14) n-lr 2@rl/n 0,
Then there is a constant M such that the following hold with probability
arbitrarily close to 1 for all n sufficiently large:

(@) there is a unique root 6,, €®, of Z, (6) =0 with 6,, — 6, |lo <
2d,(t,, @),
(ii) for b €[0, a],

16,, — 6, lly < Mn~ 'z, Gerb+3/n/2
and
16,, — 6, lly < Mn~1/2 G+1/r/2,

PROOF. Assumption A.6 of [12] requires d,(7,, @) »p 0 and r,(7,, @) —p
0, where

rn(Tn? b) = K2n(7n? b) + dn(Tn’ a)K3n(Tn? b)
From Lemmas 2(i) and 3(ii),
r(7,,b) < Op(n—1/2Tn—(b+a+1/r)/2 + V2 (rarz/n/e
_I_n—lTn—(b+a+a+2/r)/2)

< Op(n—l/z,.rn—(2a+l/r)/2 + n—1/2,Tn‘(2a+2/r)/2 + n—lTn—(3a+2/r)/2)‘

Thus if 7, is a sequence such that equation (14) holds then r,(7,, @) —p 0.
From here, Theorem 3.2 of [12] gives the desired result. O
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