The Annals of Statistics
1995, Vol. 23, No. 4, 1198-1222

ASYMPTOTICS FOR THE TRANSFORMATION KERNEL
DENSITY ESTIMATOR

By OLa HOssJErR! AND DAVID RUPPERT 2

Lund Institute of Technology and Cornell University

An asymptotic expansion is provided for the transformation kernel
density estimator introduced by Ruppert and Cline. Let %, be the band-
width used in the £th iteration, & = 1,2,..., t. If all bandwidths are of the
same order, the leading bias term of the [th derivative of the ¢th iterate of
the density estimator has the form 5{(x)TT%_, A}, where the bias factor
b,(x) depends on the second moment of the kernel K, as well as on all
derivatives of the density f up to order 2¢. In particular, the leading bias
term is of the same order as when using an ordinary kernel density
estimator with a kernel of order 2¢. The leading stochastic term involves a
kernel of order 2¢ that depends on K, A, and h,/f(x), k= 2,...,t.

1. Introduction. Suppose that we have an independent sample
Xi,..., X, from a density f. An extensively studied method of estimating f is
the kernel density estimator (KDE)

x — X,
)

) = () k(5

where K is a symmetric kernel function that integrates to 1. The bias at x
has a formal asymptotic expansion

o (27)) x (K '
o )KLy
j=1 (2/)!
where u(K) = [u/K(u) du. One way of reducing the bias is to choose a kth
order kernel, that is a kernel with the property u,(K)= -+ =pu, (K)=0

and u,(K) # 0, where %k is an even positive integer. In this way the first
(k — 1)/2 terms in the expansion (1.1) vanish [Parzen (1962); Bartlett (1963);
Singh (1977, 1979)].

A second approach is to let the bandwidth % depend on X;, using a pilot
estimate of f [cf. Abramson (1982, 1984), Silverman (1986), Jones (1990),
Hall and Marron (1988) and Hall (1990)].

A third approach was introduced recently by Ruppert and Cline (1994)
(henceforth denoted RC). They introduced the transformation kernel density
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estimator (TKDE), defined in the following way: Let g be a smooth monotone
function. Transform the data to Y; = g(X,), i = 1,..., n. Estimate the trans-
formed density

fy(y;8) =rf(g " (y )) (y)

with a KDE

A O (Y Y
frrig ) = ()t ¥ K2,
i=1 h
and transform back by a change of variables:

(1.2) f(x;8,h) =/y(g(x);8,h)g'(x). \,

The estimate f(x; g, h) defined in this way is the TKDE.'Th order for
f(x; g, h) to have a small bias, it is crucial that g is chosen so that fY( y; g, h)
has a small bias as an estimate of fy(y; g). Ideally, fy(y; g) becomes the
uniform density on (0, 1) if we choose g = F, the cumulative distribution
function of {X,}. According to (1.1) the bias of fY( y; &, h) then vanishes. Since
F is unknown, this is of course not possible, but we can instead choose
g(x) = F(x; hy), where F(x; h,) is the indefinite integral of a KDE fy(x) =
f(x; k), so that g 1is close to F It was shown in RC that

(13)  f(x:iF(5h), hy) = f(x) = f5(2) = f(x) = Op(n %),
if h,=c,n"%andc,>0,i=1,2.
We may also iterate this process as follows: Let

(1.4) fi(x) =F(x B i) ky),  t=2,3,..,

where F,_, is the indefinite integral of f,_,. As a generalization of (1.3),
under certain smoothness conditions on f, it was established in RC that the
Ith derivative f{(x) of f,(x) satisfies

(1.5) fO(x) = fO(x) = 0,(n-@t-b/@tr Dy =1,...,t,

when h; = c¢,;n V@ Dand ¢; > 0,i = 1,...,t. The convergence in (1.5) is the
same as when using a KDE with a 2¢th order kernel; see Singh (1979).

The purpose of this paper is to provide exact expansions for the RHS of
formula (1.5) for any values of ¢ and [. It turns out (Theorem 3.1 and
Remarks 4.2 and 4.3) that the leading terms in the RHS of (1.5) are the Ith
derivative of

n

(16)  B(x) [T +n ! T (Ku(x ~ X) ~ BR, (2 - X)),

where Ktx is a 2¢th order kernel, the form of which depends on K, h,
and h,/f(x), k=2,...,t. Since it depends on the unknown f(x), it is
not computable. If K is supported on [—1,1], K, is supported on
[—hy = X4 hy/f(x), by + X4 hy, /f(x)]. The bias factor b,(x) depends on uy(K)
and fY¥(x), j=0,...,2¢.
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As a comparison, consider the asymptotic expansion of an ordinary KDE
f(x; h) with a 2¢th order kernel [cf., e.g., Prakasa Rao (1983), Section 2.1]. It
has leading bias the ¢th term in (1.1), which only depends on the unknown
density in terms of f®9(x). On the other hand, the bias term i in (1.6) depends
on all derivatives up to order 2¢. The main stochastic term of F(x; h) is found
by replacing Ktx( ) with K(-/h)/h in (1.6).

The paper is organized as follows: The regularity conditions on f, K and
the bandwidths are formulated in Section 2 together with some notation. In
Section 3 we establish the basic result of this paper: the expansion (1.6).
Some remarks concerning our results are given in Section 4 and, finally, the
more technical parts of the proofs are collected in the Appendix.

2. Regularity conditions and some notation. Let ¢ > 0 and / > 0 be
integers. The following assumptions will be used throughout the paper:

AssumprioN 1. Xi,..., X, is an iid. sample with common density f,
where f(x) > 0 and f®'*) is continuous in a neighbourhood of x.

AssumPTION 2. The function K is a nonnegative and symmetric kernel
that integrates to 1 and is supported on [~ 1, 1], and K®**!~V is continuous.

AssumpPTION 3. The bandwidths A,,..., A, do not depend on x, A, — 0
and nh,; — » as n — « and, finally,

hy(n) ha(n)
h(n) = 5P hy(n) ©

The dependence of %,,...,h, on n will be suppressed in the notation. The
case when the bandwidths are stochastic (via some plug-in rule) and depend
on x are treated in Héssjer and Ruppert (1993b). Let I(x,r) denote the
closed real interval [x — r, x + r]. Introduce the zero mean stochastic pro-
cesses

(22)  W(xiK.h) = (nh) VY (K(x—;i) _Ek(x ;X))

i=1

(2.1) 0 < inf E=2,...,t.
n

and

W,(x; 8, K, 1) = (n) " ¥ (K(MX_))

i=1 h

=9 (x) - 8(X)

-(8(x) —

R 2552
h
for any function K. Put ay(x) = 1 and
hy

(24) a,(x) = k=2,...,t.

f(x)hy’
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Note that a,(x) may depend on n, but this will not be made explicit in the
notation. Let K,(-) = K(-/h)/h. For any a > 0, we introduce the operator A :
C,(R) - Cy(R) by means of

(2.5) A(K)=K,+K-K, *K,

with * denoting the convolution operator and Cy(R) the space of continuous

and compactly supported functions on the real line. Define K,,,..., K,,
recursively through K,, = K and

(2.6) Kie=Auo(Ki-1.2), Ek=2,...,t

Note that K, depends on x through the unknown f(x) for & = 2,...,¢, and
it is supported on [ — X% & (%), Tk a(x)] (since K is supported on [—1,1]). We
will also make use of the linear differential operator defined by

rof _srf s(°'f

f f A
for any function f that is twice continuously differentiable in a neighbour-
hood of x. Here f denotes the density of X;, so B(f) is well defined because of

Assumption 1. Finally, the L _-norm, 1 < p < o, of a stochastic variable X
will be denoted || X][,.

(2.7) B(f)=f® -

p

3. The main result. We are now ready to formulate the main result. We
will give a pointwise asymptotic expansion of ﬂ(”. An asymptotic result for
the error process f,(x) — f(x) as a function of x requires different techniques
and will be investigated in another paper.

THEOREM 3.1. The lth derivative of the ith iterate TKDE has the asymp-
totic expansion

fO(x) = FO(x) + bP(x) A3
(3.1)

_ d! —
+(nhy) " = W,(2; Ky 1) + RO(2).

The bias factor b,(x) is defined through the recursive scheme b(x) =
po(K)f®(x)/2 and

,U«Z(K)

5 a,,(x)°B(b,)(x), k=1,2,...,¢t—1.

(3:2) byii(x) =~

The remainder term may be decomposed as R,(x) = R,,(x) + R,,(x). The first
term R,(x) is nonstochastic with

(3.3) sup  |RY(x")|=0o(R), Jj=0,1,...,1,
x'el(x,Cihy)
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and the second term satisfies

(3.4) sup  |R¥Y(x")|=o0,((nhy) ?Ri7), j=0,1,...,1,
x'el(x,Cihy)

for any constant C; > 0.

In order to prove Theorem 3.1, we need the following lemma, which is the
main technical result of this paper. Given an asymptotic expansion of an
estimate f(x) of f(x), it provides an asymptotic expansion of f(x) = f(x; F, h),
where F is the indefinite integral of f The proof of this lemma is given in the
Appendix.

LEMMA 3.2. Suppose that the density estimate f is nonnegative with
asymptotic expansion

f(x) = f(x) + b(x)h* + Ry(x) + Ry(x) + (nky) "W, (x; K., hy),

where K . 18 a kernel (possibly depending on x) and b and }?1 are nonstochas-
tic functions of x. Let J be a fixed nonnegative integer (< 2t + 1 — 4) and C,
an arbitrary positive constant. Suppose there exists an integer N such that

(3.5) U supp( Kx) is bounded

x’ EI(x, Clhl)
n>N

and a constant C > 0 such that for any fixed Cy > C,

d? , (y—«x' .
(3.6) sup T K, 7 = O(h{?), Jj=0,1,...,J + 3,
"el(x,Cyhy) | FX 1
Ty—x’rs C12h11
and
d | . —-x’ n —x' ,
(37)  welz,cpny | 9% hy hy
ly—x'l<Cyhy

Assume also that

(3.8) sup  |[69(x)| =0(1), j=0,1,...,J+2,
x'€l(x,Cihy)
(3.9) sup  |RY(x)] =o(h?*), j=0,1,...,d+2

x'el(x,Cihy)
and

(3.10) sup  |RY(x")|=0,((nh)" V2RI,  j=0,1,...,d + 2.
x'el(x,Cihy)
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Define now f(x) = f(x; F, ), with

3.11 0 < inf < sup ——— < o,

(1D 2 ) =W )

Then f(x) has an asymptotic expansion

f(x) = f(x) + B(x)h3* 2 + R (x) + Ry(x)
+(nh1)_1/2Wn(x;Kx,h1),

where b(x) = —py(K)a(x)’B(b)(x)/2, K, = A,,(K,) and al(x) =
h/(h, f(x)). Furthermore, b and R, are nonstochastic with

(3.12)

(3.13) sup  |69V(x")| =0(1), j=0,1,...,d,
x'el(x,Cihy)
(3.14) sup  |RY(x)| = o(h3**%), j=0,1,...,dJ

x'€l(x,Cihy)
and
(315)  sup  |RY(a")| =o,((nhy) *hi7),  j=0,1,...,d.
x'el(x,Chy)
Finally, K, satisfies

(3.16) U supp(Ifx,) is bounded,
x'el(x,Cihy)
n>N
d . (y—x , )
3.17) sup 5 K, = O(hi?), j=0,1,...,J+1
x'€l(x,Cihy) dx hy
ly—x'l<Cyhy
and
d’ [ . —x’ . —x’ .
sup 7 (Kx(y ) —Kx(y )){:o(hlv)’
(8.18)  x'<lx,Cihyp | 4% hy hy
ly—x'l<Cohy

j=0,1,...,J+ 1.

PrOOF OF THEOREM 3.1. For k =1,...,¢, we will show (using induction
w.r.t. k) that

fi(%) = F(2) + bu(x)h3* + (nhy) "V *W,(x; Ky, y)
+ Ryi(x) + Byy(x),
where b, is defined recursively in (3.2) and for any constant C; > 0,
k

(3.20) sup  [b(x)|=0(1), j=0,1,...,2(t — k) + 1,
x'el(x,Cihy)

(3.19)
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R, is nonstochastic with

(3.21) sup  |R{)(x")| =o(h2*), j=0,1,...,2(t — k) +1,
x'el(x,Cihy)

sup |Ry(x)| = o,((nhy) " *hi),
(3.22) x'el(x,Cihy)
J=0,1,...,2(¢t — k) + 1,
for some integer N > 0,

(3.23) U supp(K,, ) isbounded,

x'el(x,Cihy)
n>N

and there exists a constant C > 0 such that for any fixed C, > C,

dl _ [(y-—x
dx/j ka( hl )

sup

(8.24) % €1z, Cyhy)
ly—x'I<Cgohy

= 0(hy’),

J=0,1,...,2(¢t —k)+1+1

and
d? (_ [y-—x —_ (y—x' A
o {255 5 -
(3.25) = el(x,Cihyp | &X' J( * hy ony (A7)
ly—x'l<Cghy

i=0,1,...,2(t —k) +1+1.

The theorem will then follow by putting 2 = ¢ in (3.19), (3.21) and (3.22).
For k = 1 we have

fi(x) = [K(n)F(x + nhy) dn + (nhy) " * W, (25 K, by).

Since K, = K and b,(x) = uy(K)f®(x)/2, it follows that (3.19)~(3.25) are
satisfied with R;,(x) = 0 and

Ry(x) = fK(n)f(x + mh,) d"?_ f(x) + ,U«z( )f(z)( YhT|.

[Since f is 2¢ + [ times differentiable in a neighbourhood of x, (3.20)-(3.21)
are satisfied when %k =1, and since K is 2¢ + [ — 1 times continuously
differentiable with compact support, (3.22)—(3.25) are satisfied.]

Suppose now that we have shown (3.19)-(3.25) for a certain k <t. Then
(3 19)-(3. 25) also holds for & + 1 because of Lemma 3.2, with f(x) = fk(x)
b= bk,R RkJ,K ka,J 2t —k)+1-2, f=for1, h=hy.1, b
bii1 R =R;.1, K, = =K, . and a(x) = a,(x). This completes the indue-
tion step. O
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The following proposition shows that the kernel K, defined in (2.6) is indeed
at 2¢th order kernel.

PROPOSITION 3.3. The function K, defined in (2.6) is a 2t-th order kernel
with

1, k=0,
(3.26) ([?) 0, k=1,...,2t -1,
.26 My, tx) = K ¢ t 2
o252 (Ta) -0 k-2,

fort=1,2,....

PROOF. We proceed by induction w.r.t. ¢. Since K,, = K, (3.26) holds
when ¢ = 1 because of Assumption 2. Suppose now ¢ > 2 and that we have
established the expansion (3.26) of u, (K, ) for ¢’ =1,...,t— 1 and &' =
0,1,...,2¢'. Then, for k € {0,1,...,2¢},

Mk(I?tx)
= Mk(K @t Kt—l,x - Kaz,(x) * Et—l,x)

@y

- a,(x)knk(K) + ia(Kir,)

- Z ( e i (BOm(E, )

ro(K) + MO(Kt—l,x) - MO(Kt—l,x) =1, k=0,
a(2) o (K) + (K, 1,,) — a(x)* m(K) =0, k=1,...,2t—3,
at(x)zt_z.“zz—z(K) + MZt—Z(l?t—l,x)

_(at(x)zt_ZMZt—Z(K) + :“«2:—2(I?t—1,x)) =0, k=2t-2,
0, k=2t-1,

at(x)ztﬂ‘zt(K) +M2:(I_{-t 1, x)
(a,(x) pa (K) +( )at(x) P«z(K).Ufzt 2(Kz 1, x)
+ M’Zt(l?t—l,x))

= —2t(2t - 1)

Mz(K) —
2 at(x)zlu'2t—2(Kt—1,x), k= 2t.

We have used the fact that K,, is an even function (this may also be
established using induction w.r.t. ¢), which in particular implies that u,(K,,)
=0 for k£ odd. O
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4. Further remarks.

REMARK 4.1. We see from (3.1) that f(x) — f(l)(x) =0, (hzt
(nhy)"Y2h;"), as for a 2¢th order KDE. Suppose h, =c,n"?, k = 1
with ¢4,...,¢, > 0 and 0 < B8 < 1. Then the optimal choice of exponent is
B= B(t,l) =1/(4t + 21 + 1).

REMARK 4.2. Let S, ={(i;,...,i,); 1 <i; < -+ <i, <t} denote all or-
dered subsets of {1,..., t} of size k. It is then easy to show by induction w.r.t. ¢
that K,, has the following explicit expansion:

t
72 k=1
(4.1) Ktx=k¥1(—1) DR SFSEERED S

As special cases we have [remember that a,(x) = 1]

K, =K+K

ay(x)

— K+ K

ag(x)

and

K, =K+ K, +K

ag(x)
- Kaz(x) * Kag(x) + K+« K

as(x)

—K*xK

ag(x)

* K

ag(x)”

- K+ K

ag(x)

Put 2(x) =k, and A,(x) = h,/f(x), k = 2,...,t. It follows from (4.1), (2.2)
and (2.4) that the main stochastic term in (3.1) may be written as

n
(42) Y (Ralx - X)) - BR,(x - X)),
i=1
with
3 ! E-1
(4.3) K,.= Y (-1 Y K, 0% * Kj o)
E=1 (i1, ip)ES,

This formulation of the stochastic term is more symmetric with respect to the
bandwidths.

REMARK 4.3. The bias term bt(x)ﬁ%’ may also be written as

¢
(4) b(x) T 42,
with &,(x) = b,(x) = uy(K)f®(x)/2 and

,U«z( )

b, (%) = — f(x) *B(b,)(x), k=1,2,...,t—1.
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Introducing the operator f — B(f) = f 2B(f), we obtain the nonrecursive
formulation

(4.5) b,(x) = (—I)H(Mz( )) B (f®)(x),

with Bt=! = Bo --- o B iterated ¢ — 1 times and B is the identity operator.
The advantage of this formulation is that 6,(x) only depends on u,(K) and
all derivatives of f up to order 2¢, not on the bandwidths.

REMARK 4.4. We have only treated the case when all bandwidths are
of the same order [cf. (2.1)]. However, formulas (4.2)—-(4.5) suggest that
generally the bias term is O(h2hZ --- h?) while the stochastic term is
0,((n(min, h,)***1)~1/2) If, for instance, k), = c,n /4" Dfork =1,...,¢ -
land A,/h,; — 0 as n — «, the stochastic term dominates (cf. Theorem 2.3 in
RO).

REMARK 4.5. The bias term in (3.1) when ¢ = 2 and ! = 0 has the form (cf.
Proposition 3.3)

pi( K, )( Fos) — (F®(x))"  3f(2)F®(x)

24 f(x) f(x)
L 3U(®) f<2>(x>)
) f(x)?
_ my(K)’ (f“”(x) () 3 (%)
¢ | (=" fx) f(x)’
O ))hlhz.
f(x)*

Since &, and h, are fixed constants (not depending on x) it is more instruc-
tive to consider the RHS of (4.6), since there is a hidden dependence on x in
the factor u,(K,,) of the LHS. We see that f(x) enters with powers 2, 3 and 4
in the denominators of the terms in the bias. This suggests that the (second
iterate) TKDE estimates spikes of a density well [ f(x) is large] while tails
are estimated worse [ f(x) is small]. This agrees with the empirical studies in
RC. One way of improving the estimate of f(x) in the tails is to let 4, depend
on x. This idea has been explored in Héssjer and Ruppert (1993b).

REMARK 4.6. The bias term for the second iterate TKDE (4.6) vanishes
identically on intervals for densities having the form f(x) = ag(bx + ¢) on
that same interval, where a, b and ¢ are constants and g(x) = 1, x, x~% or
e~ *. This should be compared with the ordinary KDE, using a fourth order
kernel. Then the factor fY(x) appearing in the bias term vanishes identically

for g(x) = 1, x, x2 and x® (and linear combinations of these functions).
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REMARK 4.7. As mentioned in Section 2, supp(K, )=[-Xi_, ak(x)
Y% _1 a,(x)]. Hence, the main stochastic term of the asymptotic expansion in
Theorem 3.1 is 1nﬂuenced by data satisfying

t t
47 1X,-xl<h, ¥ a(x)=h, +f(x)"" T hy, i=1,...,n.
k=1 k=2

If all 4, are of the same order, (4.7) suggests that f,(x) cannot converge as
t — =, since more and more data are involved for computing the higher order
iterates. The optimal number of iterations in terms of asymptotic mean
squared error depends in a complicated way on K, n and f as well as on the
bandwidths. However, the simulations in RC indicate that f, changes sub-
stantially during the first three—perhaps four—iterations, but only slowly
after that. After four iterations, bias does not decrease much further, but
variance does increase. We recommend three or four iterations in practice.

REMARK 4.8. Why does f,,,(x) have a smaller bias than filx), k=
1,2,...,¢t — 1? Note that

(4.8) frva(x) =fk(x)fY(Fk(x);Fk,hk+1),

where f,(x) is an estimate of f(x) and fy(F,(x); F,, h,,,) is an estimate of
1. The bias terms are O(h2*) for both of these factors, while the stochastic
terms are O,((nh;)~'/?). However, the bias term of f,(x) is —/f(x) times the
bias term of fy(F,(x); F,, h,,,) plus terms of order h2**2. Hence, the two
bias terms cancel (up to higher order terms) in (4. 8) and the bias of
fy(F(x); Fk,hk +1) corrects that of f,(x). This follows from the expansion
(A.8) for f, and the one in Lemma 3.2 for f(x) = fk(x)

APPENDIX

We start by proving a technical lemma needed in the proof of Lemma 3.2.
Given a function K:R X R —» R, define Z,(x) = (nh) 'Y, (K(x;X,) -
EK(x; X)), a zero mean stochastic process. Actually, K depends on n, but
this will not be made explicit in the notation. With C; and C, two positive
constants, introduce the following two subsets of R?:

(A1) I(Cy,Cy) = {(x', y);lx" — x| < Cihy, Ix" — yI > Cyhy}
and .
(A.2) I2(C]_,Cz) ={(x/,y);|x/ —xlﬁclhl,lx, —'yISCZhI}.

(The dependence of I; and I, on x is suppressed in this notation.) Denote the
partial derivatives w.r.t. the first argument of K as KWU(x,y) =
3/K(x, y)/dx’ and put

(A.3) IRDlle, ¢, = sup  |K9(x', ).
(x', y)EIZ(Cl,CZ)

It will be tacitly understood in Lemma A.1 that the number J is the same as
in Lemma 3.2.
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LEMMA A.1. Suppose there exists an integer N such that for all n > N,
(A4) K(x',y)=0, VY(x',y)e€L(C,C,),

and that K is J + 1 times continuously differentiable w.r.t. the first argument
with

(A.5) IEDlle, ¢, = o(hi?), j=0,1,...,d +1.
Then
(A.6) sup  |ZU(x")| = o0,((nhy) " ?RT),  j=0,1,..., 4.
x'el(x,Cqhy)
If in (A.5), o is replaced by O, then (A.6) still holds with O, instead of o,,.
PROOF. The proof [when we have o(h;’) in (A.5)] consists of first proving
that
E(Z9(x + tyhy) — Z9(x + t1hy))
= o(1)(nhy) "y (ty — 1)’

uniformly for ¢,,¢, € [-C;, C,] [cf. Hossjer and Ruppert (1993a) for details].
The lemma then follows from Bickel and Wichura [(1971), (1) and Theorem 1
with y = 8 = 2]. When o is replaced by O in (A.6), the proof is the same; we
just replace o(1) by O(1) in (A.7). O

(A7)

Proor oF LEmMMA 3.2. We will first (Steps 1 and 2) give a proof of
(3.12)-(3.15) when K is replaced by K for all x' € I(x,C,h,), and K
replaced by A, )(K ) Then the extens1on to a kernel that depends on x'is
given in Step 3. Finally, we prove that K, satisfies (3.16)~(3.18) in Step 4.
Without ambiguity, we will put K= K in Steps 1 and 2.

Step 1. Asymptotic expansion of fY In this step, we will show that
fY(x F, h) has the asymptotic expansion

fy(F(x); F, R)
= 1+ £(x) " H((nhy) TV W, (%5 Ky, 1)
—(nhy) TV PW, (13 Ky # K by
—3up(K)a(x)"B(b)(x)h**? — b(x)h}*
+£(2) T b(x) R~ Ry(x))

(A.8)

+ Ry(x) + Ry(x),
with R , nonstochastic satisfying

(A.9) sup  |RY(x')| =o(h2**?), j=0,1,...,d,
x'el(x,Cihy)
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and

(A.10) sup  |RY(x")| =op((nh1)“1/2h1‘j), Jj=0,1,...,J.
x'€l(x,Cihy)

By the definition of fAY in Section 1,

A A N n F X;) — F(x
(A.11) fy(F(x); F,h) = (nk)"" ¥ K(——(———)z——(——l)
i=1
We will make a Taylor expansion of each term in (A.11). For this we need
some preliminaries. Let f(x) = f(x) + b(x)h2k + R,(x) be the nonstochastic

part of the density f(x). Put F(x) = [*. f(¢)dt and
F(y), y€lI(x,(Cy +2Cy)hy),
F(y) = {F(x+ (C, + 2Cy)h,), y>x+ (Cy+2Cy)hy,
F(x — (C, + 2Cy)hy), y<x—(C,+2C,y)h,.
Assume C, > max, (h(n)/h(n))/f(x). Then, it follows from (3.8) and (3.9)
[cf. (Assumption 1)] that
(A12)  |F(y) - F(x')| >k whenever (x',y) € I,(C,,C,),

for large enough n. Introduce u(x; y) = (F(y) — F(x))/h, u(x; y) = (F(y) —
F(x))/h and @(x; y) = (F(y) — F(x))/h. By the Taylor expansion,

K(a(x;y))
(A.13) = K(u(x3y)) + K'(u(x3 ) (8( 23 5) — u(x3 )
+K1(x;y) +I€2(x;y) +I€3(x;y),
with
Ki(x:9) = ﬁ:;yi)m)(t)(ﬂ(x;y) - ) dt,

Ky(x;y) = (K'(@(x;)) = K'(w(x;9))) (&(x;5) = @(x;5))
and
Ry(xy) = [*VVKO(t)(a(xs5y) — 1) dt.
u(x; y)
Insertion of (A.13) into (A.11) gives
fy(ﬁ(x),ﬁ,h) '
=1+ (nh)_l/zW(x'F K,h)

(A.14) -

n

+(nh) Z l(x;Xi)

#(h) " L R X) 4 (k) L K5 X)),

i=1
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Let A(t) = [*,. K(s)ds and f(x) = ER(X — x)/h,)/h;. Then
d(x;y) —u(x;y)

G [~y X NED ¢
(A15) = (nh) ‘ZI(A( " )‘A( " ))

+ R [T(B(e)R2E — (1) + Ry(t) + By(2)) dt.

Put also

K (x;y) = h‘lh%kK’(u(x;y))Lyé(t) dt,

Ry(w;y) = b7 'K (u(x;9)) [ Bu(t) @t
and
Kyg(x;y) = h_lK’(u(x;y))Lyléz(t) dt.
Hence, insertion of (A.15) into the third term in the RHS of (A.14) yields
(k)™ ¥ K /(s X))(@( x5 X,) ~ u(x; X))
i-1

=(nh)”* LY H(x;X,, X))

1<i,j<n
(8.16) )™ ¥ K X0) [F(0)
#m) ! LRy X) + () L Rl X)

+(nh)_1 Zn: Ke(”‘;Xi),

i=1

1211

where H(x;y,2) = K'(u(x; y))A(y — 2)/hy) — A(x — z)/h)). It follows

from (A.14) and (A.16) that (A.8) holds with

Ry(x) =k 'ER (x; K) - f(x) 2b(x)*ht*,
Ryy(x) =h ER,(x; X) + f(x) "b(x)h2
+37(x) " a(K) a(x)B(B)(x) k32,
Ry(x) = h 'EKy(x; X) + f(x) 'Ry(x),
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Ry (x) = (nh) "2 X (x; F, K, k) — f(2)" (nhy) "’ W,(x; Kyay, Be),

By(x) = (nh) ' ¥ (By(x: X)) - ER (x; X)),

i=1

Byp(x) = (nh) ™ ¥ Ky(x: X)),

i=1
Ru(x) = (uh) ™ ¥ Ky(:X),
Ry(x) =(nk)™ LY H(x; X;, X;)

1<i,j<n
—(nh?)” ZKwuX»fﬂﬂw
+ £(x) " (nhy) VW, (x5 Koy K by,

ﬁﬁw=mm*gwumm—mmmmr

Bor(x) = (nh) " ¥ (By(x: X,) — ERy(x; X))

and
Eze(x) = (nh)_l i’.l Ks(x?Xi)-

It remains to prove (A.9) and (A.10) by showing that each R,, satisfies (A.9)
and each R,, satisfies (A.10). For the nonstochastic terms R, — R, we will
make use of the following: Let

£(x',m) =F 1(F(x') + nh)
nh 1 f'(x")
=x' +
(A.17) YR T2y 2l
1(3f(x)"  fO(x")
f(=)" o fe)!
Since f is J + 2 times continuously differentiable around x with f(x) > 0, it

follows by making a Taylor expansion of F~! around F(x'), that for any
C>0,

(A.18) sup | pV(x"sm)[ =o(R}), j=0,1,...,d.
x'el(x,Cyhy)
Iml<C

(nh)® + p(x'; 7).

R,,. Let é&x) = b(x)h%* + R,(x). Then
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Ryy(x) = (%h* JE®(u(x;9))(y - 2)*F(y) dyé(x)° —f(x)"25(x)2h1”‘)

+

3h0 fK<2>(u<x;y>)(( f:emdt) ~((y —x)é(x))z)f(y) dy)

+

h_lf/;:;y))(K@)(s) —KP(u(x;)))(@(x;y) —s) dsf(y) dy)

=R(x) + Ryjp(x) + Ryp5(%).

By change of variables,

Ru(x) = 307 [* KO m) = )" dné(x)? = (=) b(x) A,

and from (3.8), (3.9) and (A.18) it follows that sup, ey cn, | R, (=")
o(hi*) = o(h2**2) for j = 0,1,..., J. Similarly, by making the same change of
variables and using (3.8), (3.9) and (A.18), it is possible to prove

sup |1?(1{)2(x’)| = O(h‘lu”l) = o(h%’”z)
x’EI(x,Clhl)

and

sup  |Ry(a")| = O(hS*) = o(A24+2)
x'€l(x,Cihy)

for j =0,1,...,J. For details, see Hossjer and Ruppert (1993a).

R,,. By the definition of K, and the change of variables n = (F(y) —
F(x))/h,

(A19)  AT'ER,(x;X) = h 3 [T K (n) (¥ b(¢) dedn,
-1 x

We now perform a Taylor expansion of the factor [5*/™ b(¢) dt in (A.19) and
use the definition of B(b). This results in

Biy(x) = h BB (x; X) + f(x) wf(—)

B(b)(x)h3++?
+f(x) " b(x)h3*
= (h‘lf_llK’(n)(é(x;n) —x) dn+f(x)""

3f(x)*  FP(x)
f(x)®  f(x)*

1 A
+§M2(K)( )hZ)b(xﬂz%k
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1
Hlgh [ B (exin) ~ ) dn
F(x)
f(x)*
1 py(K)

1 S 3
gh f_lK (m(&(x;m) —x) dn+ 3 (o)

+(-;-h-I[le'(n)Lf‘x;")(z§<2>(t) —b®(x))(&(x3m) —t)” dtdn)h%k
= Rip1(x) + Rigy(x) + Rygg(x) + Rypy( ).

Observe next that w,(K') = [1; K'(n)n*dn equals 0 for & even, —1 for

k=1 and —3uy(K) for £ = 3. In conjunction with (A.17) and (A.18) this

implies

(A.20) sup  |RY,(x")
x'el(x,Cihy)

Formula (A.20) for i = 4 follows from (3.8) and (A.17) and (A.18). For details,

see Hossjer and Ruppert (1993a).

3 A
~ = ka(K) hZ)b'(xm%k

+ h?) b®(x)h3*

=o(h2%*?), i=1,2,3,j=0,1,...,d.

R;. This term is handled in the same way as R,,, with R, instead of
h2*b.
Now for the stochastic terms R,; — R, we first need some estimates that

we will make frequent use of later. Put v(x; y) = f(xXy — x)/h and remem-
ber the notation in (A.3). Then it is easily seen that

. du(x',
luPle,,c, = sup —(TJ—y—)

(A 21) (x', y)€I(Cy, Cy) JIx

: c, when j =0,

= Chi', whenj=1,...,J +1,

A22 o . A
(A.22) vPle,,c, < Chi', whenj=1,...,J +1,
A23 Iz . T
(A.23) u “01,025 Chl‘l, when j=1,...,J + 1,
and
(A.24) 129lc,,c, = O,(h1?), whenj=0,1,...,J + 1.

The last identity holds since 2¢(x’,y) = —h~'fU"D(x’) when j > 1, and
according to (3.8)-(3.10) the RHS of (A.24) is O,(h;'(1 + (nhy) 1/2h{7+1)) =
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O,(hi’), since h; > n~'. We also need the following results:
Ch;, when j=0,

(A.25) lu? — vD|i¢, ¢, < {C, when j =1,
C’h[l, when j=2,...,J + 1,

Ch2*, when j = 0,

A26) 79— uPe, ¢, <
(A26) lowes <\ opar1 when j=1,.. 7+1,

and
Aa2n 129 -az9¢,c, = Op((nhl)‘l/zhl‘j), when j=0,...,J + 1.

For instance, (A.25) follows since

y
w(x',y) —v(x',y) =7 [ (f(t) — f(x")) dt
X
and
u'(x',y) —v'(x',y)=—f'(x")(y —x") /h.
We start with R,;, Ry, Ry and R,,, for which we will make use of Lemma
Al

R,. We may write R,(x) = (nh))"' £, (K(x; X,) — EK(x; X)), where
K(x;y) = (K(F(y) — F(x))/h) — K(f(x)(y - x)/h))hl/h It suffices to es-
tablish that (A.4) and (A.5) of Lemma A.1 are satisfied. By the choice of C,
before (A.12), it is clear that (A.4) holds. On the other hand, (A.5) follows from
(A.21), (A.22) and (A.25). For instance, IIKIICl c, = O0(lu - vllc,,c,) = O(hy),
and for the first derivative, K’ (x y) = (u'(x; Y)K'(u(x; y)) — v'(x; y)
XK'(v(x; y))h,/h, which implies ||K ||c1 Cy, = =0(lu’" —v ||cl c, T ||U ||cl C, ||u
~ vlle,¢,) = OQ). Contmumg in this way, one shows that ||KWlc, ¢,
O(hi™), j=0,1,...,J + 1, which implies (A.5).

Ry,. Again, it suffices to show that K, satisfies (A.4) and (A.5) of Lemma
A.1. By the choice of C,; and construction of F, it follows that

|x" —x| < Cihy, y>x' +Cyhy = u(x',y),u(x’;y)>1,

|x" —x| < Cihy, y<x' —Cyh; = u(x',y),u(x';y) < -1,

for large enough n. Hence, by the definition of K, (x',y) € I,(C;,C,) =
K,(x',y) = 0, which proves (A.4). Formula (A.5) is a consequence of (A.21),
(A.23) and (A.26). Using the expansion Kl(x ¥) = K(@(x'; y)) — K(u(x'; y))
—(@(x', y) — u(x’, y))K (u(x', y)), it follows that IIK(’)llc1 c, = O(hzk_f) =
o(h{’), j=0,1,...,dJ + 1, and (A.5) is proved.

(A.28)

R, and Ry, Tt suffices to establish that K, and K, satisfy (A.4) and
(A.5) of Lemma A.1; we omit the details.

Next we consider R,;, R,, and R, which are treated in a similar
manner.
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R,,. It follows from (A.28) that for all n that are large enough, (x’, y) €
I,(C,,C,) = Ky(x'; y) = 0. Hence, for all x’ € I(x,C,h,),

RY)(x") = (nh) ™" Z KO (x'; X)I(1X, — x| < (C, + Cy)hy).
i=1

Hence

SUP|, 4 i<con, [RG) (x| = Op(( nhy) IR le, e, nhl) = 0p(||I€§j)||cl,cz).
It therefore suffices to show that

1B e, ¢, = Op(A3* I (nhy) %) = 0, (hi?(nhy) %), j=0,1,....4.

This is actually a consequence of (A.21), (A.23), (A.24), (A.26) and (A.27). For
instance,

1B le,.c, = O(Ilz = ulle, c,llt = T, c,) = O, (h3*(nhy) V%)

and K} = (@' K'(@) — v'K'(wW)& — @) + (K@) — Kw)X4&' — @), from which
it follows that

1B lic, c, = O((I7" = w'lle, e, + lu'lle, c,I@ = ulle, ¢, )l = Tle, c,
+z - ulle, ¢ 12" - @lle, c,)

= 0,(h3*~Y(nhy)'?).

R,,. Since F is nondecreasing, formulas (3.8)-(3.10) and the lower bound
on C, given before (A.12) imply P(IF(y) — F(x")| > h ¥ (x’, y) € I,(Cy,Cy))
— 1 as n — ». This formula and (A.12) give P(Ky(x',y) =0V (x’ ,¥) €
I(C.,C,)) > 1 as n — », which implies, in the same way as for R,;,
SUP|, 4 <cih, |RG) ()| = 0 L, (IES llc, c,), so it suffices to show that

(A.29) 1K llc,,c, = 0,(hi7(nhy) %),  j=0,1,...,J.

For instance, || Kyllc, c, = OUl4 — #ll¢, ¢,) = 0,((nky)~1) = 0,(nhy)~/?) and
K' = [M(K (2)(15)"' K®(@)u') dt, from which it is poss1ble to deduce (A.29)
when j = 1. Higher values of j are handled similarly.

R,;. This term is handled in the same way as Ry, and R,,.

R,5. The proof for this term is based on U-statistics theory and given in
Lemma A.2.

Step 2. Asymptotic expansion of f. By assumption, flx) = f(x)fY(F(x),
F, ), with f(x) = f(x) + b(x)h2* + R(x) + Ry(x) + (nh) " ?W (x; K, k).
It follows by multiplying this identity with (A.8) and collectmg terms that

f(x) = f(x) + b(x)h2*2 + (nhy)~'/?
X Wn(x;I%+ K.~ K*Ka(x),hl) + Ry(%) + Ry(x),
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with
Ry(x) = f(x)Ry(x) + (b(x)h2* + Ry(x))
X(= 3f(x) " ma(K) a(x)?B(b)(x)h3++2
+f(x) 7 b(x)"hit + Ry(x))
— f(x) *Ry(x)"
and
Ry(x) = f(x)Ry(x) + (B(x)h2* + Ry(x))
(A.30) X f(x) 7 (nhy) W, (x5 Koy = Koyt B, hy) + Ry(x))

+(nhy) W (x5 K ) (Fr (%) = 1) + Ry() fy ().
Now (3.13)-(3.15) follows from (3.6), (3.8)~(3.10), (A.9) and (A.10). [The supre-
mum of the W,-processes involved in (A.30) are taken care of using Assump-
tion 2, (3.6) and Lemma A.1.]

Step 3. The dependence of K on x'. We will show in this step that K
may be replaced by K and K, by A )(K ) for all x’' € I(x,C,h, )
without affecting the conclusmn of Lemma 3.2. If we can establish that

sup

d’
172 W ’. K"
£ €Kz, Coh) (nhl) x”( n(x ’ x’,hl)
»Cihg

A3l A
(A.31) ~W,(x'3 K, b))
- OP((nhl)_l/2h1_j), =01, J+e,
and
sup (nh )—1/2 d’ (W (xr,A (K\' ) 5 )
2’ el(x,Cyhy) ! dd Vel X5 Aaan| Bar )y My
(A.32)

—Wn(x'; Aa(x”)(Kx)’ hl))

=o,((nhy) V?R77),  j=0,1,...,d,
we may incorporate the difference between the stochastic processes in (A.31)
into R,(x") and the difference in (A.32) into R,(x"). An appeal to what we

have already proved in Steps 1 and 2 then proves the whole lemma. Observe
that

(nhy)~ 1/2( ( 'K, h) Wn(x’;KA'x,hl))

= (nhy) " ¥ (Bi(x'; X,) - ER\(2; X)),

i=1
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with K,(x';y) = K.(y —x")/h,) — K ,(y — x")/h,). However, (A.31) then
follows from Lemma A.1 (with J + 2 instead of J), (3.5) and (3. 7) Formula
(A 32), finally, is derived from Lemma A.1, with K,(x';y) = a(x )(K D)=

Ay )(K ). Since K, satisfies (A.4) and (A.5), we may verify that K, satisfies
these equations as well by using the methods in Step 4.

Step 4. Verification of (3.16)—(3.18). By definition,

(A.33) K, =K +K

a(x)

- K x * K a(x)?

s0 (3.16) follows from (3.5) and the fact that a(:) is bounded in a neighbour-
hood of x. Formula (3.17) will follow if we can show that d/K (n)/dnf is
bounded in 7 for j = 0,1,..., J + 1. However, (3.6) implies that d’K (n)/dn’
is bounded. Thus, (3.17) follows from (A.33), (3.6), Assumption 2 and the fact
that J + 1 < 2¢ + 1 — 1. It remains to verify (3.18). Hence, we have to show
that

(A.34) sup IK‘j)(x’;y)| =o(hi’), Jj=0,1,...,d+1,
x’EI(x,Clhl)
yel(x',Cyhy)

where

. y - xl . y - x/
=Ky (x';y) + Ky(x'5y) — Ka(x'5y).
Obviously, it suffices to prove (A.34) with K instead of K, m = 1,2,3. By

the induction hypothesis, the case m = 1 is already done. For Kg, (A.34)
follows from the facts that

(A.35) sup  |a(x') = a(x)]| =0(1)
x'€l(x,Cihy)
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and (since J + 1 < 2t + 1)

(A.36) sup  |aP(x)|=0(1), j=0,1,...,d+1,
x'e€l(x,Cihy)

which are both consequences of Assumption 1. For instance,
Ky(x';y)
a'(x")

(A.37) a(x')? K( a(x')hl) - a(x')®

1 y —x' 1 y—x'
- — K’ - - s— K’ .
a(x')°hy \a(x')hy a(x)°hy  \a(x)h,
The first two terms in the RHS of (A.37) are clearly O(1) because of (A.36),

and the difference of the last two terms is o(A~!) as a consequence of (A.35).
It remains to consider K. Note that

a/(x/) . y_x/ y_x/
a(x)hy ] Ry

K(x';y)

-t £ A

" ( d’"Kx,((z —x")/hy) dV K, ((y =2z —x')/h;)

dx'™ dx'G—m)
_d"K (2= %) /hy) A9, ((y —2 = x') /hy) 5
dx'™ dx'™m™ '

Now (A.34), with K 3 in place of K, follows from the fact that we have already
established (A.34) for K, and K,, and from the relation

d'K ((€=2x")/hy) dea(x)((g—x’)/hl)
dx'’ dx'’

) = 0(hy7),

sup (
x'€l(x,Cihy)
tel(x’,Cyhy)

LEMMA A.2. Let Ry; be the remainder term defined in the proof of Lemma
3.2, Step 1. Then

(A.38) sup  |RP(x')|=0,((nh)"V2RTH),  j=0,1,...,.
x'e€l(x,Cyhy)

PrOOF. The first term in the definition of R,s is a U-statistic of order 2
[cf. Serfling (1980), Chapter 5], which we decompose in the traditional way:



1220 0. HOSSJER AND D. RUPPERT

Put Hy(x; y) =EH(x; y, X), Hy(x;2) = EH(x; X, z), Hy(x) = EH(x; X, X,)
= EH(x; X) = EH,(x; X) and finally H(x; y, 2z) = H(x; y, z) — H(x; y)

—H,(x; 2) + Hy(x). Then

(nh)? LY H(x;X;, X))

1<i,j<n

(nh)z Z(Hz(x X)) - Ho(x))+( =Z Hy(x;X;)

+(nh) 2 LY H(x; X, X;) + (nh)~* z H(x;X,,X,).
i=1

i%j
Since H,(x;y) = K'(u(x; y))f? f(t)dt, we may write Ry5 = Rys; + Rygp +

Rysq + Ry, with

n

Hy(x;X,) — (nh?)” ZK(u(x X))f ‘f(t) dt

Rosi(x) = (nh)2 =
= —()* ¥ K (u(x X)) [0y at
Rua() = ()™ ¥ H(xi X, X)),
1_3253(x)= ( h)2 Z(Hz(x X)) - EHz(x5X))
+£(x) " (nhy) VW (25 Ky x K By
and

1_?254(x) = (nh)—2 Zzﬁ(x;Xi’Xj)a

itj
It suffices to prove (A.38) for each of these four terms.

Ry, and R,s,. These terms are handled in the same way as R 23+

R,s;. Integration by parts yields

Hz(x;z)=_th( (y)}—lF(x))K,( h_lz)dy/hl’
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so that
_ n—-—1 IR -
Ross(x) = n (nhy) Z(K(x;Xi)—EK(x;X))
i=1
— n A Xl — X
(A.39) +f(x) ()t T (Ka(x)*K( - )
i=1 1
X —x
i)
1
with

~ hl -1 Al X — 2
K(x;z)=—h—2H2(x;z)+f(x) K n*K 7

1

_ —h‘lf(K(F(y) —F(x)) _K(f(x)(y - %) ))K( —y) .

h h A,

The first term in (A.39) is treated as R,,, and the second one as R 23-

Ry, This term is a degenerate U-statistic of order 2. Based on moment
estimates for such statistics [cf. Serfling (1980), page 183], it is possible to
prove

E(RR,(x + tyhy) — RQu(x + t,h1))" = o(1)(nhy) " *hy2(e, — 1)),

uniformly for ¢,,t, € [~ C,, C,]; see Héssjer ad Ruppert (1993a). The relation
(A.38) for R,;, then follows from Bickel and Wichura [(1971), (1) and Theo-
rem 1 with y=8=2]. O
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